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Bifurcations and Stability of Amplitude Modulated
Planar Oscillations of an Orbiting String with Internal
Resonances

ANGELO LUONGO and FABRIZIO VESTRONI

Dipartimento di Ingegneria delle Strutture, Acque ¢ Terreno, Universitd dell’Aquila, Monteluco di Roio,
67040 L'Aquila, Ialy

Abstract. Nonlinear free transversal oscillations of an orbiting string satellite system are analyzed. They are
governed by two partial integro-differential equations with quadratic nonlinearities. The system is weakly nonlinear
but in practice works in conditions of nearly simultaneous internal resonance. The ability of truncated models to
capture specific phenomena is discussed. By limiting the investigation to the planar motion with a one prevailing
component perturbed out-of-plane, two different models with three modes in primary and secondary resonance are
adopted. For increasing levels of the system energy, fundamental and bifurcated paths of fixed points are obtained
and their stability is investigated. Moreover, pericdically amplitude modulated planar motions and their stability
for out-of-plane disturbances are studied.
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1. Introduction

The idea of using a tethered satellite deployed from an orbiting Shuttle to develop experiments
in space, proposed in the 1960°s, has now become a real project thanks to recent technological
developments. This explains the large number of papers devoted to the subject that have
appeared in dedicated meetings and technical journals [1-7]. Most of the papers concerning
this system in the elongated configuration are devoted mainly to linear behaviour. However,
physical systems are generally nonlinear and nonlinearities frequently produce a number of
unexpected phenomena, particularly in continuous systems [8-10].

The nonlinear transversal oscillations of stretched strings with restrained ends has been the
subject of a large number of papers. The nature of the nonlinearities of the hardening type, on
account of the stretching, and the sequence of the natural frequencies are such that the internal
resonance phenomena are in practice restricted to the single case w,,_ = w,, which involves
the r-th modes in two orthogonal planes [8, 11-13]. This makes it possible to use a discrete
model based on the only two modes involved in the resonant interaction phenomena.

A large number of continuous dynamical systems have been studied by two-mode models.
More than two modes have been considered in few earlier works [14—17] but mainly in recent
studies. An exhaustive list of those papers is presented and discussed in [18]. This enlargement
of the variable space is fundamental in analyzing the phenomena of multiple resonances. A
general discussion of the steady solutions of Hamiltonian three degree-of-freedom systems in
conditions of perfect multiple internal resonance is reported in [19].

In the studies of nonlinear oscillations of cables, the interaction of a symmetric in-plane
mode with two out-of-plane modes in conditions of simultaneous internal resonances are
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Fig. 1. Tethered satellite system and reference frames.

studied with a three degree-of-freedom model [20]. A four degree-of-freedom model has been
proposed for the study of motion involving also the anti-symmetric in-plane mode [21].

The tethered satellite system has a frequency spectrum similar to that of a taut string, apart
from the first in-plane and out-of-plane pendulum type modes [6]. On account of the different
boundary conditions, cubic terms practically vanish while quadratic terms originating from
gyroscopic forces are present; in that it is similar to a cable. Although the nonlinearities are
small in comparison with cables or taut strings, the presence of quadratic nonlinearities and
the sequence of natural frequencies produce conditions of multiple internal resonances, which
make this problem attractive to study, beyond its technical interest.

The present paper examines the transversal nonlinear free oscillations of the undamped
tethered satellite system; with respect to a previous work [22], attention is focused on non-
stationary motions in conditions of simultaneous internal resonances. The use of discrete
models with few degrees-of-freedom sufficiently accurate to describe a particular interaction
phenomenon is discussed. Two three degree-of-freedom models are used to study the in-plane
motion and its stability for an out-of-plane disturbance, in conditions of simultaneous internal
resonances of the type w; = 2wy, and either w; & 2w; or w; = w.

2. The Equations of Motion

The system under study is a string connected at one end to the shuttle and carrying a satellite at
the other end. The system orbits in the XY plane (Figure 1) in equilibrium under centrifugal
and gravitational forces. Since the mass of the shuttle is much greater than those of the string
and the satellite, the centroid of the system practically coincides with the shuttle; it runs at
constant angular velocity n along an orbit assumed circular of radius a related to n through
the gravitational constant s by n? = . /a>.

An orbiting frame Szyz, connected to the shuttle, is introduced as shown in Figure 1. A
straight reference configuration zo(s) is assumed where s is the abscissa along the string.
The motion is described in this frame by the displacement components u(s, t), v(s, t), w(s, t)
measured with respect to the configuration x(s). The equations of motion were obtained in
[23] through Hamilton’s principle by using the elongation as a strain measure.



Let E A be the axial stiffness of the string, [ the length, ¢ the mass density, m the mass of
the satellite. After introducing the dimensionless parameters

n2? l l
2=l g gl (1)

the dimensionless variables

Fo=mo/l, §=3s/l, t=nt, a=ufl, v=v/l, b=w/l )

and the dimensionless static tension f(s) = (%} — 1)/a?, the governing equations at the third
order, dropping the tilde, read
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with the boundary conditions:
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In the previous equations the prime denotes differentiation with respect to s, the dot with
respect to £. The physical meaning of the different terms is easily recognizable: inertial,
gyroscopic, elastic and a combination of centrifugal and gravitational forces.

In the study of transversal oscillations a consistent ordering of the terms in equation (3,),
allows omission of inertial and centrifugal-gravitational forces while obtaining an integro-
differential relation among u, v, w. By using this relation to eliminate u(s, t), the transversal
oscillations of the string are governed by the two equations [22]:
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with the boundary conditions:

v(0,t) = w(0,t) =0
1
g 4+ v f(1)vg — 3ézo(1)vs — /(v’2 + w'?)® ds + 205v =0
0

g +vf(1ws +ws(l — 3zo(1)) + 205ws =0, (6)

where vg = v(1,t) and wg = w(l,t) are the satellite displacements. In view of further
developments (5) and (6) are re-written in the more compact form:

{M(%)+ Ly(v) + B(v,) + C(w,w)} - 6v =0
{M (W) + Ly(w) + D(w,9)} - bw =0, @)

where M and L are linear differential operators of s and B, C and D are bi-linear integro-
differential operators, which are defined in Appendix A.

Before studying the nonlinear equations (7), it is worthwhile to summarize the linear
dynamic characteristics of the system. These are obtained from the linearized equations (7)
by assuming a suitable mean value fy for the weakly nonlinearly varying tension f(s), a
parabolic approximation of which is given in [6]. Equal in-plane and out-of-plane eigenfunc-
tions ¢k (s) = i (s) = sinpgs, k = 0,1,... are found. For k£ = 0, in the technical range of
the mechanical parameters, py is less than 7 /4, resulting in a pendulum type mode; for k£ > 0,
pr = km. The in-plane and out-of-plane linear frequencies are given by wf,k = pﬁ fo and
wﬁ,k = P%f o 1 1, respectively. Apart from the two first pendulum modes, the frequencies of
flexible modes practically coincide with those of the taut string; they follow the law wy ~ kw
and are the same in the two planes.

In Appendix B an illustrative example is considered and the relevant parameter values
are given. Table 1 shows the sequence of the first frequencies of the system for two string
lengths which confirm previous observations; in particular the frequencies wp of the almost
rigid modes are far from the spectrum of the flexible modes.

3. Models for Modal Interaction Analysis

The occurrence of multiple modal interaction depends on the sequence of the linear frequencies
wn and the kinds of nonlinearities. As is well known [10] when quadratic nonlinearities are
present the following internal resonance conditions can occur: wy, = 2wy, Wy = Wy, + wi
(primary resonances), and w, = wp, Wy = 2wy £ wg, wy, = w + wp £ wy, (secondary
resonances).

For the continuous system under study all these conditions are verified. In the solution
reference is made to an approximate discrete model with a limited number of eigenfunctions.
Thus, it is important to discuss how to select the modes for the study of particular cases.
However this discussion goes beyond the particular free undamped problem dealt with here,
because it would concern also the wider case of the damped system under resonant harmonic
excitation.

In a general motion a potentially high number of modes are involved, according to the
internal resonance phenomenon. However, when a motion with a prevailing modal component
has to be dealt with, it is realistic to study the interaction phenomena with a few modes. For



example, the planar motion is adequately represented by two modal components, the prevailing
one of frequency wy and the companion mode of frequency w; = 2wy which is forced by the
quadratic term B(v, v) in (7;). It is considered acceptable to neglect the contribution of higher
modes which are involved by a higher order coupling. Analogous considerations apply for an
out-of-plane motion in which the prevailing component is an out-of-plane mode of frequency
wy and the companion is the in-plane mode of frequency w; = 2wy, forced by the quadratic
term C'(w, w) in (72), giving rise to a non-planar motion.

In order to analyze the stability of these motions it is necessary to select modes to describe
the perturbations. To this end the variational equations of motion are considered:

{M(60) + Ly(6v) + B(v,60) + B(6v,v) + C(w, éw) + C(bw,w)} - év =0
{M(6) + Ly (8w) + D(w, 69) + D(6w,v)} - 6w = 0. ®)

By assuming the disturbance can be described by only one mode in the plane and one out-of-
plane, these modes must be chosen so that nonlinear terms are resonant in (8).

For an in-plane motion, w(s,t) = 0 and (8) are uncoupled; therefore the stability for an
in-plane or out-of-plane disturbance can be studied separately. The frequency w; of a planar
disturbance év must meet the conditions w; = wg — w;, i.e. 2w; = wy (primary resonance)
or w; & wj —w; = 2wy — w;, 1€, w; = wi (secondary resonance). Only the first case is
of interest, while the second is trivial since it is known that a two-mode solution cannot be
unstable for a disturbance of the same components [8, 21], as will be seen later. The frequency
wy of an out-of-plane disturbance must satisfy similar conditions: 2w; = wy, and w; = wy, both
of interest. In particular, secondary resonance is important when stability of the first flexible
in-plane mode (k = 1) has to be studied; the primary resonance condition w; 2 wy /2 cannot
occur in this case, as it appears for a sample system from Table 1 in Appendix B.

For spatial motion equations (8) remain coupled and two disturbances §v, fw must be
considered simultaneously. The analysis of resonant terms in the variational equations gives
a set of internal resonance conditions. By disregarding trivial cases, the following holds:
wi = wi, and wp = 2wy,

Summarizing the above considerations, a truncated three-mode model can be satisfactorily
referred to in the study of planar motion and its stability, albeit in conditions of simultaneous
internal resonances, while a four-mode model has to be adopted for non-planar motion.

In the following two models with three modes are developed to study planar motion under
an out-of-plane perturbation in primary and secondary resonance. The amplitude equations
are used to analyze both the linearized stability and the nonlinear evolution of motion in the
region of unstable solutions. They belong to the class of equations which govern the motion of
three degree-of-freedom Hamiltonian systems in 2:4:1 and 1:2:1 internal resonance conditions
analyzed in [19]. Spatial motions will be investigated in a later paper.

4. Amplitude Modulation Equations

The modulation of the amplitudes of the resonant modes are obtained by the multiple time
scale method [24]. The new time scales t, = "t (n = 0, 1,...) are introduced where ¢ is the
perturbation parameter; the displacement variable are expanded in two-term series of ¢:

v(s,t) = evo(s, to, t1) + €%vy(s, to, 1)
w(s,t) = ewo(s,to,t1) + 2w (s, to, t1). )]



Substituting the previous (9) into the motion equations leads to the following perturbation
equations:

{M(d3yvo) + Ly(vo)} - 6u =0

{M(d3ywo) + Lu(wo)} - 6w =0 (10)
{M(d3yv1) + Ly(v1)} - 6v = —{B(vo, dovo) + C(wo, dowo) + 2M (d3,v9)} - v
{M(d3yw:) + Ly(w1)} - $w = —{D(wp, dovo) + 2M (d3,wo)} - Sw (11)

where d,, = 8/8t, and d2,,, = 8%/0t,,Oty,.
For both three-mode models previously discussed the generating solution is described by
three components:

vo(s,t) = Ap(t1)pr(s) e™r 4 Aj(t)p;(s) e“it 4 c.c.
wo(s,t) = Ai(t)di(s) €% +cc, (12)

where c.c. stands for complex conjugate.

Equations (12) are substituted into (11) where v = ¢, v = @; and dw = 1f; are
taken successively; by zeroing secular terms three ODEs in the amplitude A, A; and A, are
obtained.

The two cases of primary and secondary internal resonance between an out-of-plane
disturbance and an in-plane motion are dealt with separately; in both cases the two in-plane
components are in primary resonance condition which states

2wy = wj + €0, 13)

where o = 0(1) is a detuning parameter.

4.1. OUT-OF-PLANE MODE IN PRIMARY RESONANCE CONDITION
Primary resonance condition implies that

2wy = wy + €07, (14
Elimination of secular terms in (11) gives

Al — b AR Aj e — 2cA} et =0

A+ 2b,AF €951 =0

Al —2dA A e = 0, (15)

where overbar denotes complex conjugate, prime ¢;-differentiation and the coefficients are
defined in Appendix C.
Introducing the polar form

An= S an(®) 4O (n=kj0) (16)

and separating in (15) real and imaginary parts, six equations in the three real amplitudes a,
and three phases 8,, are obtained.



The use of the new variables
Ve = 20, — 9:@ + opty
n = 20 — O + o1ty a7

makes it possible to reduce the previous system to an autonomous system of five equations in
the state variables z = {ax, a;, a7, Yk, 'n}T. They read:

aj, = bxara;jcosy + cal cosy
aj = —bjajcosyy
a; = —daga;cosy,

a;caﬂ,'c = (bjai - Zbkaka;’f) siny, + ZCajatz sinvy; + orara;
awary; = (2daa? — cad)siny, + brajaga; siny, + ojaiay. (18)

A suitable combination of the first three equations furnishes a first integral of motion which
states the conservation of energy:

23 c
b; d
This implies that the trajectories lie on a sphere in the space of the normalized amplitudes
ar = Qk, G5 = (bk/bj)lfza,j, a; = (C/d)l/zal.

a? + a§+ a? = 1Iy. (19)

4.2. OUT-OF-PLANE MODE IN SECONDARY RESONANCE CONDITION
Secondary resonance conditions implies that

2w = wj + €0y. (20)
Elimination of secular terms in (11) gives now

Af — 2 AR Aj ek =0

A+ 20, A% €71 — 2cA} €1 = 0

A} +2dp AAj e = 0, (1)

where the coefficients are given in Appendix C.
Introducing the polar form (16) and redefining -, as

Y =20, — 0; + oits (22)

the following five state equations are obtained:

a‘}c = bkakaj COS Y
aj = —bja} cosyg + ca? cosy
a; = —daa;cosy

/ 3 . .
ara;, = (bjap — Zbkakag) sinyx, — caaf sin~y, + OROka;

aja;7y; = (2daga3< — ca}) sinvy, + bjasal siny, + giaa;, (23)



Fig. 2. Amplitude equilibrium paths for in-plane k-th and j-th primary resonant modes and (a) primary or
{b) secondary out-of-plane I-th resonant mode. (—) stable, (- - -) unstable.

that admits the first integral of motion

[#

y af = I (24)

b
2,9 2
a; + = ap +
7 by k
and iso-energy surfaces are the spheres in the space of the normalized amplitudes: a; = aj,
a = (bj/be)%ax, @ = (c/d)/ay.

5. Steady-State Amplitude Oscillations and Bifurcation Analysis

The steady-state solutions are the fixed points of (18) or (23). These equations admit solutions
with two or three non-vanishing components; among the former attention is focused on the
planar oscillations described by ar # 0, a; # 0 and a; = 0. The vanishing of the right hand
side terms of (18) or (23) for a; = O gives

Yk = :tvr/2
(bjai — Zbkag) sinyg + oga; =0, (25)

while ~y; remains undetermined. The relation a; — a; furnishes two curves represented in
Figure 2 for two cases of the illustrative example: (a) the prevailing in-plane second mode
(k = 2, j = 4) with the first out-of-plane mode (! = 1) in primary resonance; (b) the
prevailing in-plane first mode (k = 1, j = 2) with the first out-of-plane mode (! = 1) in
secondary resonance. Curves s; (7, = —n/2) emanate from the origin and represent the
planar oscillations with the prevailing a; component which tend to the linear solution for
small amplitude. Curves s; (yx = 7/2) bifurcate from the trivial path a; = O at the critical
value a;, = o/2by. However, this result is only an approximate value since a discrete model
of continuous system able to accurately describe oscillations with prevailing a; should retain
the component with frequency close to 2w;, as previously observed.

An initial study of these curves includes an analysis of bifurcation with respect to an out-
of-plane disturbance. Stationary solutions with a; # 0 require cos~y; = 0; the last equation
of (18) or (23) with a; — O furnishes the bifurcation conditions for the primary or secondary
resonant disturbance, respectively.



For each curve sy and s, (equation 25), depending on the system parameters, up to two
points of bifurcation can exist for siny; = +1. The corresponding levels of energy are reported
in Figure 2.

The closed-form expression of the equilibrium paths with three non-vanishing components
are obtained by zeroing the right side of the equations (18) or (23). On these curves originating
from the bifurcation points constant values -y, = £7/2 and -y, = £7/2 are found, as on the
other equilibrium paths.

The main characteristics of these curves can be deduced from the Figure 2. Three-mode
solutions always bifurcate from curve sy; for the primary resonance (a) only one bifurcation
point is found, since the other is well outside the amplitude range considered, and then

one three-mode solution s3 (y; = —/2) appears; for the secondary resonance (b) the two
three-mode bifurcated paths s3 (yy = —7/2) and s4 (; = 7/2) are contained in the planes
a; = const.

In this last case (Figure 2b) a saturation of the j-th component occurs and an increment
of energy goes only in the k-th and I-th components. In the former case (Figure 2a) the k-th
component rapidly tends to saturation after bifurcation. In both cases the saturated components
are those with frequency twice that of the bifurcated component, similar to what revealed in
forced two degree-of-freedom systems with quadratic nonlinearities [8, 15, 18].

The stability analysis of the three-mode solutions can be straightforwardly performed by
means of the variational equations by determining the eigenvalues of the Jacobian evaluated
at points of the curve. The results of the analysis are shown in Figure 2 where the stable
(unstable) branches are solid (broken) lines. The stability of the two-mode solutions cannot
be analyzed in the same way because the amplitude equations cannot be written in normal
form, due to a; = 0. Cartesian representation of complex amplitudes must be used, as in [20,
25]. This technique has not followed here since it is dealt with as a particular case of a more
general procedure suited to analyzing stability of periodic solutions which will be given in
Section 7.

Figure 2 shows that at the bifurcation points the crossing paths exchange their stability
characteristics; it is remarkable that in the secondary resonance the equilibrium looses stability
after the first bifurcation point and regains it after the second. This agrees with results obtained
in [22] by means of Mathieu equation theory. Instead the paths s, are always stable.

6. Periodically Amplitude Modulated Planar Oscillations

The planar motion is governed by three of equations (18) or (23) in which a; = 0 has been
imposed:

ap = bkakaj COS Yk
o = —bjalcosyg
akajv, = (bjai - 2bkaka§) siny + oraxa;. (26)

Some of the problems described by these equations are encountered in literature, and different
techniques have been used to represent the solutions. Very effective representations have been
given in [8, 26]; in particular, in [8], by introducing two first integrals of motion Iy and I,
(26) are reduced to one differential equation:

¢? = 4b L [F(¢) — G*(()), @7



F,G

Fig. 3. Functions F'(¢) and G(¢).

where ¢ = a}bj/(bI1), and I coincides with the energy E = o + (b;/by)aj,. The functions
F(¢) and G((), the last depending on the initial energy, are drawn in Figure 3; the intersections
¢y and ¢, of the two curves, at which the right hand side term of (27) vanishes, are inversion
points of motion.

For any initial conditions, ¢ varies periodically and so do the state variables ax, a; and 4,
giving a motion with periodically modulated amplitudes and phases in which the energy is
continuously exchanged between the two modes. For a particular choice of initial conditions
G is tangent to F', which describes a steady-state oscillation. When G intersects F’ at the origin
the double root { = 0 represents a stationary oscillation with only a; # 0.

Here a different representation of the motion is given in the space of the state variables.
For a certain energy level E, since the cyclic variable -y, does not appear in the integral of
motion, the trajectories, numerically obtained from (26), lie on a cylinder.

Two different levels of energy are illustrated in Figure 4 where -y varies in [—n, 7]. For
a low level (Figure 4a) one stationary two mode solution S at v, = —m/2 and one mode
solution Sy (a; = 0, 7 arbitrary) occur, according to the paths in Figure 2. Both solutions are
stable. Weak amplitude modulation occurs on each trajectory, while strong phase modulation
occurs on most of them, except for the closed trajectories which fill a small region around
Sy.

This picture has similarities with the previous noose representation of Figure 3. Since
E = const, trajectories are associated to parallel lines: G corresponds to the Sy solution
which is clearly stable; G corresponds to the S; solution which again is stable, while the
others define periodic amplitude modulations. In particular G* defines the largest closed
trajectory where there is a complete energy transfer in ay and delimits the region of closed
trajectories on the right from that of the open trajectories on the left.

As said in Section 2, all the two-mode solutions, either constant or periodic amplitude, are
always stable for a perturbation of these components.

For a higher value of energy (Figure 4b) a new stationary solution S, appears. Another
region of closed trajectories is generated, enclosed by a separatrix joining the two singular
points P; and P> which makes the oscillation Sy become unstable. They are located at
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Fig. 4. Trajectories of nonstationary planar iwo-modes motions for (a) low and (b) high energy values. Comparison
with the noose representation.

v = — arcsin[o/(2bra;)] obtained from the right hand side term of (263) equated to zero
for a; vanishing. In this case a strong modulation of amplitude and phase can occur. The
phenomenon is confirmed on the noose representation where the slope of the line decreases
as the energy increases and two tangent lines G; and G can be found. The origin is now an
unstable oscillation since a small perturbation of G produces a periodic motion where the
component a;, increases irrespectively of the smallness of its initial perturbation.

Between the two situations described in Figure 4, lies the critical case in which the two
singular points coincide and coalesce with S; for a critical value of energy E,_, = (o) /2by)?
at which the one component steady-state oscillation becomes unstable (S,, in Figure 2). On
the noose this critical condition occurs when Gy is tangent to F' in the origin.

The knowledge of the T-periodic solution in the variables ay, a; and -y, makes it possible
to describe the time history of the displacements. According to (12;) and (16), 6, and 6; are
evaluated from

H;c = —-bkaj sin'yk
az .
g = —bj—(-f sin Y. (28)

J

They are the imaginary parts of (15) or (21) when A4, = 0. Since the right hand side terms of
(28) are T'-periodic, denoting by v, (n = k, j) their mean value and absorbing the parameter
€, 6, (t) can be written as

On(t) = vt + xn(t)  n=k,j (29)



Fig. 5. Time histories of the total displacement and its components v; and vy, at I/4.

where x,(t) is a T-periodic function. By virtue of (29), a differentiation of (17;) leads to
Ve = 2V —Vj+ 0k +2X) — X;-- Since +;, is periodic, the mean value of its derivative is zero,
ie.,

2v —vj+ o, =0. (30)
The displacement is thus
(s, t) = ar(t)pr(s) cos[t + xk(t)] + a;(t)p; (s) cos[20t + x;(¢)], 31)

where Q= wy, + vy is the nonlinear frequency and ; = w; + v; = 2Q, follows from (13)
and (30).

The previous equations show clearly the meaning of the two terms of 8, in (29): v, is
the nonlinear modification of the mean instantaneous frequency and x,(t) accounts for the
phase modulation. Moreover, nonlinearities adjust the frequencies of the two modes in the
ratio 1:2 as in the stationary case. However, strictly speaking the displacement (31) describes
an almost periodic oscillation because the period T' of the slow modulation is in general
incommensurable with the period of the fast oscillation. In the steady oscillations x,(t) and
an(t) are constant.

In Figure 5, for the string oscillating in the prevailing first mode (k = 1) with the second
companion one (j = 2), the amplitude modulated displacement (31) at ! /4 is plotted together
with the two modal contributions v (t) and v;(t). While each component shows an amplitude
modulation associated with the internal resonance phenomenon, their combination produces
a constant amplitude motion periodically shifted. This surprising result is due to the existence
of a difference of phase between the two components.

The oscillation shape changes during a period due to the contributions of two modes
oscillating with multiple frequencies. The picture of the deformed configuration at different
instants in one period is shown in Figure 6, for two periods corresponding to zero or maximum
drift, from which a travelling wave motion is appreciated. In particular, the case with zero
drift (Figure 6a) also represents the behaviour of steady-state solutions.
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7. Stability Analysis of Periodically Modulated Oscillations

7.1. METHODOLOGY

It is known that the stability analysis of planar solutions cannot be performed using (18) or
(23) because they cannot be written in normal form when a; = 0. It is therefore necessary to
g0 back to the amplitude equations and use the Cartesian form. However, these equations are
non-autonomous; to make them autonomous the A,’s are transformed by the new complex
amplitudes B, as follows:

A, =B, eiantl n=k,J,l, (32)

where «, are real constants to be determined.
By referring to the primary resonance case, the use of (32) in (15) gives the autonomous
system

B}, — 2bp By B; — 2cB} +icx By = 0

B} —2b;B} +ia;B; =0

B] +2dB,B; +iqB; =0 (33)
if a,,’s constants satisfy the conditions

200 — aj + 0 =0, 2ap —ap +0;=0. (34)
Taking the variation of (33) around planar motion By, # 0, B;, # 0, B;, = 0 leads to

6Bj, — 2by(By,6B; + Bjy6Bi) + taybéBy, =0

6B — 4b; By, 6By, +ic;6B; = 0

6B] — 2dBy,6B; + iayé6B; = 0. (35)

If ax = v, and o; = vy, are taken, with vy, (n = k,j) frequency corrections of the
planar periodic solution ak,(t), a;o(t), 7k,(t), (341) is identically satisfied, as a conse-
quence of (30), and (34;) furnishes oy. Moreover, while the complex amplitudes A, (t) =
(1/2)an,(t) exp(ify,(t)) are not periodic due to the form (29) of 8,,,(t), the amplitudes By, (t)
are periodic as follows from (32):

1 .
Bng(t) = 5 ang(t) €X0®  n=k,j. (36)



Thus the introduction of B,, variables made it possible to reconduct the stability analysis of
the planar periodic motion to the solution of a standard variational problem with periodic
coefficients.

In the simpler case of steady motions where an, and Xy, are constant, the procedure
presented here is equivalent to that followed in [20, 25].

In equations (35), the out-of-plane component is uncoupled from the in-plane components.
Since the two-mode periodic oscillations are always stable for in-plane disturbance, as easily
argued from the description previously furnished, attention will be focused on the stability for
an out-of-plane perturbation. This is fully described by (353). By introducing the Cartesian
form for By, the stability of the periodic planar motion is analyzed by means of the eigenvalues
of the monodromy matrix determined by numerical integration of (353).

In the particular case of steady oscillations, eigenvalues like A = +4/c, with c real constant,
are found; at the critical condition the two eigenvalues coalesce in the origin of the complex
plane. In the periodic case the eigenvalues run along the unitary circle and coalesce in A = 1
at the critical condition.

For the sake of brevity the equations of the secondary resonance are not reported since they
are obtained with the same procedure already shown; only numerical results are discussed
below.

7.2. RESULTS

Some numerical results concerning the stability analysis of steady and periodic oscillations
of the sample system under primary and secondary resonance are presented. The linearized
analysis of stability illustrated above is used to characterize the motion and to determine the
critical conditions. Subsequently the evolution of the state variables obtained by integrating
the amplitude equations (18) or (23) are examined for some cases in the region of unstable
motion.

The primary resonance case is dealt with first. It is useful to examine briefly the behaviour
of steady solutions, whose stable and unstable branches have already been shown in Figure 2.
Unstable equilibrium points on the branch s; are perturbated by a small disturbance a;(0) and
the evolution of the three amplitudes are drawn in Figure 7. The steady motion is transformed
into a periodic motion with a very regular exchange of energy from the planar modes to the
out-of-plane mode. Along with higher values of energy, the transfer increases and its period
become shorter. The trajectory T in the (@,d;,a;)-space lies on an iso-energy surface,
emanating from Sy and passing through S3, i.e. the three-mode steady-state solution on the
bifurcated path (Figure 8a). In the 5D state variables space the trajectory runs around S3, what
can be ascertained from projection shown in Figures 8c and 8d.

With regard to the periodically amplitude modulated oscillations it is found that, for an
assigned level of energy, the i-th trajectory (Figure 4a) cannot become unstable if the (i — 1)-th
trajectory is stable. Thus, for increasing levels of energy the instability of motion starts from
the steady solutions S; and propagates toward external trajectories. This is highlighted in
Figure 9a where the region of stable and unstable trajectories is defined on the section at
e = —m/2 of the 3D state variables space. In accordance with the stability of Sy, all the
closed trajectories around it are always stable.

The evolution of the amplitudes relevant to two iso-energy unstable orbits are represented
in Figure 10. For the small orbits the evolution of their mean value is similar to that of the
stationary solution (Figure 10a), while for the larger orbits the modulation of the mean value is
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Fig. 7. Amplitudes time histories for planar steady-state solutions (k = 2, j = 4) with increasing energy perturbed
by an out-of-plane primary resonant mode (I = 1). Label “0” denotes the critical case.

smoothed (Figure 10b) and disappears when the orbit falls into the stable region. Thus moving
away from S, the faster modulation of amplitudes increases while the slower modulation of
its mean value decreases.

The representation of one of the two orbits on the (ay, d;, @;) surface appears as in Figure 8b;
the previously described phenomenon is well appreciated in Figures 8c and 8d where it is
apparent that the motion is quasi-periodic resulting in an orbit continuously moving up and
down.

Similar qualitative behaviour is recognized in the secondary resonant motion, where,
however, the most interesting aspect is the occurrence of the two close bifurcation points on
the stationary branch s; which makes the steady oscillations lose and regain stability.

In Figure 9b the stability regions on a section of state space are reported. It can be
appreciated that for low levels of energy all oscillations are stable up to the first bifurcation;
between the first and second bifurcation, the steady solutions and a certain region of close
orbits are unstable while the furthest are stable; above the last bifurcation the steady solution
and an increasing region of periodic orbits regain stability. In Figure 11, for the two levels of

energy E) and E; indicated in Figure 9b, stable and unstable trajectories are reported on the
cylinder.
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8. Conclusion

The nonlinear free oscillations of an orbiting string satellite system are studied. The system is
characterized by weak quadratic nonlinearities and presents some interesting features since it
virtually works in conditions of simultaneous internal resonance. In principle a high number of
modes could be involved in the motion, however, a two-mode model can give an approximate
description of the oscillations with a prevailing k-th mode and a companion j-th mode in
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primary 1:2 resonance. Richer models are needed for the study of more complex motions.
In particular a three-mode model is used to analyze bifurcations, stability and the evolution
of unstable motions of planar oscillations with an out-of-plane component in primary or
secondary resonance, that is a simultaneous internal resonance 2:4:1 and 1:2:1.

The stability of the steady and periodic amplitude oscillations is studied. The steady case
when the disturbance involves a new component not present in the base oscillation has already
been solved; it is shown here that a suitable transformation of the complex amplitudes can
be introduced to bring the stability of periodic solutions back to the analysis of variational



equations with periodic coefficients. Numerical results demonstrate that for a certain level of
energy constant amplitude oscillations become unstable always before the periodic ones. At a
level of energy for which steady oscillations are unstable, small orbits close to steady solutions
are also unstable but there exist large orbits with strong phase and amplitude modulations which
are stable. Planar two-mode resonant motion (w; = 2wy) perturbed by an out-of-plane mode
[-th in primary resonance (wy = 2w;) loses stability at a certain value of oscillation amplitude,
while when perturbed in secondary resonance (wy = w;) the motion first loses but then regains
stability, thanks to the existence of two close bifurcations points on the equilibrium path.

The numerical solution of the five-dimensional system of the amplitude equations furnishes
a description of the unstable three-mode motions in condition of simultaneous internal reso-
nances. Steady two-mode planar solutions bifurcate in periodic non-planar oscillations where
the amplitudes of the involved three modes are slowly modulated with an energy transfer
among in plane and out-of-plane modes. When unstable planar periodic solutions are per-
turbed out-of-plane, the amplitude modulations of the planar components remain practicaily
unchanged but they occur around a mean value which is modulated on a slower scale, similar
to the behavior of unstable steady motions.
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Appendix A

The inner product in equations (7) is defined by

H().u=/HDudD+/Hpudr, 37)
D T

were Hp is the formal part of the operator in domain D and Hr is its representation on the
boundary I'. Accordingly:
1

1
M) -6 = / 60 ds +  iisdvs
' 3
L,(v)-6v = /(fv’&v’ — 3€xbv) ds — 5 Exo(1)bvg
0

1
Ly(w) - 6w = /[fw'&w’ + (1 — 3€zo)wdw] ds + %— (1 = 3¢xo(1))wgbws
0

1 s 1 s
B(v,v)-6v = -2 {/ 6?}/’0"{)’ ds ds—}—/éfv"v'/?}dsds}
0 0

0 1

1 1
_2 6?}5/'0’@';' ds -1‘;’/52}’1}' ds
7 0 0



Table 1. Linear frequencies of transversal modes.

k=0 k=1 k=2 k=3 k=4

wy, 1736 23.022 45845 68712 91.590
l=5km ww, 2004 23.044 45856 68719 91.595
pe 0238 3160 6292 9431 12571

wy, 1725 6577 12265 18122 24.030
I=100km w,, 1995 6.652 12306 18.14% 24051
pe 0909 3464  6.461 9.545 12.658

1 s 1
2
Clw,w) - bv = —2/51}/11/11’/ dsds — S 6v3/w’u'1' ds
0 0

0
s 2 i
D(w,?) - éw = —2/5w'w'/i) dsds + = 9g / Sw'w' ds. (38)
0 0 T
Appendix B
The following values of the system parameters are assumed for the illustrative example:
n? =135 x 1076 s~2 i =576 x 1073 kg/m
a = (pe/n?)'/? =6657Tkm A =4x10"¢m?
m = 500kg. E =7x 10" N/m?
[ = 5Skm.

The corresponding non-dimensionalized parameters (1) are:
o?=694x10"7, y=~=00576, £=7.51x10""

Frequencies of two systems with different string lengths and the other parameters equal to
those of illustrative example are given in Table 1. Spatial frequencies p;, of the associated
modal shapes are also reported.

Appendix C
The coefficients of the equations (15) are as follows:
1 1 Wi
by = — - A ;=
5= (bkjk bklc]) bj Iy w, bikk
1 1
c= — Loy, d=— 2% . (39

4mk Wi 4ml wi



Previous positions hold also for equations (21), except for the following

1 wy 1wy
c=—— , d= —2d
am; w; pre U2 (40)

where

mg = M(hk)-hk with h=<p,’(/}
bije = B(pj,0k) - 0i, ik = C(W5,%%) - @i,  dijk = D(¥j,01) - .

For the illustrative example the coefficients (39) assume the following values:
(a) primary resonancecase k =2,j =4, =1:

by =4.67, b;=117, c=0.185 d=0.731

(b) secondary resonancecase k =1,5=2,1 = 1:

b =240, b; =061, c=0.185 d=0.731.
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