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Laurent Véron

Department of Mathematics, Université Frangois Rabelais, Tours, France

Abstract We study the initial trace problem for positive solutions of semilinear heat equations
with strong absorption. We amphasize the particular case where u satisfies Ou— Au+t“u? = 0, with
g>1landa > —1.

1 Introduction
In this paper we study the initial trace problem for positive solutions of
du— Au+ g(z,t,u) =0 dans QS :=Q x (0,7T) (1.1)

where Q is a smooth domain in RY containing O and g € C(Q x Ry x R), g(z,t,.) is
nondecreasing V(x,t) € Q x R and satisfies rg(x,t,r) > 0 for » € R. Our first result states
the existence of an ini.

Theorem A Assume g satisfies the above conditions and that equation (1.1) possesses a
barrier at any z € Q. Ifu € C1(QS) is a positive solution of (1.1), it admits an initial trace
which belongs to the class of outer reqular positive Borel measure in €.

The barrier assumption will be made precise later on in full generality. It is fulfilled
if g(z,t,r) = h(z)t*|r|" 'r with o > —1, ¢ > 1 and h € Lgs (2) satisfies infessh > 0
for any compact subset K C €, or if g satisfies the Keller-Osserman condition, that is
g(x,t,r) > h(r) > 0 where h is nondecreasing and

o0 d S
/ i where H(s) = / h(t)dt. (1.2)
a H(S) 0
The initial trace of positive solutions of (1.1) exists in the following sense: there exists a
relatively closed set S C Q2 and a positive Radon measure p on R := Q\ S with the following
properties:
(i) for any xo € S and any € >0

lim u(z, t)dr = oo, (1.3)
=0/ B (z0)nQ2



(i1) for any ¢ € Cc(R)

li t dr = du. 1.4
tim [ ut)C(a)de = [ ca (1)
The couple (S, 1) is unique and characterizes a unique positive outer regular Borel mea-
sure v on 2.
A similar notion of boundary trace has been introduced by Marcus and Véron [10] in the
study of positive solutions of

—Au+ g(z,u) =0in Q. (1.5)

This notion in itself has turned out to be a very usefull tool for classifying the positive
solutions of (1.5).

In the second part we concentrate on the particular case of equation
A — Au+ 1% |u)” " u = 0 dans QS (1.6)

where T" > 0, a > —1 and ¢ > 1. Among the main useful tools, are the positive solutions
with an isolated singularity at (0,0): they are solutions u of (1.6) in @S}, which belong to
C?1(QF) NC (2 x [0,T)\{(0,0)}) and satisfy

u(z,0) =0 in Q\{O}. (1.7)

When « = 0, Brezis and Friedman prove in [2] that if Bop C €2, then any such solution

satisfies
u(w,t) < SR g e B0} x 0,7 (1.8)

(|:c|2 + t) ot

They also prove that if 1 < ¢ < qny =1+ % and k > 0 there exist singular solutions with
initial data u(.,0) = kdo, unique if u vanishes on 9 x [0,T]. In this range of exponents,
Brezis, Peletier, Terman obtain in [1] the existence and uniqueness of a very singular solution

of (1.6), always with « = 0: it is a positive solution in Q under the form
vo(z,t) = =/ (a=Dy, (i) ,

o(z,t) 0 i
where V > 0 is C? and satisfies

—AVy = 5n.VVo — Vo + V=0 inRY 19
L 00 In| == Vo(n) = 0. .

Actually, Kamin and Peletier show that vy is the limit of the solutions uy of (1.6) in Qs
which satisfy u(.,0) = kdo. The very singular singular solution plays a fundamental role in
Marcus and Véron’s description [7] of the initial trace of positive solutions of (1.6) with o = 0.
In [9], Marcus et Véron study this equation when a > 0 and 1 < ¢ < go.v =1+ 2(1—;0‘)
They obtain the existence of a self-similar solution of (1.6) under the form

Vo (2, t) = TV, (%) ,



which satisfies
lim vy (z,t) =0 Vx #0
t—0

and

lim [ wvq(z,t)de =00 Ve > 0.
t=0 .

The function V,, is nonnegative and verifies

1 1
CAV, — 1YV, —
q—1

5 Vo +V2=0inR"Y, (1.10)

Furthermore
20+a) _p —lnl?

Va(n) =Cln| 7= Ve 27 (14 0(1)) as |n| — oo. (1.11)

If 1 < ¢ < ¢a,nN, they show that for every k > 0 there exists a unique solution uy of (1.6)
with initial data kdp. Furthermore limg_, o up = v. Actually the limitation o > 0 can be
relaxed to a > —1 has we will see it later on.

In this article we extend Brezis-Friedman removability result to equation (1.6) and prove
that if ¢ > go,~, any solution in @7 which satisfies (1.7) is identically 0. The starting point
of our study is the following extension of estimate (1.8) valid for any o > —1 and ¢ > 1.

u(z,t) < M V(z,t) € Br\{0} x [0, T]. (1.12)

(lef* +2)"

The obstacle for obtaining such an estimate arises when « > 0 and the absorption term
t*u? is degenerate near t = 0. We overcome this difficulty by a delicate construction of
1-dim self-similar supersolutions. Thanks to this estimate, we obtain that the following
classification results.

Theorem B Assume 1 < ¢ < go.n and u € CH(QH) N C(Q x [0, T\{(0,0))}) is a solution
of (1.6) which vanishes on Q\ {O} att =0. Then

(i) either there exists k > 0 such that u(.,0) = kdo and

u(z,t) ~ kE(z,t) as (z,t) — (0,0), (1.13)
where E(x,t) = (47rt)7%e’ = ,
(i) or

u(z,t) ~ vo(z,t) as (z,t) = (0,0). (1.14)

In the supercritical case the following removability statement holds.

Theorem C Assume q > go.n and u € CHQ$) N C(Q x [0,T\{(0,0))}) is a positive
solution of (1.6) which vanishes on Q\{O} att =0. Then u can be extended by continuity
as a function in C(2 x [0,T]).

We prove that equation (1.6) admits a barrier at any z € 2. More precisely we construct
a positive solution wp, of (1.6) in QB which tends to 0 locally uniformly in Br when



t — 0 and which blows-up uniformly on dBr x [1,0), for any 7 > 0. Applying Theorem
A, we infer that any positive solution admits an initial trace which is an outer regular Borel
measure v = (S, u). Using sharp parabolic Harnack inequality and a concentration principle,
we prove the following result which is the key-stone for analyzing the behaviour of v on the
set S.

Theorem D Assume 1 < q < qa.n and u € C*(QS}) is a positive solution of (1.6) with
initial trace (S,p). Then for any a € S there holds

w(x,t) > Usoo(x,t)  V(x,t) € QF (1.15)

where Ueo o = liMg_y00 Uks, where ugs, is the solution of (1.6) in Q¥ with initial trace ko,
and which vanishes on 0§ x [0,T].

It is important to notice that the behaviour of us 4 near (a,0) is given by (1.14) and

(1.11). Using sharp asymptotics of the function V,,, we have the following result which
extends Theorem A.

Theorem E Assume 1 < q < ga.n and Q C RY s open with a C* compact boundary,
eventually empty. Then for any couple (S,u) where S C Q is relatively closed and p €
M, (Q\S), there exists a mazimal and a minimal u € C1(QS) N CH(Q x (0,T)) which both
satisfy (i) and (i) and vanish on 0Q x (0,T]. If inf{|z — 2| : 2 € §,2" € Q°} > 0 and p is

bounded in a neighborhood of 0N, then u is unique.

2 Initial trace

In this section Q C R is an open set, Q% = Q x (0,7), 3Q%F = Q x {0} U x [0,T)
and g € C(2 x Ry x R). If u is defined in € x Ry, we denote by gow the function
(x,t) — g(z,t,u(x,t)). We say that g belongs to H (resp Ho) if

gz, t,r) >0 V(x,t,r) € A xRy x Ry 21)
(resp. g € H and r — g(x,t,r) is nondecreasing). .

We denote by M(Q) the set of Radon measures in 2, and by 9°(Q) (resp. M>P(Q2)) the
subset of Radon measures such that

/d|u|<oo <resp. /pd|u|<oo>,
Q Q

where p(z) := dist (z,0¢). Their positive cones are respectively M (Q), M4 (Q) and
Mme* (Q).

Definition 2.1 Let S be a relatively closed subset of Q) and p a Radon measure on R :=
Q\S. We say that a nonnegative function u € C(Q$}) admits the couple (S,p) for initial
trace if

lim [ wu(z,t)((z)dx = / Cdu V¢ € Ce(R),
R

t—0 R



and

lim | wu(z,t)dz = o YU Cc Q,U open, UNS # ()
=0 i,

The set S is the set of singular initial points of u and its complement R the set of regular
initial points. We write tro(u) = (S, ).

Let & be the extension of i as a locally bounded Borel measure. To the couple (S, i) we
can associate a unique Borel measure v defined by

00 VE CQ: E Borel, ENS # 0

M(E) = { a(E) VE CQ:FE Borel, ECR. (2.2)

Lemma 2.1 Assume (2 is a bounded open set with a C? boundary, T > 0, g € H, and let
u € C(Q x (0,T]) be a positive solution of
Oru — Au + gou=10 in QF. (2.3)

If gou € L (QF), then u € L™ (0, T, L}(Q)) and there exists u € M, (Q) such that

lim [ w(z,t)((x)dx = /QCdu V¢ € C.(Q). (2.4)

t—=0 Jo

Proof. If ¢1 > 0 is the first eigenfunction of —A in WO1 2 (Q) and A; is the corresponding
eigenvalue, we have

4 u¢1dx+/\1/u¢1dz+/gougbld:ch/ u%dS:(),
dt Jo Q Q oo Ov

where v is the normal vector. Set X = / u¢pidx, then by Hopf Lemma,
Q

X’—i—)\lX—i—/ gou ¢idr >0
Q

which yields to

d
— (e)‘ltX) + e)‘lt/ gou ¢rdzx > 0.
dt Q

d T
— eAltX—/ e/\ls/gouqbldxds >0,
dt ¢ Q

which means that the mapping

T
t— e/\ltXf/ e)‘ls/ gou ¢rdxrds
t Q

For s € (¢,T)

is nondecreasing. Therefore

T
e)‘ltX—/ e/\ls/ gourdads < eMTX.
t Q



and finally
T
X < ekl(T—t)X_i_e—)qt/ e)qs/ gOU¢1d$dS
t Q

Since p~'¢; is positively bounded from above and from below, u € L™ (0,7, L}(Q)) and
there exists a sequence {t,} decreasing to 0 and a measure p € M4 () such that

lim [ u(z,t,)Cdx = /g“d,u V¢ € Cu(Q).
Q

tn—0 Jo

If ¢ € C2(Q) there holds

/Qu(z,tn)Cdx/tnT/Q (gou ¢ — uAl) dzdtJr/Qu(z,T)gdz,

thus

/chu: //QQ (gou ¢ — uAl) dzdtJr/Qu(z,T)gdz.

This implies that p is uniquely determined and u(.,t) converges to p in the weak sense of
measures. 0

Corollary 2.1 Assume Q is an open domain, g € H and u € C%(Q$F) is a positive solution
of (2.4). Suppose that for any z € Q there exists an open neighborhood U C Q such that

T
/ / goudzxdt < co.
0 U

Then u(z,t) € L (0,T, L,.(Q)) and there exists a positive Radon measure i on U such
that

lim [ wu(x,t)f(z)dx :/ fdu VfeC(R).
R

=0 Jr

Proof. We apply the previous lemma in replacing U by a ball B.(z) and conclude by a
partition of unity. O

The following class of nonlinearity has been introduced by Marcus and Véron [10] in
order to study the boundary trace of solutions of elliptic equations

Definition 2.2 A function g € H is a coercive nonlinearity in QS if, for every subdomain
O of Q and every e € (0,T), the set of positive solutions of (1.1) in Q?/T =Q x (¢,T) is
uniformly bounded in compact subsets of Q?/T

Definition 2.3 Let z € Q. We say that equation (1.1) possesses a strong barrier at z if

there exists a number ro € (0, p(2)) such that, for every r € (0,79), there exists a positive
super solution w = w, , of (1.1) in By(z) x (0,T) such that

w € C(By(z) x[0,T)) 3 lim  w(z,t) = oo locally uniformly if t € (0,T). (2.5)

T—z|—=r



Lemma 2.1 Assume g € H is a coercive nonlinearity in Q$}, then the set of solutions of
(1.1) in Q¥ is uniformly bounded from above in every compact subset of Q¥ Furthermore,
if g € Ho, A CQ is open and (1.1) possesses a strong barrier at every point of z € A, then
the set of solutions u of (1.1) such that u € C (A x [0,T)) and u(z,0) =0 on A is uniformly
bounded from above in every compact subset of A x [0,T).

Proof. Let K be a compact subset of Q¥ and let €’ be a smooth, bounded domain of €
and € > 0 such that K C Q?IT Let U = Ugar be the minimal large solution of (1.1) in

Q%l, i.e. the limit, when k — oo, of solutions with Cauchy-Dirichlet data k on (%leT =
Q' x {e} U0 x [¢,T). By the maximum principle, if u € C(Q%) is a solution of (1.1), then
uw < U in .

For the second statement, let K be a compact subset of A. For any z € K there exists r, > 0
such that for any r € (0,7,) there exists a positive super solution of (1.1) in Q?T(z) which
satisfies (2.5). Since K is compact, there exist zi,...,2, such that K C U’;:lBsz /2(25)-

2rzj/3(zj)

B
For any j € {1,...,p} we denote by w; the super solution in Q. . By comparison

principle, there holds
u(z,t) <sup{w;(z,t): (z,t) € Brzj/Q(zj) x (0,7)} := Mj, (2.6)

sz/2(zj)

B
for (z,t) € Qp . Therefore v < M = max;—;,_. ,M; in K x (0,T). O

.....

Lemma 2.2 Let g € H and u € C?(Q) be a positive solution of (1.1) and suppose z €
1s such that

T
/ / goudxdt = 0o Ve > 0. (2.7)
0 JB.

(z)NQ
Suppose that at least one of the following sets of conditions holds:
(i) There exists an open neighborhood U’ C Q of z such that u € L*(U’ x (0,T)).

(i) The following hold:
1- g € Ho,
2- (1.1) possesses a strong barrier at z.

Then,

lim u(zx, t)dx = oo Ve > 0. (2.8)
=0 /B ()0

Proof. Assume that Q is bounded. First consider the case when condition (i). holds. Let
¢ € C*1(U' x [0,T)) with compact support in U’ x [0,T) and such that ¢(z,0) = 1 in a
neighborhood of z. Then

/tT/, (u(—=r — Ad) + gou ¢) dudt = / u(t)pde — / w(T)pdz. (2.9)

By assumption / / u(dr + Ag)dadt is bounded. We let ¢ tend to 0, the result follows
t ’
from (2.7).



Next we assume that condition (ii) holds, u ¢ L'(U" x (0,T)) for any neighborhood U’
of z and that the conclusion is not valid. Thus there exist r* > 0, such that B.«(z) C U,
and a sequence {t,} decreasing to 0 such that

/ w(z,ty)de < M
BT* (z)

for some M > 0. Furthermore g is coercive in B,«(z) x (0,T). Let {h, 1} C C®(Q%) an
increasing sequence with respect to k and n of nonnegative functions such that h, ; = 0 on
B+ (z) x {0}, 0 < hyp e < k and hyp = k on (t,,T) x 0B, (2). Let wy, , be the solution
of (1.1) in B,«(2) x (0,T) such that wy, , = hnx on 8@@?” *) By the maximum principle
and condition (ii)-1, the sequence {wp, ,} is monotone increasing with respect to & and
n. Condition (ii)-2 implies that, for every r < r* and 8 < T, the sequence is bounded in
B,.(2) x [0, 3], and since u is locally bounded in Q$ there exists k = k(n) such that k > u on
(tn, T) x 0B,(2) and k(n) — oo when n — oo. Then w = lim,, o W, , is a solution of (1.1)
which blows up on 0B,«(z) x (0,T) and vanishes on By« (z) x {0}. Let v, be the solution of
the heat equation in By«(z) X (tn,T) such that v, (.,t,) = u(.,t,) in By«(z) and v, = 0 on
OBy« (2) X (tn,T). Then wy + v, is a super solution of (1.1) in By« (z) x (t,,T) which

: By«
dominates u on 9,Q, TT(Z)
ny

n,k(n)
. By the maximum principle,

. B,x(z)
u S whn,k(n) + Un m Qtan '

And we have in particular
/ u(z, t)dr < / (Whyy ey + Vn) (2, t)da < M —|—/ w(z,t)de Yt e (t,,T).
B, (z) B, (z) B, (2)

B, (z
2

Since it holds for any n, it implies u € L*(Q , which leads to a contradiction. O

Ezample 1. If g(x,t,r) = h(r) where h is continuous, nondecreasing and h(0) > 0, then
ug — Au+ h(u) =0 (2.10)

possesses a strong barrier at any z € ) if and only if & satisfies the Keller-Osserman condi-
tion, that is there exists some a > 0 such that

oo dS S
/a ) < oo where H(s) = /0 h(r)dr. (2.11)

The super solution can be chosen to be the maximal solution ¢, of the elliptic equation
—A¢+ h(¢) =0 in B,(2). (2.12)

If we assume moreover that h is super-additive, i.e. h(a+b) > h(a) + h(b) for all a,b > 0,

then there holds o g
s
2.13
/ < (2.13)



and any solution u of (2.10) is dominated in er(z) by ¢,(x) + 1(t) where ¢ is defined by
inversion from © g
/ "t Vt>0.
w(ty h(s)

Ezample 2. If g(x,t,7) = a(x)b(t)h(r) where a € C(Q2), b € C((0,T)), a,b > 0, then g is a
coercive nonlinearity if h is super-additive and satisfies the Keller-Osserman condition. This
is not sufficient for the existence of a barrier as it is shown in [9] with h(r) = 77 (¢ > 1)
a=1andb(t) =e .

Proposition 2.2 Let g € Ho such that at any z € Q) there exists a strong barrier. We
assume also

g(mataa)+g($atab)Sg(mataa—’—b) V(m,t,a,b)€Q¥XR+XR+. (214)

Let {un} be a sequence of positive solutions of (1.1) which converges to u locally uniformly
in QSt. Denote by tra(u,) = (Sn, ptn) and tro(u) = (S, i) their respective initial trace. If
A CNp Ry is open and if pn(Ay) remains bounded independently of n € N, then A C R :=
O\ S.

Proof. Let z € A and 7 € (0, p(2)) such that for any r € (0, 7] there exists a positive super

solution w, , satisfying (2.5) and Bs(z) C A. For any n € N and 7 € (0,T'), we denote by

Urxp 2y tin the solution of
ou—Au+gou=20 in Bi(z) x (1,T)
u(.,7) = XB;(Z)’un(.,T) in Br(z) (2.15)
u=0 in 0Bs(z) x (1,T)

By the maximum principle u, < uy in Bp(z) x (1,T), and g o Urxp yin < 9O Un

1XB7.‘(Z)/J‘7L —

Furthermore, if ¢ € C’l’l*l(Q?;(Z)) vanishes on 0B;(z) x [0,T) and for ¢t = T, there holds

// (_UT’XB-(an (O ¢+ AQ) +Cgo uT’XB—(z)un’) dxdt = / Un (2, 7)¢(2, 7)dx
By (z)x(7,T) T T Bi(z) (2 16)

Since Urx and g o u, are bounded independently of 7, standard regularity

;(z)“" 7XB7_‘(Z),“LTI,
theory for parabolic equations implies that they converge a.e. in B(z) x (0,7) when 7 — 0

to Uny oy tin and g o Uy (oyhin® Furthermore

lim un (2, 7)¢(2, 7)dx = / C(z,0)dpy, ().

0B (2) B (z)

Using the dominated convergence theorem, it follows from (2.15) that

// o) (—UXB;(Z)M (O + AC) +Cg o uXB;(z)#n) dzdt = / C(z,0)dun(z), (2.17)

By (z)



and Uy oyt is the (unique) solution of

Ou—Au+gou=20 in ng(z)
u(-,0) =Xy Hn in Br(z) (2.18)
u=0 in 0B (z) x (0,T).

Furthermore, if ) is the solution of the backward problem

O+ An= -1 in Q?(z)
n(.,T)=0 in Br(z) (2.19)
n=0 in 0Bs(z) x (0,T),

there holds

// B (2) (UXB;(Z)H” + ng © uXB;(Z)Mn) drdt = /_ TI(:E, O)dllzn(l') S M’ (220)
Qr Br(z)

for some M > 0 independent of n. Next we set Z,, := Urx (i + wr .. It is a super
solution of (2.10) in (7,T') X B7(z) which is infinite on dBz(z) X [r,T) and dominates u,, in
Bi(z) at t = 7. Thus Z,,, > u, in (7,T) x B(z). Letting 7 — 0 we finally obtain

B;Z
Uy, i (@) S (@) Sy (@, t) Fwrs(at) V) € QPP (2.21)

For any r < 7 and 77 < T, there exists 6,0 > 0 such that n(z,t) > § and ws ,(x,t) < o for
all (z,t) € Q?T(z). It follows from (2.20), (2.21) and Fatou’s lemma that u and g o u are

integrable in L'(QZ*)). By Lemma 2.1, B,/(z) C R. Since it holds for any z € A, the
result is proved. O

3 Construction of a barrier
In the next results we construct the barrier function

Lemma 3.1 Assume o> —1 and q > 1, then there exists a unique positive function W, €
C?([0,00)) satisfying

1
qt‘i‘W—Wq:O in (0,00)

W D
lim, o W(r) = o (3.1)

lim T%W(T) =0.

r—00

Furthermore W, 1s decreasing and

2(14a)

Wo(r) = Cr 1(5’§(1+o(1)) as v — oo. (3.2)

10



Proof. Consider the functional

L[ a2
seymg [ (o7 - Tt i) et an (3.3

defined over the convex set
Hy == {¢ € W3(0,00;eTdr) N LITH0, 00;eTdr) : ¢(0) = k}.
Note that if ¢ € Hy,

e§&0w:/w@%&@W¢

"o, o0 2
= 2/ e1 ¢P (s)ds + %/ se’T ¢%(s)ds
T T
In this set J admits a positive minimizer wy which is the unique solution of
o, T 1+a ’ .
W'+ -w+ ——w —w!=0 in (0,00)

2 q—1 (3.4)
w(0) = k.

Furthermore, wy, = lim;,, o, wy,, where wy,,, is the unique positive solution of

1
w4 Sl + ﬁw —w!=0 in(0,n)
w(0) =k (35)
w(n) = 0.

and, by the maximum principle, (k,n) — wy, is increasing. If we consider the linear
equation
" r / 1 + a
zZ'+ -z +
2 q—1

z=0 in (0,00) (3.6)

it admits two linearly independent positive solutions z; and z5 with the following asymptotic
behaviour as r — o0

() = r 27 (1 4 o(1) (3.7)
and rite T2
2o(r) =71 a1 “le— T (1+40(1)) (3.8)

(see [8, Appendix]. Since any solution of 3.4, and 3.5 as well, satisfies an a priori estimate
of Keller-Osserman type (see [15])

w(r) < Croat for 0 <r <1, (3.9)

there holds
We,n < C2a(r) for k>r > 1.

11



Letting n and £k go to infinity successively, it follows that W, = limy y—00 Wk, exists. It is
a positive solution of problem (3.1) and it satisfies

Wa(r) <C (r_q%l + ZQ(T)) for r > 0.

The singular behaviour at r = 0 is standard (see e.g. [15]) and yields to

2 1 2
Woa(r) = %7’_0_1(1 +o(1))  asr—0. (3.10)
q—
Thus uniqueness follows by the maximum principle and estimates (3.3) is obtained via
standard linearization, using the upper estimate at infinity. (]

In the sequel we set

Vi

Proposition 3.2 Assume a > —1 and ¢ > 1. Then for any R > 0, there exists C' =
C(g,a, R) > 0 such that any solution u of (1.6) in QER which vanishes on Br x {0} satisfies

wa(s,t) :tﬁWa( ) Vs >0, t> 0. (3.11)

u(z,t) < 2Nt ST W, (R*Tf”‘) Y(z,t) € QBx. (3.12)

Proof. For m > 0, set Sy, = {z = (#1,...,zn) : |z;| <m}. For R < R

o) = Y (W (E52) 4w, (22)) V@l 1y

j=1

Then wg/ is a super solution of (1.6) in Q3% which is infinite on S g x (0, 00), thus u < wWg.
Letting R' — R yields to u < wg in ngR. Since the equation is invariant by rotation, for
any x € Bp, there is a rotation R such that R(x) has only a positive x1- coordinate. Thus

<t (Wa (B5) + N - W (£) (3.14)
< oNtT W, (R;[f') :
which is (3.12). m

Proposition 3.3 Assume a > —1, ¢ > 1 and R > 0. Then there exists a unique positive
solution wg,, of (1.6) in QBR, continuous in Br x [0,00), which vanishes on Br x {0} and

oo !
satisfies lim|,| g WBy (7,t) = 00, locally uniformly in (0,00). In particular

_1lta R—|z _1ltao R—|z
W () <wpg(et) <2V S TWL (2D v, e QB (3.15)
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Proof. For k > 0, let w%R be the solution of

Ou — Au+ t*u? =0 in QBr
u=k in 9,Q5r (3.16)
U(,O) =0 in BR.

By (3.12), wBR (x,t) < 2Nt7_1W (R;lg”l). There there exists wp, = limp_ w]ng and

wpy, is a solution of (1.6) in Q2% which vanishes on Bg x {0} and is infinite on 9B x (0, 00).
Consider the similarity transformation T, which leaves equation (1.6) invariant

14«

Tolu)(z,t) = meTu(y/mz,mt)  Vm >0,

k

then Tp, [wh ] = w "% which implies

1k

Tnlwp,] =wp 4 VYm > 0.
Vo

If u € C(Br x [0,00)) is any positive solution of problem

Ou — Au + t%u? =0 in QZr
1 t locall iforml 0
|m\11—1>13u(z ) =00 ocally uniformly on (0, 00) (3.17)
u(.,0) =0 in Bp,

then for any m > 1 and e > 0, there exists 7. > 0 such that u(z,t) < ein B\/_R_ for0 <t <.
Therefore, for any T > 0,

L
u<et+wp onagQT "

B x {0}

B r
Voo Vm
B R
Since € + wp , is a super solution u < € + wp s in QY™ . Letting € — 0, m — 1 and
vm
T — oo yields to u < wp,. In the same way, w1th 0 <m <1, we obtain u > wpg,. O

The next result is an immediate consequence of Proposition 3.2.

Proposition 3.4 Assume o > —1, ¢ > 1 and K C Q is compact. Let u be any solution u
of (1.6) in Q2 which vanishes on Q\ {K} x {0} and on 0Q x [0,00), then

u(z,t) < 2Nt W, (%) . (3.18)

4 Upper estimates

We start with the following upper estimate already obtained by Shishkov and Véron [12] in
the case o > 0.

13



Proposition 4.1 Letq > 1 and o > —1. If u is a solution of (1.6) vanishing on Q2 x[0,T),
there holds "
u(z,t) < cot” 1 for all (z,t) € QF, (4.1)

1

with co = (Q—H)F

q—1
Proof. Let ¢(t) = cat™ T be the maximal solution of

¢ 197 =0
$(0) = ox.

1

with ¢, = (O‘—“) o

i

=
Case a > 0. For 7 > 0, we denote by ®;  the solution of

_A(I)l,‘r + Ta(I)({,T =0 in Bl

lim @, ,(z) = oo, (4.2)
|z|—1
and for R >0 = "
¢RJ@0::R¢3¢LT(E).

Note that @ -(z) is the solution of the problem (4.2) in the ball Br. The function ®g ,
tends to 0 uniformly on every compact set of RY when R — co. Set

o(@,t) = ¢t =7) + PR s (2),

then ¥ is a supersolution of (1.6) in B x [r,T') which is infinite on 0Bg x [7,T) U Bg x {0}.
Then u(z,t) < 9(z,t). Letting R — oo and 7 — 0, we obtain

a+1
a—

u(w,t) < cqt” =1 forall (z,t) € Qr.

Case —1 < a < 0. Let 7 > 0 and ¢-(t) = co (t*T1 — 7971) 79T e the solution of

¢ +1961 =0 on (r,00)
o (1) = 00

If @4 7 is the solution of (4.2) with 7 =T, we set

Bpor(z) = RT 1 (%)

Clearly ®p 7 tends to 0 uniformly on every compact of RY when R — co. Set
’IA}(.T,t) = ¢T(t) + @R,T(ac),

¥ is a supersolution of (1.6) in Br x (7,T'), thus u(z,t) < 0(x,t), as in the first case. Letting
R — oo and 7 — 0, we obtain the desired estimate. ]

Combining Proposition 3.2 and Proposition 4.1 we obtain,
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Corollary 4.2 Assume ¢ > 1, a > —1 and K C Q is compact. If u € C?(Q$}) N C’(@g\
K x {0}) is a solution of (1.6) which vanishes on 0 x [0,T)U{(2\ K) x {0}}, there holds

dist (z, K)
Vi

In the particular case where K = {O}, (4.3) yields to

u(z,t) < min {QNWa ( > ,ca} £ for all (z,t) € Q. (4.3)

|| act1 c1

u(z,t) < min {QNWa (7) ,ca} tmae 1t < ———rr for all (z,t) € Q% (4.4)
' (1l +¢)""

for some ¢ = c1(a, q) > 0.

Remark. If ) is replaced by RY, the previous estimates (4.1), (4.3) and (4.4) remain valid.
Furthermore, K needs only to be closed.

5 Isolated singularities

In this section we present the results of classifications of isolated singularities of positive
solutions of (1.6), always in the range ¢ > 1 and a > —1. Since the proofs are somewhat
similar to the ones of classification of boundary singularities of positive solutions of

du—Au+u? =0 in QP (5.1)

obtained by Marcus and Véron in [8], we only indicate their main ideas.
If we look for solution of (1.6) in Qr := Q%N under the form

)

T

u(z,t) = t”V(\/E

it is immediate that v = f};%cf and V is a solution of
1
fAVfg.VVf qt‘fv+vq:0 in RY. (5.2)

It is proved by Escobedo and Kavian [4] that if ;JFT? > %, or equivalently if

2(1+«)
1<q¢<qo =14+ —7—, 5.3
q <4 +—x (5:3)
there exists a positive solution of (5.2) which is the minimizer of the functional
1 2 1 + « 2 2 +1 n_\2
= J(w) = = V| = —— —— Jwl? T dn. 5.4
ord@yimg [ (196 = T4 ) Sy (5.4

This minimizing solution V,, is unique and radial. Furthermore, by adapting the results of
[8, Th 2.1], it satisfies

_In?

P - Inl=
Va(n) = Clnl>7 Ve (L+o(1) as |n| = oc. (5:5)
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The function

Vo, t) =t T TV, (%) (5.6)

is a positive solution of (5.2) in Q, continuous in Q \ {(O,0)}, vanishes on RY x {0} \
{(0,0)} and satisfies

lim [ wve(z,t)de =00 Ve > 0. (5.7)

t=0 /.
It is called the very singular solution of (1.6).

When RY is replaced by a a proper open domain € with a compact C? boundary there
exists no self-similar solution to (1.6). For any k& > 0 and a € ) there exists a unique
solution u := uys, to the initial value problem

Oyu — Au + t%u? =0 in Q%
u=0 on 08 x [0, 00) (5.8)
u(.,0) = kd, in Q.

(see e.g. [9]). The function u belongs to L(Q%;t“dxdt) N LY(QS}), T > 0 arbitrary, and
satisfies

[ Futoc+ 80 + ) dade = ke(a) (5.9)

forall ¢ € 01’1;1(62) which vanishes on 9Q x [0, 7] and on  x {T'}. It is unique in the class
of of weak solutions, i.e. the functions belonging to L(Q%;t“dzdt) N L' (QS}) and satisfying
the above identity. When k — 00, ks, T toos,, Where toos, 1= Uoo,q 1S a solution of (1.6) in
Q5! which vanishes on 99 x [0,00) and on Q x {0} \ {(a,0)} and satisfies (5.7). Finally, if

|2
E(z,t) = (47rt)*%e*% denotes the heat kernel in R,
ugs, ~ kE(x — a,t) when (z,t) — (a,0) (5.10)

and
Uso,a ~ Vo (T — a,t) when (x,t) — (a,0). (5.11)

The following classification of isolated singularities holds

Theorem 5.1 Assume o > —1,1<q < g, anda € Q. Ifu € @2 \ {(a,0)} is a positive
solution of (1.6) which vanishes on Q x {0} \ {(a,0)}, then

(i) either there exists k > 0 such that

u(z,t) ~ kE(z — a,t) when (z,t) = (a,0), (5.12)
and u is a solution of
Opu — Au +t%u? =0 in Q%
u(.,0) = kdq in €, (5-13)
(i) or
u(x,t) ~ vz — a,t) when (z,t) — (a,0), (5.14)

and u satisfies (5.7).
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If ¢ > gc,o there holds the following result which extends Brezis and Freidman’s classical
one.

Theorem 5.2 Assume o« > —1, ¢ > qco and a € Q. Ifu € @2 \ {(a,0)} is a positive
solution of (1.6) which vanishes on Qx {0}\{(a,0)}, then it can be extended as a continuous
function @ which vanishes on Q x {0}.

Proof. Up to modifying a few parameters the proof is similar to Brezis-Friedman’s construc-
tion. The first step is to prove that u € L9( ?R) for some R > 0. This is done by using
(4.4) and appropriate test functions. Then the same choice of test functions yields to the
fact that u satisfies

lim [ w(z,t)((z)dxe =0 V¢ e C5°(Q).
t—0 Jo

Finally the extension of u by zero at ¢ = 0 satisfies the equation in Q x [0, 7). O

|z

2
i . Then if 1 <1 < gu.q, there holds

Remark. We recall that E(z,t) = (4nt)~ 2 e~

// E"(z,t)t*dzdt < oo, (5.15)
Qr

while if 7 > ¢ o
/ E"(x,t)t%dxdt = co. (5.16)
Qr

6 The trace theorem

In all this section we assume that 2 C RY is an open domain with a compact C? boundary,
a>—-land 1 < q < geq, and let u € C(Q x (0,7]) be a positive solution of (1.6) in Q%
which vanishes on 0Q x (0,7]. By Section 2 u possesses an initial trace trqo(u) = (S, )
where S is a relatively closed subset of ) and p is a Radon measure on R := Q\ S. To this
couple we can associate a unique outer regular Borel measure v defined by

) = 8 RSS2 1)

for any Borel subset E of 2. Conversely, to any outer Borel measure v on €2 we can associate
the regular set R C 2 which is the set of points y € €2 which possess an open neighborhood
O, such that v(0,) < oo. Clearly R is open and the restriction of v to R is a positive
Radon measure. The set S = 2\ R is relatively closed and it is the singular part of v. It has
the property that v(F) = oo for any Borel set E such that £ NS # (). We shall denote by
B9 (0)) the set of outer regular Borel measures in € and by B7°9(Q) the subset of B9 ()
for which § is a compact subset of 2. Thus u is a solution of the following problem,

O — Au+tu? =0 in Q%
u>0,u=0 on 00 x [0,T) (6.2)
tro(u) =v =~ (S,p) € BI(Q).

Definition 6.1 We denote by Us () the set of solutions of problem (6.2).
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The first step in the characterization of the singular set is the following lower estimate.

Theorem 6.2 Let u € Us ,,(Q) and a € S, then
u(z,t) > Uoo o, ).
Furthermore, if S has a nonempty interior A, there holds

. 14«
lim t=Tu(x, t) = cq,
0

uniformly on compact subsets of A.

(6.3)

(6.4)

We first give a proof of (6.4) in the case where either —1 < a < 0, or @ > 0 and

1<q<q370.

Proposition 6.3 Assume either —1 < a <0 and1 < q < gcqa, ora>0and1l < q < g,

then inequality (6.3) holds.
Proof. For any € > 0, there holds

lim u(z, t)dx = co.
t—0 Be(a)

If k > 0 is fixed, and {t,} is a sequence decreasing to 0. There exists t,, such that

/ u(z, ty, )dz > k,
B271 (a)

and there exists m = mq (k) such that

/ mi(k) Au(x,ty,)de =k,
B2,1(a)

(6.5)

where A A B = inf{A, B}. Assume we have constructed t,; < t,, , and m;(k) > 0 such

that
/ m;(k) ANu(z, ty,)de = k.
By—j(a)

Since (6.5) holds with ¢ = 27771 there exists ¢ < tp, such that

Nnj+1

/ u(x, t,, )de > k.
By,—j-1 (a)

and thus m;1(k) > 0 such that
/ mjy1(k) ANu(z,ty,,, )de = k.
Bz*jfl(a)

Next we denote by u; the solution of

Ou — Au+t*uf =0 in Qx (ty;,T)
u=0 on 0Q x [t,,,T)
(o tn;) = mypr (k) Au(.,ty,, ) in Q.
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By the maximum principle u; < uin Qx [t,,;, T'), or equivalently u;(x,t+t,;) < u(x,t+1,;)
in Q%_t . Clearly
ng

w0 = u(.,tn;) = kb, asj — 00

in the weak sense of measures. In order to prove that u; converges to uxs, we notice that
wj(z,t+tn,) < Exujo(z,t) in QL. If -1 <a<0andr € (1,qca)

// ng(:c, tAtn; ) (T + Ly, ) dxdt < // T(E *ujo) (2, ) (t 4 tn; ) dxdt
T
<lusolly [ [ B tiedadt,
Qr
using Young’s inequality and (5.15). If & > 0 and r € (1, ¢c,0)
// ng(x,t b, )(t + by, ) dadt < QQTQ// T(E x ;)" (z,t)dxdt
T
S 20« ||Uj,0H21 // ET(.’L',f)d(Edt
Qr

Furthermore, for s € (1,¢.,0)

// Quj(:c,t—i—tnj)dxdtg// (E *ujo)®(z, t)dzdt
T T

< lvjollzs // E*(x, t)dadt.
Qr

Thus the set of functions {uf(.,.+t,,)(.+tn,)*} and {u;(.,.+t,,)} are uniformly integrable
in LY(Q%}). Since u; satisfies

// (—uj(@,t 4 tn;) (8:C + AC) + (t + tn, ) “ul (2, t + t0;)C) dzdt:/ujﬁogd:c (6.7)
g e

.1 A~€ -
for any test function ¢ € 01,1,1(QT2) vanishing on 9Q x [0, 7] UQ x {T'} and converges a.e.
in Q¥ to some u*, it follows by Vitali’s theorem that

/ / (0 (¢ + AQ) + £09¢) drdt = kC(a) (6.8)

thus u* = ugs, by uniqueness, which implies the claim since u > u*. O

When a > 0 and ¢.0 < ¢ < gc,a, this argument cannot work since the sequence u; g
could concentrate too quickly with respect to t to a Dirac mass and isolated singularities
are removable for solutions of

Oru — Au+ cu? = 0.

We develop below a proof valid for any a > —1 and 1 < ¢ < g¢,«, Which is based upon the
parabolic Harnack inequality and shows that such a fast concentration never occurs.

19



Lemma 6.4 Assume o > —1 and 1 < q < qeo. Let {(zn,tn)} C QF be a sequence
converging to (a,0) and £ > 0. Put'V,, = Bg\/t—n(xn) and suppose that there exist nonnegative

N
functions h,, € L>(RN) with support in V,, such that 0 < h,, < c1t, > and

Then the solutions u, of
Ou — Au+t*u? =0 in QX (tn, T)
u=0 on I X [tn, T) (6.10)

w(eytn) = hn mn ),
satisfy un — Ugs, when n — 0.
N
Proof. The estimate h,, < ctn * x,, can be written under the form
ho(z) < c2B(x — 2, tn) Xy,

where cp = (47T)ge§c1. By the maximum principle

un(z,t) < caFB(x — Tp,t)  in QX (t,,00).
By (5.15), (5.16), the sequences { E(.—xzy, .)t*} and { E(.—xy, .) } are uniformly integrable in
Q% therefore, if we extend u,, by zero in Q?ﬂ and denote by ,, the extended function defined
in Qf, we infer that the sequences {t®@¢} and {i,} are uniformly integrable in Q. Using
standard regularity estimates there exists a function u* defined in Q¥ and a subsequence

Up; such that ,, — u* locally uniformly in QS Tt follows by uniform integrability and
Vitali’s convergence theorem that

din, = u*  in LY(QP; tdzdt) N L' (QF).

Let ¢ € C’l’l;l(@?ﬂ) vanishing on 99 x [0,T)UQ x {T'}, then

// ) (—anj(atg+Ag) +t“agjg) dwdt = /QC(.,tnj)hndx.

T
Using the previous convergence results and the assumption (6.9), we derive
// . (—u™(0e¢ + AQ) + t*u™¢) dedt = k((a).
T

Thus v* = ugs, and U, — ugs, locally uniformly in Q¥ O

Lemma 6.5 Let u be a positive solution of (1.6) in QS} vanishing on O x [0,T). Then for
any Q' C Q C Q there exists a constant C = C(N,q,«, ) > 0 such that

)
= +%+1>

u(y, s) < u(:z:,t)ec( V(z,t), (y,s) € Q%l, s < t. (6.11)
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Proof. By (4.1), V(z,t) := t*ud=1 < 271t~ If we write (1.6) under the form
O — Au+V(z,tlu=0 in QF (6.12)

it follows (6.11) from parabolic Harnack inequality (see e.g. [5, Lemma 3.16] although the
result is much older). O

If G ¢ RY is a bounded open subset, we denote by ¢¢ is the first eigenfunction of —A
in VVO1 ’Q(G) normalized by sup ¢ = 1 with corresponding eigenvalue Ag.

Lemma 6.6 Let G C RN be a bounded open subset with a smooth boundary w € C1(Q%),
w >0, such that

T
/O (e ) ey < 0. (6.13)
If v € C%Y(G x (0,T)) is a positive solution of
o —Av+wo=0 inQF, (6.14)

then vog € LY (QF), wvgl, € LY(QS) and there exists u € My (G) such that

lim [ v(z,t)((z)dx = LCdu V¢ € C.(G). (6.15)

-0 /o
Proof. Set v(t) = [[w(.,t)|| (- Denote X (t) = Jov(z, t)pe(x)dr. Then, from (6.14),
X'+ XX +v(1)X >0
This implies that the function
t s eretlo7()ds x (g

(which exists thanks to (6.13)) is nondecreasing. Therefore there exists X (0) = lim;_,o X ()
and vog € L' (QF). Furthermore, if we set Y (t) = [, v(x, )¢ (x)dx

FEPXW) +e™ [ (w6 — 606 Voadz =

Since V¢¢ is bounded and vog € Ll(Qg), it implies

T T
Sy (1) + [ e [ e el ebdedt = Y0) 46 [ [ o6]Vacf udud,
0 Q 0 Q

which implies that wvg?, € L' (Q%). The argument given in the proof of Lemma 2.1 shows
that v admits an initial trace which belongs to Mt (G). O

Proof of Theorem 6.2. We define the parabolic distance in RY x R by

dp((x,1), (y:5) = |z —y[* + ]t — s
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Step 1. We first prove that if u satisfies

lim sup t%u(x, t) < o0, (6.16)
dp((z,t))(a,0))—0

then a € R(u). If (6.16) holds there exists €, ¢ > 0 such that

u(z,t) < ot V(z,t) st \/|z—al’ +t <e

If we set w(w,t) = t*u?!(z,t), then

62

“ VY(a,t) € B (a) x (0, 5]

N(g—=1)
2

w(x,t) < et (

Since ¢ < g¢,q, then w) — a < 1; thus the assumptions of Lemma 6.6 are fulfilled and

there exists a positive Radon measure p in B (a) such that

/Qu(z,t)((z)dz — /QCdu when t - 0, V(€ CEO(B% (a)).

Furthermore t®u? € Ll(B% (a) x (0,T)), which is the claim.
Step 2. Since a € S(u), there holds

limsup  t2 u(z,t) = oco. (6.17)
dp((z,t))(a,0))—0

Then there exists a sequence {(z, sn)} converging to (a,0) such that
Y
w(Tp,tn) > nty 2 (6.18)

We apply Lemma 6.5 with s = s, t = 28, :=tn, y = &y, |2 — 2| < y/Sp. Then

w(z, ty) > Cnt;% Vo € Vi, := By (z0)

2

This implies

/ u(x,ty)dz > Cnn.

n

For k < n fixed, we denote by v := vy, ; the solution of

Ov — Av +t%? =0 in Q X (tp,0)
v=20 in 092 X (t,,0) (6.19)
N
v(.,tn) = Cktn 2 xv, in Q.

By the maximum principle u > v,  in © X (¢, 00). Furthermore

/ v(.,ty)dx = Cnk.

n
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Thus v(.,t,) = Cnykd, in the weak sense of measures. It follows from Lemma 6.4 that
U,k — UCnks, locally uniformly in Q% Therefore u > ucyks, in Q% Since k is arbitrary,
we obtain (6.3).
Step 3. Formula (6.4) holds. Denote by S,,(a) = {z € RN : |z;| < m}. If Sg(a) C S, the
function "

(z,t) = cot —7) 1 +wp,(xr—a,t —7)
is a super solution of (1.6) in Sg(a) x (7, 00) which is infinite on Sg(a) x {7} UISg(a) X [T, 00)
by Proposition 3.3, while w is finite, thus it dominates v in Sg(a) x (7,00). Letting 7 — 0
yields to

u(z,t) < CatTTT 4 wpg (z — a,t) Y(z,t) € Q?R(a). (6.20)

Conversely, the function
(x,t) = u(x,t —7) + wp, (x —a,t — 1)

is a super solution in Sg(a) x (7, 00) which dominates Cat T T on Sr(a) x {7} UOSR(a) x
[T,00), thus as above, we obtain (6.20). Since

limwg, (r —a,t) =0
t—0

uniformly on Bp/(a) for any R’ < R, we derive (6.4). O

Proposition 6.7 For any relatively closed S € Q, the set Us o(Q) is not empty and it
admits a minimal element ug o and a mazimal element Us .

Proof. Step 1: Existence of a maximal solution. The maximal solution is constructed by
thickening Q2 and S in defining for 0 < o

Qy = {z e RN : dist (z,9Q) < o}, Sy = {z e RN : dist (z,S) < o}

If z € 09, we denote by n, the outward unit normal vector to Q at z. Since 92 is compact
and C?, there exists g > 0 such that for any (z,0) € 9 x [0o¢], the mapping I1 : (z,0)
z+on; is a C? diffeomorphism from 9 x [0, o¢] to O/, := Qs \ Q. The mapping II defines
the flow coordinates near 0f2.

If 0 < § < o, there exists a unique solution v = uy, 4,5 of

Oru — Au +t*u? =0 in Q%
u=0 in Q4 x (0,00) (6.21)
u(.,0) = nxs, in Q.

Notice that S5 is closed in €, and inf{|z —2/| : z € 85,2 € Q§} = 6 — 0. Existence is
standard as well as uniqueness in the case where (2 is bounded. If Q¢ is bounded the proof
goes as in the uniqueness proof in Proposition 6.10. When n — 00, {tn,s,6} T te,s Which
is a solution of (1.6) in Q%%. Since u, s satisfies (4.1), for any r,7 > 0 and any a €
99, Un,o,5 Temains uniformly continuous with respect to n in Q.7 N (By(a) x [2727,27]).
Consequently uy 5(z,t) = 0 on 9Q, x (0,00) N (B, (a) x [2727,27]). Therefore u, 5 vanishes
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on 90 x (0,00). If a € Qy and dist (a,S5) =1 > 0, upos(2,t) < wp, (x —a,t) in QF -
This implies that u, s remains uniformly continuous with respect to n in B,/(a) x [0,T)
for any 0 < " < r and T > 0. Since Uy s6(x,t) — 0 in By/(a), uys inherits the same
property. Consequently u, s has initial trace (Ss,0) in Q,. By the maximum principle the
mapping (n,d) — up s is increasing with respect to n and decreasing with respect to 4.
Furthermore, if 0 < ¢’ < ¢/ < 0 and 0 < § < o, there holds up o/ 5 < Un,o 5 I Qgg", which
implies Uy 5 < Ug,5. We define

Us o = lim lim li .

Us,0 Ull}%) 61~I>I(1) nl—>ngo tn,0,6 (622)
Then Ts g is a solution of (1.6) in QL. Since lim;_,¢ 1, s(x,t) = 0 uniformly on any compact
subset K C R = Q\ S, Us has initial trace 0 on R. If a € S, we denote by e the
function defined in Q$l by

_ _ tso,a(z,t) if (z,t) € Q%
Uoo,a(wat) = { 0 if (:L',t) c ngzoa \leo

Then e q is a subsolution of (1.6) in Q?of’ which is smaller than s 4, which is the limit,
when k£ — oo of the solution uys, » of

Ou — Au+t*u? =0 in Q%
u=0 in Q4 x (0,00) (6.23)
u(.,0) = kdq in Q,.

There holds, by Theorem 6.2,
Ug,5(T, 1) > Uso,a,0 > Uoo,a(T,1) V(z,t) € Q?O"

Letting successively 6 — 0 and 0 — 0 yields to Us,0 > Too,q = Uco,q IN Qgg. Therefore any
a € S is a singular initial point of Ts . Since SUR = €, it follows that tro(u) = (S,0).
Since uq 5 satisfies (4.1) and 90§, has bounded curvature, independent of o, there holds
classicaly

Vigs(z,t)] < ct™ 55 Y(z,t) € 9% x (0, 00). (6.24)
If z € 9Q and then by the mean value theorem there exists 6 € (0,1) such that,

0 < ugs(z,t) = Ugs(z+ on,,t) —oVugs(z + 0on,, t).n, < cot— 5%

This implies that us o vanishes on 99, x (0, c0).
Let u be any positive solution of (1.6) in Q2, vanishing on 99 x (0, o), with initial trace
(8,0). For 0 < § < o fixed and for R, e > 0, there exists 7. > 0 such that, for any 7 € (0, 7],

u(z,7) < e Vo € BRNQ\S,.

This is due to the fact that w(z,7) — 0 when 7 — 0, uniformly on compact subset of
Br NR. Assume that € is unbounded (the case where € is bounded is simpler since it
does not require to introduce the barrier wg,) and let R > 0 large enough so Q¢ C Bg. By
(4.1)-(4.3) there exists 0 < 71 < 79 such that for any 7 € (0, 1],

u(z, ) <wp,(z,7) + Ue,s(z, T) Yz € BRNQNS,.
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Furthermore u(z,t) < wpy(z,t) for all ¢t > 0 and © € 9Br N Q. Since € + wp,, + Uss is a
supersolution for (1.6) in Br N x (0, 00), it follows that

u(z,t) < e+wpp(z,t) + ugs(z, t) V(x,t) € BRNQ x (0,00).

Letting successively § — 0, 0 — 0, R — oo (here we use the fact that wp,(x,t) — 0 when
R — oo by Proposition 3.4) and € — 0 yields to u < ugo.

Step 2: Existence of a minimal solution. The set Us o(€2) is not empty since it contains s o
and we may define
Us,0 = Sup{Ucc,q : @ € S}, (6.25)

and

Gs,o=inf{u:u € Uso()}. (6.26)
The functions 4s and s, are respectively positive sub and super solutions of (1.6) in
QS}. They are bounded from above by %is ¢ and from below by wn o for any a € S. Since
Uoo,q < u for any a € S and u € Us o(2), it follows that 4s ¢ < @s,0. Therefore there exists
a solution ug o of (1.6) in QS which satisfies and

us,0 < Ug o < Uso- (6.27)

This implies that ug o has initial trace (S,0), it vanishes on 9§ x (0,00) and it is therefore
the minimal element of Us o(£2). O

Remark. If dist (S,Q°) > 0, it is not needed to replace 2 by a larger set €, in order to
construct the maximal solution. The construction of s o can be done in replacing ., ».s by
the solution © = uy, » of

Ou—Au+1t°u? =0 in Q%
u=0 in 99 x (0, 00) (6.28)
u(.,0) = nxs, infl

with § < g := dist (S, Q°).
The next result is an extension of Proposition 2.2.

Proposition 6.8 Assume o > —1 and 1 < q < qco- Let {un} be a sequence of positive
solutions of (1.6) which converges to u locally uniformly in Q$, and denote by (S, pn) and
(S, 1) the respective initial trace of u, and u. If A is an open subset of Ny Ry and pn(A)
remains bounded independently of n € N (where R, = Q\ S, and R =Q\ S), then ACR
and X ftn — XM in the weak sense of measures. Conversely, if A C R , then for any
compact K C A, there exist Cix > 0 and ng € N such that p,(K) < Ck for anyn > nk.

Proof. Clearly (2.14) holds. We keep the notations of the proof of Proposition 2.2 where
the first statement has been proved in assuming Br(z) C A. Since p,(A) remains bounded,
there exists a subsequence {n;} and a positive measure y' on A such that p,;, — u in the

weak sense of measures in A. Then Uy, converges locally uniformly in QOBO;(Z) to the

() Hnj
solution uXB;(Z)#/ of

O — Au+tu? =0 in Q2

u=0 in dBz(z) x (0,00) (6.29)
u(.,0) = XB;@/L/ in Bi(z).
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. o, q .
Since g < gc,«, the convergence of Uny (oyting and ¢ Uy oyt respectively to u, and

holds in L'(QZ™*)) for any T' > 0. Relation (2.21) reads

Bi(z)Hnj
t*u?
Xp () H

Uy oy i (1) Sup(x,t) < Uy oy pim (z,t) + wp,()(z,1) in Q). (6.30)

(

(see Proposition 3.3). Then u,; and t”‘u%j converge to u and t®u? respectively, in L' (Q?T(z))

for any r < 7. From (2.17), we derive
[ et 80+ Grunydade = [ 01 (o) (6.31)
QE@T(Z) B, (2)
for any ¢ € C’cl,’l*l(@g(z)) which vanishes for ¢ large enough. This implies that u’ is the
initial trace of u in By(2), i.e. X, . 0 = Xp, o ) and X fn = X, ., - Using a partition
of unity, we conclude that x , un — X, p-

Conversely, we assume that there exist a compact set K C A and a subsequence fin;
such that fi,,;(K) — oo. Thus, using the diagonal process, there exist z € K and another
subsequence that we still denote fi,,; such that

lim fi,,(Be(2)) =00 Ve >0.

nj—>00
Therefore, we can construct a subsequence {n;,} C {n;} such that
fing, (By=nj, (2)) = mp;, — 00

when n;, — co. Since the solution u, s
‘ B —nj, ()7 Mg
2 4

Oru — Au + t*u? =0 in Qo%(z)
u=20 in 8B7:(Z) X (0, OO) (632)
U(,O) = XB —nj, (Z),U/njg in B;(Z)
2

converges to uOBO%(j) which is the limit of the solution uys, of (6.32) with initial data u(.,0) =

k., and is dominated by wun;, in Q?(Z) we conclude that u > uf;%(j) in Q?F(Z), which

implies that z € S, contradiction. O

Proposition 6.9 Assume u; and uz are two positive solutions of (1.6) in QS with initial
trace (S,p). Then for any a € R and R > 0 such that Br(a) C R, there holds

|u1(1"ﬂ t) - U‘?(xv t)| < WBg (1' - a t) V(:L', t) € QOBOR(G) (633)
In particular limy_o |u1 (2, t) — uz(x,t)| = 0 uniformly on any compact subset of R.

Proof. Since u and v’ are solution of (1.6) and Bgr(a) € R, for any i = 1,2, R’ < R and

T >0,
// Bk(a)t u (z,t)dxdtJr//QB;?(a)uZ(:c,t)dzdt < 00,
T T
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furthermore

lim w;i(z,t)¢(x)dx = / C(z)dp(x) V¢ € Co(Bg(a)).

t=0 JBr(a) Br(a)

This implies that u; has a Sobolev trace on 84@?3*(“) which belongs to L! and they are the
limit, when k — oo of the solutions w; j of

Opu— Au+tu)!  u =0 in QOBO;*(G)
u = min{k, u; LQOBOE“?(G)} in 9,Q5r (6.34)
u(.,0) = pu in By(a).

Since uz,; + wp, (- — a) is a supersolution

uy g <uzg +wp (- —a) = |urk —uz x| <wp (. —a)in Qoo nle),
Letting k — oo, R’ to R, we derive (6.33). The second statement is a consequence of the
fact that limy_,o wp, (. — a) = 0, uniformly on B} by Proposition 3.3. O

Remark. The previous estimate does not use the fact that 02 is smooth and bounded. If
the u; belong to Us ,,(€2), estimate (6.33) can be improved since the u; vanish on 9,QE )
and we obtain,

|ui(z,t) — ug(x,t)| < min {wBR (x — a,t), cat_%} Y(z,t) € QEr ., (6.35)

Proposition 6.10 Assume Q C RY is either RN or an open domain with a C? compact
boundary, « > —1 and 1 < q¢ < qeo. Then for any measure p in @ such that pla,€

Qﬁsz(QR) where Q0p = QN B, there exists a unique solution u, to

Au— Au+tu) tu=0 in QL
u=0 in 9,QSL, (6.36)
u(.,0)=p mn ),

and the mapping p — w, is increasing. Furthermore, if {u,} is a sequence of positive

measures such that p,|qp€ Qﬁzlp(QR) which converges weakly to p|o,€ fmi_’p(QR), then
{up, } = w,, locally uniformly in QSL.

Proof. We recall that u is a solution of (6.36) if u € L. (Q%), |u|? € L. (QZ;t*pdxdt)

satisfies
/ /Q (a0 + AQ) 12 ful ™ ) = / . (6.37)

for any test function ¢ € O3 (QZ). When Q is bounded, existence, uniqueness and
stability are proved in [9]. Thus we assume that €2 is unbounded and we assume R > Ry
such that Q¢ C Bg,. There exists a unique solution up of

Ou—Au+t*u! T u=0 in QS»
u=0 in 0,Q%kr (6.38)
u(.,0) = plag in Qp.
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The function ug is nonnegative, R — wupg is increasing. For R > R, ug admits a Sobolev
trace fr, on OBR, x (0,T) which is an integrable function, and ug is the unique solution of

u— Au+t*u| T u=0 in QoM
u=0 in 99 x (0, 00) (6.39)
u=fr, in BR, x (0,00)
u(.,0) = plag, in Qg,.

Furthermore, ug \_QQ ry = liMy, 00 U, Where vy, is the unique solution of (6.36) where the

boundary data on GOCBR1 x (0, 00) is replaced by fr,,m = fr, Am (m € N*). Let vg, be the
unique solution of

pu— Au+t*u| T u=0 in QoM
u=0 in 99 x (0, 00) (6.40)
u=0 in 9BR, x (0,00)
u(.,0) = plag, in Qg,,

If wpy, is the barrier function in Qo' which has been constructed in Proposition 3.3,

UR, + Wpy,, is a supersolution for problem (6.39). Since it is larger than vy, in Qoo for
any m > 0, there holds ug < vg, + wp, , for any R > R;. Then ugr T u, which is a
Qp
o0

solution of 1.6 in Q'%. By Proposition 3.4, wpp, remains uniformly bounded in @ for

any Ry < R’ < R;. Therefore u,, shares the same property. If ¢ € Ccl,’l?l(Qg)) vanishes on
Q%) and for |z| > R’ > Ry, there holds for R > R’ > Ry and T > 0,

// (—ur(z,t)(0:¢ + AQ) + (t*uf) dedt = /g(:c, 0)du(z) — /g(x,T)uR(z, T)dx
QL Q Q

(6.41)
If we let R — oo we deduce by the monotone convergence theorem that u, is a weak solution
of (6.36). This proves existence.

For uniqueness, we consider u, and uiL two solutions of (6.36). By the same argument
as in the existence part, for any R > 0, u, is smaller than the supersolution u:L +wpg, In
Q?OR. Since limr_,oc wp, = 0 by Proposition 3.4 we obtain u, < u
Uniqueness implies the monotonicity of the mapping o — u,,.

For proving the stability, assume {un,|qp} converges to u|q, in the weak sense of mea-
sures in 9)?11’3 (Qg) for any R > Ry. Then the sequence of solutions v, r of

!/ 4 4 /
y- Similarly u), < uy,.

Au— Au+t*u) tu=0 in Q¥
u=0 in 99 x (0, 00)
! 6.42
u=0 in 9BR x (0,00) (6.42)
u(.,0) = pn|an in Qp,

converges to the solution vg of (6.40) with Ry = R. In particular v, p — vg and t*v! , —

t*v% in L( gz_R) and by standard regularity result the convergence of v, r towards vg holds
uniformly on Qg x [¢, T] for any 0 < € < 7. Furthermore u,,, < v, r + Wg, in Q2. This
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jointly with standard local regularity results for heat equation, implies that {u,, } remains
uniformly bounded and hence relatively compact for the topology of uniform convergence on
any compact set of {2 x [¢,00). Thus there exist a subsequence {uy, } and a function u* €

—0 —
C(Q..) such that ty,,,, — u* locally uniformly in ©x (0, 00). Since t*uf, < t%vy p+t*W} |

there also holds by the dominated convergence theorem tug, = t*u*9in L} (Q x [0, 00)).
Henceforth letting ny — oo in the expression
/ / o (=t ()D€ + AQ) + Gt ) daat
< (6.43)
— [ 0, (0) = [ o TYun, (0 T
Q Q
where ¢ € C111(QD), we conclude that u* = u,, and that u,, — u,,. a

Proposition 6.11 Assume F is a non-empty relatively closed subset of @, R = Q\ F and
wEML(R). If we set

OuF ={z€ F:pu(RNB,(z)) = oo, Vr > 0}, (6.44)

then O, F is relatively closed in Q. If R* = Q\ 0, F, it contains R and if p* is the measure
defined in R* by p on R and 0 in R* N'RE, then there exist a minimal positive solution
w,» and a mazimal solution Ty~ of (1.6) vanishing on 02 x (0,00) satisfying tro(u) =
(OuF, p*). Furthermore w,. and U, are respectively the minimal and the maximal element
Of UBMF,H* (Q)

Proof. The set 9,F is the blow-up set of the measure p. It is clearly a relatively closed
subset of 2 included into R \ R.

Step 1: Existence of a minimal solution. For 6 > 0, we denote (0,F); = {z € Q :
dist (z,0,F) <&} and R =Q\ (8,F)s C R*. We define the Radon measure p5 on Q by

o onRfNR
Fo=9 0 on F U (9,F)s

m

Then ps is a positive Radon measure in €2 and by Proposition 6.10 problem (6.36) with
initial data ps; admits a unique positive solution u,s. Furthermore the mapping ¢ — w,; is
nonincreasing, and we set Uy = lims_.q ;. Then Uy, is a positive solution of (1.6) in Q?o
which vanishes on 9Q x (0,00) and has initial trace (S', u’). If a € R*, there exists R > 0
such that Br(a) C R* and §, > 0 such that Br(a) C RY for 0 < § < &,, that we assume
below. By the maximum principle there holds

Vs (2, 1) S us(x,t) <wpg(x,t) +wpg(z —a,t) in QOBOR(“),

where v,,; is the solution of

Oru — Au+t*u? =0 in QOB;R(Q)
u>0 in QOB;R(Q)

u(z,t) =0 in 9Br(a) x (0, 00)
u(.,0) = 16X By (a) in Bgr(a).
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Letting  — 0, then psxBg(a) T 4 XBg(a), Which yields to
’UM* \_BR(a) (SC, t) S Q (SC, t) S ’UM* I.BR(a) (ZL', t) + WBR (SC —a, t) in QOB;R(Q)'

By a partition of unity, it implies that for any ¢ € C.(R*), we have

lim Uy (z,t)((x)dx = Cdu*(x).

t—0 R RH
Therefore R* C R’ and p/|gue= p*. If z € R'N(R*)* = R' NI, F, p*(Br(2) N RI) =
w(Br(2) N R) = oo for any r > 0 while there exists 79 > 0 such that W (Bry(2)) < o0
By Proposition 6.8, for any r’ < ry there exists C' > 0 such that us(B,(z)) < C. By
the monotone convergence theorem, it implies u(B,(z) N R) < C, which contradicts the
definition of 9, F. Thus &' = 9, F and tro(u,.) = (9. F, u*).

Let us assume that €2 is unbounded, Ry is such that 2¢ C Bgr, and Q2 = Q2N Bpg, for

R > Ry. Let d,€¢ > 0, there exists 7. such that

Upy (2, 7) <€ V(z,7) € Qr N (0.F)s x [0, 7] (6.45)

s
2

Let u € Uy, r,u+(2). In order to compare u,; and v := u+wpy, +¢€in Qg \ (9, F)
we see that

x (0, 7]

s
2

Uy, (-, 0) = XRN\(C,MF)SH* <u(.,0)= X\ o 5 w
2
and both are bounded Radon measures. Since wu,, (t,0) < v(z,t) in 9(Qr \ (QLF)g) x (0, 7]
and v is a supersolution, it follows that u,, < vin Qg \ (GHF)% x (0, 7¢]. Using (6.45) we
conclude that
ups(x,7) < v(z,7) V(z,7) € Qg x [0, 7. (6.46)

Next, applying the comparison principle in Qr x [7*,00) between the solution w,; and the
supersolution u + € + wp,, we conclude that (6.46) holds in Qg x [r,00) and thus in QZx.
Letting successively R — oo, € — 0 and § — 0, we conclude that u,~ < u, thus u,~ is the
minimal element of Uy, ., (2).

Step 2: Existence of a mazximal solution. Let 6 > 0 and u € Uy, F,,~ (). By Proposition 6.9,
for any R > 0 and € > 0 there exists 7. such that

w(@,t) S w2, 6) +e V(@) € Qp\ (F)s x (0,7, (6.47)

and by (4.1), u(x,t) < cqt™ 1. Let T € (0, 7] and ws . be the solution of (6.36) in Q#
with initial data u replaced by

«(z, if z € Q o, F
hsr = S (,xlj;) 1 N 2\ (0uF)s (6.48)
' CaT a1 if € Qr N (0, F)s

y (6.47), (6.48) and the maximum principle,

u(z, t +7) < ws(x,t) + e+ wpg(x,t+7) V(z,t) € Q. (6.49)
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Let (g, ), be the maximal element of Uy, r),,0(§2), which exists by Proposition 6.7. Then,
by (4.3), for any & > §, there exists 75 € (0, 7] such that for any 7 € (0, 75/]

max{g#*(., .+7'),ﬂ(6up)6(., A7)} <ws, < g#*(., .+T)+ﬂ(aup)6/ (,.+7) in Q&R. (6.50)

Up to a sequence {7,} converging to 0, {ws,} converges, locally uniformly in Q% to a
solution ws of (1.6) in Q% which satisfies

max{gw,ﬂ(auzr)g} Sws S Uy + U, F), in ngR~ (6.51)

We can replace ¢’ by d in this inequality, this proves that ws vanishes on 9,Q‘’# has initial
trace (us, (0, F)s), therefore (6.49) becomes

u(z,t) < ws(z,t) + €+ wpy(z, t) V(z,t) € Q. (6.52)

Letting successively R — oo and € — 0 we deduce that w; is larger that any u € Up, F,,~ ()
in QUr. Since hs , decreases with §, ws shares this property and the limit, denoted by Uy
is a solution of (1.6) in Q¥ which vanishes on 9,Q%%* which is large than u, thus it is the
maximal element of Uy, F, .- (£2). O

Proposition 6.12 Under the assumptions of Proposition 6.11, we set F5 := {x € Q :
dist (z, F') < 8} and Rs :==Q\ Fs C R. If we define the measure fis in 2 by

- ) onRs
M= 0 on Fy,

then ug, T u* when § | 0.

Proof. There holds jis < ps which implies uz; < up,. When § — 0, ug, Tu* < Uy s thus
u* is a positive solution of (1.6) in Q! which vanishes on 9,Q%. Then trq(u*) = (S”, u")
and 8” C 9,F and p” < p* on R*. Furthermore ¢/ = p = p* on R, as in the proof of
Proposition 6.11. Since p* = 0 on R* \ R it follows that x” = p* on R*. Let a € R" N0, F

and R > 0 such that Br(a) C R”. Then p”(Bg(a)) < co. Therefore
#' (Br(a) NR) = u(Bgr(a) NR) < oo,

contradiction. Thus &” = 0, F and tro(u*) = (9, F, p*). Since u* < u,« and . is minimal,
it follows that u* = Upye - O
Proposition 6.13 Assume v € C(Q x (0,00)) is a positive sub-solution (resp. supersolu-
tion) of (1.6) in QSY, which vanishes on QL. Then there exists a minimal solution 7, (v)
larger than v (resp. a mazimal solution ©_(v) smaller than v and vanishing on OLQS).

Proof. Assume v is a subsolution. Let 7 > 0 and let u, be the solution of

Ou— Au+t*u? =0 in Q x (7, 00)
u>0,u=0 in 99 x (7,00) (6.53)
u(.,7) =v(.,7) in Q.
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Existence and uniqueness follows from Proposition 6.10. Furthermore u, > v in Q X (7, 00).
This implies that for 0 < 7 < 7/, u; > u,r. Since u,(x,t) < co(t — 7')_%, there exists
74 (v) = lim, 0 u,, and 74 (v) is a positive solution of (1.6) in Q2 and is larger than v. If u
is any positive solution of (1.6) in Q}, vanishing on 9¢Q% and larger than v, for any 7 > 0
it is larger than u(.,7), thus it is larger than u, on Q X (7,00). Therefore u > 71 (v).
Assume now that v is a supersolution. We define u, by (6.53). Then u, < v and u, < u,
for 0 < 7 < 7. Then 7_(v) = lim, ,ou,, and 7_(v) is a positive solution of (1.6) in Q%
and is smaller than v, and thus vanishing on 9¢Q%. Similarly as above m_ (v) is larger than
any positive solution smaller than v. O

Theorem 6.14 Assume Q C RY is either RN or an open domain with a C? compact
boundary, o > —1 and 1 < q < qeo. Then for any v =~ (S,u) € B"9(Q) there exist a
mazimal positive solution Us,,, and a minimal positive solution ug , of (1.6) in QS vanishing
on 9Q x (0,00) with initial trace v. Furthermore, if inf{|z — 2/|: 2 € S, 2’ € Q°} > 0, then

Us,pu — Us,,, < Us,0 — Us o- (6.54)

Proof. Step 1: Construction of the mazimal and minimal solutions. The functions u,,., us o,
Uy« and Ug o have been defined in Proposition 6.11 and Proposition 6.7. Since sup{w,,-, us o}
is a subsolution of (1.6) which is smaller than the supersolution @~ + Us,o we set

(1) Us, = 7r+(sup{gm,g310}) and (i) Us,, = 7—(Tu~ +Ts)- (6.55)
Then ug , and us,, are solutions which satisty
SUp{ﬂmaﬂsﬁo} S Q,Snu S ﬂs,u S ﬂu* + ﬂS,O- (656)

Therefore ug , and us,, vanish on 0¢Q, they have initial trace x on R and are larger
than any e for a € S (notice that 9,8 C §). This implies that ug,, and Ts , belong to

Us, . (Q).
Let u € Us ;,(2). Then for o > 6 > 0 and €, R > 0, there exists 71 > 0 such that
u(z,t) < uo,s(x,t) for (z,t) € (85 NQR) x (0,71].
There exists 7 € (0, 71] such that
w(z,t) < Uy~ (2,t) + €+ wpg(2,1) for (z,t) € (Qr \ Sz) x (0, 72].
Therefore
w(x,t) < ugs(x,t) + Uy (2,t) + €+ wpy(x,t) for (z,t) € Qr x (0, 72].

Therefore
U< Ups 4+ Uy +etwp, inQLF (6.57)

Letting successively R — oo, ¢ =+ 0, 6 — 0 and 0 — 0 we obtain v < uso + Uy-, and
therefore u < 74 (Us,0 + Uy ) = Us,u. Next, we also have

U > 15,0 = SUP{Uoo,a : @ € S} == u > ug o = T4 (s ,0),
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by (6.25). With the notations of Proposition 6.12 with F = S, for any R > 0, § > 0 and
€ > 0, there exists 7. such that

ups (z,1) <ulz,t) +wpg(z,t) + € in Qg x (0, 7],

because the support of jis is included in © \ Ss. Therefore this last inequality holds in Q%
and consequently
sup{uji;, Us o} < U+ €+ wpy, in Q%%

and we can let R — oo and € — 0 to obtain sup{uz,,us o} < u in QSL. Letting 6 — 0 and
using Proposition 6.12 we get sup{gw,gs,o} <ug, S u.

Step 2: Alternative construction. For 0 < 0 < ¢ and n € N, we denote by Up 5, the
solution of

Oru — Au +t*u? =0 in Q%
u >0 in Qgg

u(z,t) =0 in 9,Q% (6.58)
u(.,0) = pus + nxs, in Q.

We denote here 2, = {x € RY : dist (,Q) < o}, S5 = {z € RY : dist (z,S) < §} and
Rs = QNS5 and us = xrsp- The same arguments of monotonicity as in Proposition 6.7
and Proposition 6.11 show that

lim lim lim =w =Us ;-
o—0 §—0 n—r00 17,0 St (6.59)

If 7 > 0 we denote by u, 5, the solution of

Ou — Au+1t*u? =0 in QY
u>0 in QSY
u(z,t) =0 in 0,Q% (6.60)
u(-,0) = ps + X, Us0(-7) in Q,

Using estimate (6.3) and Proposition 6.9 is is easy to prove that w, s, < u for any u €
Us 0(2). Furthermore

max{uw,uxséﬂswo(_,r)} SUrsp < Ups HUg ol +7),

since have

1t 1
52 q—1 2 52
uxséﬂs,o(-ﬁ) < 25,0("7) < U’Xséﬂs,o(-ﬂ') +C ? e 4

lta 1 5
by (5.5) with N = 1. Set ¢(3,7) = C (67) D T
InaX{U#(;,UXSJES’O(,’T)} 2 maX{u#J’QS,O('vT) - 0(5’ T)} 2 maX{Uuavﬂs,o(wT)} - 0(57 T)'

Therefore, if u. 5,
QS} which satisfies

— Uy 5, locally uniformly in Q% then Ug 5, is a solution of (1.6) in

maX{Uuavﬂs,o} < Qé,O,p < Ups + gS,O’ (6'61)
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and is smaller than any u € Us o(Q?). There exists d, — 0 such that Ug s, .~ Yoo, Lhen
max{w,., Us o} < Uy, < Wy + Us o) (6.62)
and uy g, is an element of Us o(2) smaller than any u € Us o(Q?). Thus uy( , = ugs,, and

lm limu s, = us,,- (6.63)

Step 3: Proof of (6.54). We assume inf{|z — 2| : z € §,2" € Q°} = §y > 0, so that we can
take o = 0 in the construction of us . Put 7 = (%)% and

Zn,&,u = En,&,u - ﬂ71,5,07 ZT,&,# = Q‘r,&y - QT,J,O and W’ﬂy&# - Z"v‘;v# - ZT,&#' (664)

Then w = Wy, 5, satisfies
dw — Aw +t* (ﬂi,m — Uy 50~ Ursut 23,5,0) (6.65)

in QY% and we can write

ﬂgx,é,u o U?@,é,o - QZ,&M + QZ@O = (U?@,&M - uz,&u) - (ﬂgws,o B ﬂ?—,é,o) (6.66)
= d#(ﬂ"ﬁy# - QT,J,#) - do(ﬂnﬁ,O - QT,J,O)
where 4 v
Up.s wo Ur s m ip—
MRULE )0, if u 5, 7& u
dy(z,t) = Tnsp—Urg, O T IO (6.67)
0 if ﬂ"a‘i# =Ur s,

and dy is defined accordingly. Since
ﬂn,é,u > max{ﬂfrﬁ”uaun,é,o} and Ur 5.0 < min{ﬂf,&,u’ﬂm&ﬁ}’

there holds d,, > dy > by convexity. Using the fact that %, s — Ur 50 2 0 is infers that

d#(ﬂ”héaﬂ - g‘1',(5,#) - dO(U"157O - QT,(S,O) > dﬂ(ﬂ”héaﬂ —Ur s U’M(S,O + ﬂr,é,O)

Finally (6.65) becomes
ow — Aw +t°d,w <0  in QL. (6.68)

Furthermore, in the sense of measures,
w(.,0) = ps +nxs; —nxs, — (1s + Xs(;QS,O('a 7))+ Xs(;QS,O('a 7) =0.

Because w = 0 in 9,Q%}, it follows w < 0 by the maximum principe. Therefore

Z"qf;y# < ZT S = ﬂn,&,,u —Urs < ﬂn,&o —Ur50- (669)
y0, 1 50, b 30,5

If we let successively n — oo (and therefore 7 — 0) and § — 0, we obtain (6.54). O
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Remark. We do not know if (6.54 holds if we do not assume inf{|z — 2'| : z € S, 2’ € Q°¢} =
do > 0. However, if for 6 > 0 we set Sp = S N {x € N : dist (x, Q%) > 6}, then we have

USSvH - QSQHU, < ﬂSQ,O - QSQ,O' (670)

Furthermore all the four above functions increases when 6 decreases to 0. If we set

(7) limg 0 Usy,p = Us,u
i lim, [} =7
(i) o S0 S0 (6.71)
(%”) %mGHO Usyu = Us
(w) limg o Us, 0= Us o
then we infer that
Us,p = Us , < Us,0 — Us - (6.72)

Our final result is the following existence and uniqueness theorem the proof is similar to
the one of [7, Th 3.5].

Theorem 6.15 Assume Q C RV is either RY or an open domain with a C? compact
boundary, &« > —1 and 1 < q < ge,o- Then for any v = (S, ) € B"I(Q) such that pp is
bounded in any neighborhood of 0Q and inf{|z — 2’| : z € S,z € Q°} > 0, the set Us ()
contains one and only one element.
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