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ANGELO DI EGIDIO!, ANGELO LUONGO' and FABRIZIO VESTRONI?

'Universitd di L' Aquila, Dipartimento di Ingegneria delle Strutture, delle Acque e del Terreno; 67040 Monteluco
Roio, L' Aquila, fraly

*Universitd di Roma ‘La Sapienza’, Dipartimento di Ingegneria Strutturale e Geotecnica, Via Eudossiania 18;
00184 Roma, Italy

Abstract. The paper discusses the nonlinear free dynamics of an orbiting string satellite system. The focus is on
the transversal oscillations, which are governed by two partial integro-differential equations in two transversal
displacement components with quadratic nonlinearities. The system is weakly nonlinear but in practice works in
conditions of simultaneous internal resonance. The investigation focuses on nonstationary motions arising from
perturbed steady-state nonplanar oscillations. A four-mode model is used to study the problem: two modes are
necessary to describe the basic oscillation and at least two other modes are involved in the resonance phenomena
when the motion is perturbed. The multiple time scales method is used to obtain the equations that govern the
amplitude and phase modulations. For increasing levels of system energy, fundamental and bifurcated paths of
fixed points of the seven first-order differential equations are determined and their stability is investigated. The
trajectories of motion of periodically modulated amplitude solutions and their stability are also studied. A model
with a higher number of modes is used to evaluate the accuracy of the stability analysis of two-mode nonplanar
oscillations perturbed by a two-mode disturbance.,

Sommario. Nel presente lavoro si studia la dinamica libera nonlineare di un sistema filo-satellite. L'attenzione &
rivolta alle oscillazioni trasversali, governate da due equazioni integro-differenziali, con nonlinearith quadratiche,
nelle due componenti di spostamento. Il sistema & debolmente nonlineare ma praticamente lavora in condizioni
di risonanza interna. Lo studio & concentrato sui moti nonstazionari generati da perturbazioni delle oscillazioni
stazionarie spaziali. Per studiare il problema & stato sviluppato un modello con quattro modi: due sono necessari per
descrivere il moto base mentre almeno altri due sono interessati dai fenomeni di risonanza interna quando il moto
viene perturbato. Per ottenere le equazioni nelle ampiezze ¢ fasi & stato utilizzato il metodo delle scale multiple.
Del sistema di sette equazioni differenziali del primo ordine ottenuto, sono stati studiati i percorsi fondamentali
di equilibrio e i rami biforcati, prendendo come parametro il livello di energia totale. E stata inoltre esaminata la
stabilith di questi rami. Sono state studiate le traiettorie dei moti periodicamente modulati & la loro stabilit. Infine,
& stato utilizzato un modello con un numero pill alto di modi per valutare 1'accuratezza dell'analisi di stabilita delle
oscillazioni bimodali spaziali, nella quale la perturbazione & stata descritta da due soli modi.
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1. Introduction

A small satellite connected to an orbiting station by a very long string has recently been used
in space research. This has given rise to a large number of papers on the subject in technical
journals during the last decade [1-3].

The transversally oscillating orbiting string satellite system exhibits weak nonlinearities
in its elongated configuration; these are associated mainly with the longitudinal tension pro-
duced by gyroscopic forces, similar to but much smaller than the nonlinear effects of the
stretching involved in a taut string with fixed ends. Another effect of gyroscopic forces is
the coupling between the longitudinal and transversal motions in the plane of the orbit. The
latter element is revealed to be very important because it produces quadratic nonlinearities in
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Figure 1. Tethered satellite system and reference frame.

the transversal equations of motion after eliminating the longitudinal displacement through
consistent approximation [4-6].

Moreover, apart from the frequency of the almost rigid pendulum-like mode, the frequency
spectrum of the deformable modes is virtually an ordered sequence of the type w, = nw; as
for taut string. Though weakly nonlinear, the system therefore offers an interesting dynamical
behaviour to study due to the occurrence of several simultaneous internal resonances related
to its spectrum and the presence of quadratic nonlinearities [7-10]. In a general motion a
potentially high number of modes are involved because of the internal resonance phenomenon.
However, when a motion with a prevailing modal component is studied, it is possible to
analyse the main interaction phenomena with a limited number of modes. Two eigenfunctions
associated with the frequencies w; and w; = 2w; are sufficient to describe adequately the planar
and nonplanar motion of the string with a prevailing ith modal component. The contribution of
higher modes involved by the higher order coupling can be neglected within an approximate
solution. In order to analyse the stability of the two-mode oscillations and to find bifurcated
solutions, a model with at least three modes must be used to study the out-of-plane perturbed
planar motion, which is the subject of a previous work [11].

With the aim of studying stability and nonstationary motions arising from perturbed two-
mode nonplanar oscillations, a four-mode model is adopted in the present paper, since in
this case at least two modes are needed to describe the perturbation of basic oscillation. The
multiple time scale method is followed to obtain the amplitude equations. They belong to the
class of equations which govern the motion of a four degree-of-freedom Hamiltonian system
in 1:2:1:2 simultaneous internal resonances. Fixed points and periodic amplitude oscillations
are investigated; bifurcations, linearized stability, and nonstationary motions in the region
of unstable solutions are examined. The validity of the mode truncation is discussed by
comparing the results obtained using a higher dimension model.

2. The Equations of Motion and the Discrete Model

The system under study is a string connected at one end to the shuttle and carrying a satellite
at the other end. The system orbits in the XY plane (Figure 1) in equilibrium under centrifugal



and gravitational forces. Since the mass of the shuttle is much greater than those of the string
and the satellite, the centroid of the system coincides in practice with the shuttle; it runs at
constant angular velocity n along an orbit assumed to be circular, with radius ¢ related to n
through the gravitational constant g, by n? = p./a>.

An orbiting frame Sxyz, connected to the shuttle, is introduced as shown in Figure 1. A
straight reference configuration zo(s) is assumed, where s is the abscissa along the string.
The motion is described in this frame by the displacement components u(s, t), v(s, t), w(s, t)
measured in relation to configuration zo(s). The equations of motions were obtained in [4]
through the Hamilton principle by referring to the elongation as a strain measure.

By developing the displacement components in a Taylor series, three partial differential
equations truncated at the third order in the unknowns functions u(s,t), v(s,t), w(s,t) are
obtained. In the study of transversal oscillations, bearing in mind that the longitudinal frequen-
cy is much higher than the transversal ones, the inertial and centrifugal-gravitational forces can
be omitted from the longitudinal equation of motion which furnishes an integro-differential
relation among u, v, w. By using this relation to eliminate the longitudinal displacement u( s, t),
the transversal oscillations of the string-satellite system are governed by two equations in the
transversal displacements [5, 6].

Let E A be the axial stiffness of the string, [ the length, u the mass density, m the mass of
the satellite. After introducing the dimensionless parameters:
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the dimensionless variables:
To = xo/l, §=3/l, t = nt, 7 =ufl, 7= v/l, w=w/l )

and the dimensionless static tension f(s) = (z}) — 1)/a?, the following two equations are
obtained:

s s !
o — [f(s)v]" — 3€xov — / (v +w’)ds ~ [%bsv' — / 2% ds] =0
0 1

3)
S !
@ — [f(8)w] + (1 - 3zo)w — [%i)sw' - [ Zﬁds] =0
1
with the boundary conditions:
v(0,t) = w(0,t) =0
1
by + v f(1)0l — 3{3:0(1)@3/ (v’2 + w'l)ds + 20,0L =0 4)
0

W + 7 f(Dws + ws(1 = 3€zo(1)) + 205w, = 0,

where v, = v(1,t) and w, = w(1,?)are the satellite displacements and the overbar is dropped
for the sake of simplicity.

The approximated equations, obtained through a consistent ordering of the linear and
nonlinear terms, exhibit only quadratic terms mainly associated witht the gyroscopic forces.
The type of nonlinear terms are such that planar solutions in the orbit plane described by the



displacement v(s, t) can only exist, while the out-of plane component w(s, t) always involves
the other component v(s,t) leading to a spatial motion. In view of further developments,
equations (3) and (4) are re-written in the integral compact form:

{M(%)+ L,(v) + B(v,9) + C(w,w)}-dv =0

5

{M(®) + Ly(w) + D(w, d)} - w = 01, ©)
where M and L are linear differential operators of s and B, C and D are bi-linear integrodif-
ferential operators, which are defined in Appendix A.

As is well known [7-10], when quadratic nonlinearities are present the following internal
resonance conditions occur: wy, & 2w, w, ¥ |w,, + wk|, (primary resonances) and w,, =
WmywWn 2 | 2w + wi|,wn, & |wg £ wp & wiy| (secondary resonances). The occurrence of
multiple modal interactions depends on the sequence of linear frequencies w,. For the string-
satellite system all the above internal resonance conditions can be verified. Apart the first
pendulum mode in the two planes, the linear frequencies of the in-plane and out-of-plane
flexible modes practically coincide and both follow the law w,, & nwy.

Appendix B considers an illustrative example and gives the relevant parameter values.
Table 1 shows the sequences of the first frequencies and modes of the system for two string
lengths, analytically obtained by assuming a suitable mean value f for the weakly non-
linearly varying tension f(s) [6]. In particular it is worth noting that the frequencies wg of the
almost rigid modes are far from the spectrum of the flexible modes and cannot be involved in
multiple interaction phenomena.

For the infinite dimensional system an approximate solution can be obtained by a discrete
finite model built up by a suitable selection of a limited number of eigenfunctions to describe
the deformed configuration of the system. In particular, a nonplanar motion with a prevailing
modal component can be adequately represented by two modes, the kth out-of plane mode
and the companion jth in-plane mode with frequency w; = 2wy forced by the quadratic terms
C(w, w) in equation 5;.

A model able to capture the main bifurcation phenomena must contain other modes in order
to describe the perturbation adequately. This may be argued from the variational equations of
motion:

{M(8%) + Ly(6v) + B(v,89) + B(6v,9) + C(w, §w) + C(6w,w)} - 6v =0

{M(6®) + L(6w) + D(w, 60) + D(dw,v)} - dw = 0. ©)
For an in-plane motion, w(s, t) = 0 and equations (6) are uncoupled, enabling the stability for
in-plane and out-of-plane disturbances to be studied separately. For spatial motion equations
(6) remain coupled and two disturbances §v, 6w must be considered simultaneously.

By describing the disturbance by one in-plane mode of frequency w; and one out-of-
plane of frequency wy, these modes must be chosen so that nonlinear terms are resonant in
equation (6). The analysis of resonant terms in the variational equations gives 2w; &~ w;
and w; & |wi + w;|. When modes in the low frequency spectrum are considered the first
meaningful internal resonance condition occurs for w; & wi, w; = 2wy

Thus in the following a four-mode model, ¢th and jth in-plane modes and kth and /th out-
of-plane modes, is used to study nonplanar motion and its stability in the 1:2:1:2 simultaneous

internal resonance.



3. Amplitude Modulated Equations

The amplitude modulated equations involving the resonant modes are obtained by the multiple

time scale method [7]. The new time scales £,, = ¢,,t (n = 0, 1...) are introduced where ¢ is

the perturbation parameter; the displacement variables are expanded in a two-term series of ¢:
v(s,t) = evg((s, to, t1) + £2v1(s, 0, 1)

w(s,t) = ewp(s, to, t1) + 2w (s, g, 1)

)

If equation (7) is substituted in the motion equations, the following perturbation equations
will be obtained:

{M(d3yv0) + Ly(v0)}-6v =0

2 (&)
{M(dgowo) + Luw(wo)} - 6w =0
{M(d%o’ln) + Lu(vl)} -dv = —{B('vo,dov()) + C(’wo,dowO) + 2M(d(2)1’00)} - dv ©
{M(d3yw1) + L(w1)} - 6w = —{D(wo,dovo) + 2M (d3;wo)} - éw,
where d,, = d/0t,, and d,znn = 0%/0t,,0t,.
For the assumed four-mode model the generating solution is described by:
vo(s,1) = Ai(t1)wi(8) €0 + A;(t1)p;(s) er® + c.c. (10)

wo(s,t) = Ak(tl)zpk(s)ei“ktO + A;(t1)¢1(s) glwito c.c.,

where c.c. stands for complex conjugate. The prevailing and companion components of the
two-mode nonplanar motion are in primary resonance, while the nonplanar disturbance is in
secondary resonance:

2w; —wj = €0
Wi + W —w; = €02 (11
2wy —w; = €03,

where o’s are detuning parameters of the order of 1.

Equations (10) are substituted in equations (9) and by zeroing secular terms, taking account
of equations (11), four ODEs in the complex amplitude A;, A;, A and A; are obtained:

AL+ 2k A; Ajem i1t — 2k AjAg e = 0
AL+ 2k3 AZe14 4 2k4 Af 0 = 0

Al — 2ksAjA; et — 2kgApAjeTiot = 0
Aj + 2k1 A A €02 = 0,

12)

where the overbar denotes complex conjugate, prime ¢; -differentiation and the coefficients k;
are defined in Appendix C. By introducing the polar form:

An = Lan(t) €@ (n=1i,4,k,1) 13)



and separating real and imaginary parts in equations (12), eight equations in the four real
amplitudes a,, and four phases 6,, are obtained.
The use of the new variables:

1 =29, -9+ o1ty
2 = ¥ + Vg — % 4 02ty (14)
13 = 29, — 9V, + o3ty

makes it possible to reduce the previous system to an autonomous system of seven equations
in the state variables z = (a;, a;, ax, ar, 71, 72,73)" - They read:

ai = —kja;a; cos 1 + kaajax cos v,
aj = k3a? cos 1 — kqa? cos 73

a;, = ksaja; cos v + kgara; cos 3

a; = —kqaka; cos 2

15)
aia;y] = (2k1a;6% — k3a?) sin y1 — 2kaaay sin 7 + ksaia} sin 3 + o1a:a; (

a;araryy, = kiaia;aga; sin v + (k-;a ak kzakal ksata ) sin v,
- k6a,'ajaka1 sin y3 + opa;a,0;
aja]ﬂ/:,; = —k3a22ak sin Y1 = 2k5aiaja1 sin Y2 + (k4a,3c et 2k6a§ak) sin Y3 + 03a;0k.

A suitable combination of the first four equations furnishes a first integral of motion which
states the conservation of energy:

a% + ﬂjz-agf + ,@,%a% + ,H,za,z =F (16)
where:
k ki k ki k
2 _ M 2 _ MM o
G=p A=pp G=(k+ige) /b a7

This entails that the trajectories lie on a ipersphere in the space of the normalized amplitudes:
ai = @i, 4j = fja;,ar = Brak, @ = Pfia;.

4. Steady-state and Periodic Amplitude Solutions

The steady-state solutions are the fixed points of equations (15). These equations admit
solutions with one, two or four non-vanishing components only; aimong these attention is
focused on the non-planar oscillations described by ax # 0,a; # Oand a; = a; = 0.

The two-mode amplitude modulated oscillations are governed by three of equations (15)
in which a; = a; = O:

a}c = kGakaj COS 73

al; = —ksal cos 13 (18)
ajak'yé = (k4ai - 2k6a§ak) sin v3 + 030,;af.
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Figure 2. Amplitude equilibrium paths for kth and jth primary resonant modes and bifurcated paths for ¢th and lth
disturbance modes.
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Figure 3. Steady-state and periodic solutions in the space (y3, @) with tan o = dx /d,, for (a) lower and (b) higher
levels of energy.

The steady-state solutions are obtained by zeroing the right-hand side terms of equation (18)
with the following result:

T
2 (19)
:i:(kwi - 2k6a§) + o3a; = 0.

13=1+%

The curve ax — a; is represented in Figure 2 for the sample system oscillating with the
prevailing out-of-plane first mode (k = 1, j = 2) perturbed by the prevailing in-plane mode
(: = 1,1 = 2) in secondary resonance. On the two-mode curves a bifurcation analysis for
a non-planar disturbance a; — a; is developed by means of the procedure explained in the
next Section. For the curve s, depending on the system parameters, two points of bifurcation
occur forsiny; = +1,sin 2 = —1.

The equilibrium paths s; and s3 with four non-vanishing components are numerically
determined, starting from the bifurcation points (Figure 2). On these curves constant values of
4; are obtained, 71 = £7/2,792 = —w/2andy3 = 7/2, which is an extension of what happens
on the two-mode curve, For the bifurcated four-mode solutions no saturation phenomena occur,
as in planar oscillation perturbed out-of-plane in secondary resonance [11].



Different representations of the solutions of equations (19) have been given in the literature;
those in [7, 12] are very effective. Due to the existence of the first integral of motion (16), for
an energy level F the trajectories lie on a cylinder. The trajectories numerically obtained from
equations (18) are therefore presented on the plane a — 3 where tan o = @y /a; (Figure 3).

Two different levels of energy are illustrated in Figure 3 where 3 varies in [—m, 7].
For a low level (Figure 3(a)) one stationary two-mode solution 5| at 73 = 7/2 and one-
mode solution path sy (ax = 0,73 arbitrary) occur, according to the paths in Figure 2. Both
solutions are stable. Weak amplitude modulation occurs on each trajectory, while strong phase
modulation occurs on most of them, except for the closed trajectories that fill a small region
around S57.

For a higher value of energy (Figure 3(b)) a new stationary solution 54 appears. Since, in
contrast to the planar case, it occurs for a very high energy level, the curve s4 is not reported in
Figure 2. Another region of closed trajectories is generated, enclosed by a separatrix joining
the two singular points P, and P, which make the in-plane oscillation @ = 0 become unstable.
Points P; and P, are located at y3 = arcsin (03/(2ksa;)) obtained from the right-hand side
term of equation (183) equated to zero for vanishing a. They thus depend on the energy,
while the tangents to the separatrix in P; and P, are always vertical, in contrast to a similar
case illustrated in [13] where the position of the bifurcation points is fixed but the tangent
depends on the energy. In the case of Figure 3(b) a strong modulation of amplitude and phase
occurs on some trajectories.

To obtain the displacements v(s, t) and w(s, t), according to equations (10) and (13), the
6x and 6; are evaluated from:

’l% = —ksaj sin 73
2 (20)
a
= —k4—E si
19] 4= sin ¥3

J
which are the imaginary parts of equations (12) when A; = A; = 0. Since the right-hand side
terms of equation (20) are T'-periodic, denoting by v,, their mean value, 8,, can be written as:

ﬂn(t) = vnpt + Xn(t)a n= kaj, (21)

where v, is the nonlinear modification of the mean instantaneous frequency w, and x,(t) is
T'-periodic function, accounting for the phase modulation. By substituting equation (21) into
equation (143), taking into account that 3 and y,, are periodic, the non-periodic terms must
vanish:

2y —vj+ 03 =0. 22)
The displacement is thus:

v(s,t) = a;(t)p;(s) cos [2Qxt + x;(1)]

(23)
w(s,t) = ap(t)Pr(s) cos [k + xx(t)],

where Q; = w; + 4 is the nonlinear frequency and Q; = w; 4+ v; = 28 follows from
equations (113) and (22). Nonlinearities adjust the frequencies of the two modes in the ratio
1:2 as in the stationary case. However, strictly speaking the displacement (23) describes
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Figure 4. Time history of the displacement components w and v at s = 1/4 (#, minimum drift, ¢, maximum drift).
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Figure 5. Evolution of the deformed configuration in a fast period for some instants between those corresponding
to zero drift (D to @).

an almost periodic oscillation because the period T' of the slow modulation is in general
incommensurable with the period of fast oscillation. In the steady oscillations x,,(t) and a,(t)
are constant.

The amplitude modulated displacements (23) at s = % are plotted in Figure 4 for the
string oscillating in the first prevailing out-of-plane mode (k = 1) with the second companion



in-plane mode (j = 2). Each component shows an amplitude modulation associated with
the internal resonance phenomenon but the shape generated by their contributions is strongly
governed by the phase difference between them. The minimum and maximum values of these
differences can be appreciated from the zoomed time-histories in Figure 4, starting at two
different instants, ¢; and ,, respectively.

The oscillation shape changes during a period due to the contributions of the two modes
oscillating with multiple frequencies. The picture of the deformed configuration in one fast
period is shown in Figure 5(a) around the instants marked in Figure 5(b); the trajectories
described by the material point of the string at s = % are drawn in Figure 5(c). The instants ¢;
and ¢, correspond to zero drift conditions.

S. Stability of Steady-state and Periodic Amplitude Oscillations

The stability analysis of the four-mode fixed point solutions can be performed straightfor-
wardly by means of the variational equations by determining the eigenvalues of the Jacobian
evaluated at points of the curve. The results of the analysis are shown in Figure 2, in which the
stable (unstable) branches are solid (broken) lines. The stability of the steady-state two-mode
solutions cannot be analysed in the same way because the amplitude equations cannot be writ-
ten in normal form, due to a; = a; = 0. A Cartesian representation of complex amplitudes
must be used, as in [14, 15]; however, a more general procedure, suitable for analysing the
stability of periodic amplitude solutions, has been followed here.

The amplitude equations (12) are non-autonomous; to render them autonomous the new
amplitudes Z,, are introduced:

Ap = Zpeont, p =145kl (24)

The constants oy, a; related to the non-vanishing amplitudes of the two-mode periodic
solutions ag,(), aj,(t), y3,(t), are taken to be equal to the frequency corrections, oy =
vy, and a; = vj,. This produces a first important result: while the complex amplitudes
Ang = 3ano(t) exp(idy,(t)) are not periodic due to the form (21) of 9,,,(t), the amplitudes
Zng(t) = 3ang(t) exp (ixng(t)) (n = k, j) are periodic since xn, and a,, are periodic.

Moreover, this choice of o, o; zeroes some non-autonomous terms, while the rest vanish
when «;, o satisfy the conditions:

20, —a;j+01=0

(25)
a; +a,—a;+o0y=0.
The new system is:
Zl{ + 2k121'Zj + 2k2ZIZk +i0;Z;, =0
Z;- — 2k3Zz~2 + 2k4Z,% + iaij =0
(26)

Z,+ 2ksZ;Z) — 2k5ZjZk +iapZ, =0
Zl, +2C1Z:Z + ity Z; = 0.

Thus the introduction of Z,, variables makes it possible to reconduct the stability analysis of
the periodic amplitude motion to the solution of a standard variational problem with periodic
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coefficients. In particular, in the simpler case of steady motions where a,,, and x,, are constant,
the procedure adopted here is reduced to that followed in [14, 15].

The stability of the two-mode oscillations perturbed by the new components, sth and
lth, is described by the sub-system of variational equations, involving the only perturbed
components:

52!
82;

—(Zk] Z]»OéZ,- + 2k22k0521 + iaiéZ,-)

. (27)
—(2k1Z1y6 Z; + i) 7).

After introducing the Cartesian form for Z,,, (n = k, 7), the stability of the periodic nonplanar
motion is analysed by means of the eigenvalues of the monodromy matrix determined by the
numerical integration of equation (27).

In the particular case of steady oscillations, eigenvalues such as A = ++/c, with ¢ real
constant, are found; at the critical condition the two eigenvalues coalesce in the origin of the
complex plane. In the periodic case the eigenvalues run along the unitary circle and coalesce
in A = 1 at the critical condition.

In Figure 6(a) the stability regions on a section of state space are reported for the illustrative
example. The most interesting aspect is the occurrence of two close bifurcation points on
the stationary branch s; which makes the steady oscillations lose and regain their stability.
Moreover, it can be appreciated that for low levels of energy almost all oscillations are stable
up to the level of the first bifurcation; between the first and second bifurcation, the steady
solutions and a certain close region of orbits are unstable while the furthest are stable; above the
last bifurcation the steady solutions and a region of periodic orbits, near the steady solutions,
regain stability while the one-mode solutions ¢; # 0,a; = a;x = a; = 0 and periodic



I
A

ot
YR
A

AV

/R GV

\ 3
e}

Figure 7. Amplitude time histories for nonplanar steady-state solutions (k = 1,5 = 2) with increasing energy
perturbed by secondary resonant modes (¢ = 1,1 = 2). Cases 0 and 7 correspond to bifurcation points,

t ¢ - t
(a) (b)
Figure 8. Amplitude time-histories for two cases (a and b) of nonplanar periodic solutions (k = 1, j = 2) with
increasing energy (c) perturbed by secondary resonant modes (i = 1,1 = 2).

orbits near the previous lose stability. Figure 6(b) reports stable and unstable trajectories and
oscillations for the two levels of energy F and F, marked in Figure 6(a).

6. Numerical Investigation of Four-mode Nonstationary Motions

Some numerical results concerning the evolution of the state variables for some unstable
steady and periodic oscillations of the two-mode (K — j) non-planar motion perturbed by
non-planar disturbance (i — /) are presented. The solutions are obtained by integrating the
amplitude equations (15).
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Figure 9. The phase-plane trajectory of component ax, the time-history and the frequency content of the evolution
of component a, of the perturbed two-mode oscillations for the four cases (1-4) reported in Figure 8(c).

It is useful to examine first the behaviour of perturbed steady solutions whose stable and
unstable branches have already been shown in Figure 2. Unstable equilibrium points on the
branch sy, starting from the bifurcation points, are perturbed by the same small perturbance
a,(0), a;(0) and the evolution of the four amplitudes is drawn in Figure 7. The steady motion
is transformed into a periodic motion with a very regular exchange of energy from the k, j
modes to the ¢, [ perturbance modes.

As the energy of the oscillation increases from the first (curve 0) to the second (curve 7)
bifurcation point, the period of the amplitude modulation initially decreases and subsequently
increases steadily, changing its behaviour practically in the middle of the unstable branch,
while the energy transfer always increases up to the second bifurcation point, where it quickly
vanishes. The energy transfer among the prevailing components of the basic and disturbance
modes is very regular, i.e. while a decreases a; increases. The transfer of energy between
the companion components is more complex at the highest energy levels while remaining
periodic.

Unlike the behaviour of the planar two-mode oscillations out-of-plane perturbed by one
mode disturbance [11], only the periodically amplitude modulated oscillations close to the
boundaries of the stable regions evolve in a regular way when perturbed. Four orbits with
increasing energy levels and progressively farther from the stable region are considered. The
time histories of the amplitudes for the two extreme cases 1 and 4 are reported in Figure 8.
In the first regular case the energy transfer towards the perturbed components concerns the
mean value of amplitudes while remaining the modulation. In case 4 this transfer is irregular,
giving rise to a very irregular motion.



Figure 10. Instability regions of the trajectories on the section at 43 = /2 in the (@x, &, v3) space for the 6 d.o.f.
model ( ) and for the 4 d.o.f. model (— — — —).

To understand the transition from regular to irregular motions better, the four cases (1-4)
are illustrated in Figure 9. For each case three meaningful portraits are given: the phase-plane
trajectory of the prevailing component a;, sampled at constant step At, the time-history and
the relevant frequency content of the companion component a;. Case (1) is very regular;
the frequency spectrum shows two groups of a few peaks around two frequencies, the lower
associated with the slow energy transfer among the two components of the unstable basic
oscillations and the other two perturbed and the higher frequency related to the fast modulation
of the unperturbed orbit. As the energy level increases, the period of the energy transfer
becomes shorter and both groups become wider due to the modification of time laws and the
occurrence of new harmonics (cases 2 and 3). This can be appreciated on the phase plane
where the trajectories describe a bundle. When these two groups overlap, an explosion is
observed and the phenomenon appears completely irregular (case 4).

7. Remarks on the Truncated Model for the Stability Analysis

In the stability analysis of the two-mode oscillations dealt with previously, the disturbance
has been described by two modes. This truncation of the model furnishes approximate results.
In order to evaluate the accuracy of the results obtained, a higher number of modes is used to
represent the disturbance in this Section.

The rth planar mode with frequency w, = 3w and the sth out-of-plane mode with
ws = 4wy are added; the six-degree-of-freedom model obtained again admits the two-mode
ar — a; solution previously considered and the other four modes represent all the resonant
modes in the variational equations (6). Here, this enlarged model is used only to investigate the
boundaries of the stability regions, without analysing the evolution of the unstable motions.

In order to obtain the variational equations that govern the evolution of the disturbance
amplitude, the procedure already followed is employed and the relevant equations are reported
in Appendix D. The governing solution now contains the six selected modes (D.1) and two
new internal resonance conditions (D.2) involving the w,,w; frequencies are added to those
of equations (11). Six first-order differential equations in the complex amplitudes A,, are
obtained (D.3). A change in the variables A, = Z, e'®"*! leads to an autonomous system
(D.4) when the coefficients o, satisfy equation (25) and the new conditions (D.5).



Finally, the stability of the two-mode oscillations is governed by four equation systems
(D.6) in the disturbance components § Z,,(n = 1,!, r, s) which are uncoupled from the others.
The analysis of the eigenvalues of the monodromy matrix and the Jacobian matrix define the
stability of the periodic and steady state a; — a; oscillations respectively.

In Figure 10 the new boundaries (solid line) of the stability regions are reported together
with those (dashed line) already reported in Figure 6. It is apparent that the enlargement
of the assumed modes does not substantially affect the scenario; however, since the shape
of the region is modified a wider variety of stable or unstable oscillations can be found for
an assigned energy level depending on the initial conditions. In particular, some modulated
orbits corresponding to a much smaller energy level than that of the first bifurcation point
are now found to be unstable. The bifurcation points on the steady-state two-mode path
(ar # 0,a; # 0) remain practically unchanged, while on the one-mode path (a; # 0) the
critical amplitude notably decreases.

8. Conclusions

After condensing the longitudinal displacement, the nonlinear transversal oscillations of a
tethered satellite system can be adequately described by two equations. These reveal weak
quadratic nonlinear terms, due mainly to gyroscopic forces, and several conditions of internal
resonance due to the dynamic characteristic of the system. In order to study nonplanar oscil-
lations, a two-mode model can accurately describe nonplanar oscillations with a prevailing
kth mode and companion jth mode with frequency w; = 2wy. Richer models are needed to
study more complex motions. In particular, a four-mode model is used to analyse bifurcation,
stability and the evolution of unstable nonplanar motions, since in this case the perturbation
of basic oscillation requires at least two modes to describe it.

The stability of the steady and periodic solutions are analysed by introducing a Cartesian
representation of complex amplitudes, since the amplitude equations cannot be written in
normal form. By means of a suitable transformation of the complex amplitudes, the stability of
periodic motions is governed by a system of variational equations with periodic coefficients.
Two close bifurcation points are found on the stationary branch, which makes the steady
oscillations lose and regain stability. Periodic amplitude oscillations are stable for low levels
of energy; between the energy level of the first and second bifurcations, a certain region of
orbits is unstable while the further orbits are stable. Beyond the last bifurcation a region of
periodic orbits, near the steady solutions, regains stability, while the orbits near the one-mode
solution a; # 0, a; = ax = a; = 0 become unstable.

The numerical solution of the seven-dimensional system of the amplitude equations fur-
nishes a description of the nonstationary four-mode motions in conditions of simultaneous
internal resonances. Unstable steady two-mode solutions perturbed by small disturbances are
trasformed into periodic four-mode motions that are slowly modulated with a very regular
exchange of energy from the basic modes to the perturbance modes. For nonplanar periodic
oscillations perturbed by a small two-mode disturbance, only the periodically amplitude mod-
ulated oscillations close to the boundaries of the stable regions evolve in a regular way when
perturbed. In this case the amplitude modulations of the four components remain, but they
occur around a mean value which is modulated on a slower scale. In other cases the transfer
of energy is irregular, giving rise to noticeably irregular motions; some representative cases
are illustrated by the time-history, phase-plane and frequency content of components.



In order to evaluate the accuracy of the four-mode model in stability analysis, a richer
model is used in which the disturbance is represented by four modes. The enlargement of the
assumed modes does not susbtantially affect the scenario but the modification of the shape of
the region produces a wider variety of stable and unstable oscillations. The bifurcations points
on the steady-state solution path remain practically unchanged.
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Appendix A

The inner product in equations (5) is defined by:

H()-u:/DHDudD+/FHpudI‘ (A1)



where Hp is the formal part of the operator in domain D and Hr is its representation on the
boundary I'. Accordingly:

M(D)- v = /011'351) ds + %i}sévs
1 3
Ly(v)-6v = / (fv 60" — 3€zpbv)ds — =Exp(1)év, (A2)
0 v
Ly(v)- 6w = /l[fwléw' + (1 = 3€zo)wéw]ds + %(1 - 38x0(1))w0w,
0

and

B(v,v) - 6v

I s 1 s
- [/ 61)/ v'iz'dsds+/ 6v’v'/ T}dsds}
0 0 0 1
2 1 1
- 61)3/ v'i)'ds—i)'/ dv'v' ds
v 0 0

1 s 2 1
C(w,w)-6v = —2/ 61)/ w'i'dsds — —61)3/ w'i’ ds
0 0 v 0

(A3)

1 s 2 1
D(w, ) - $w = —2/ 6w'w'/ o dsds + -@s/ su'w' ds
0 0 Y Jo
where v; = v(1,1),ws = w(1,1).
Appendix B

Table 1. Linear frequencies of transversal modes and spatial frequencies of
the modal shapes

k=0 k=1 k=2 k=3 k=4

1=5km wy, 1736 23022 45845 68712 91.590
ww, 2004 23.044 45856 68719 91.595
Pk 0.238 3160 6292 9431 12571

1=100km w,, 1725 6.577 12265 18122 24.030
wy, 1.995 6.652 12.306 18.149 24.051
Pk 0.909 3464  6.461 9.545 12.658

The following values of the system parameters are assumed for the example:

n? = 1.35 x 10702 p=5.76 x 1073 kg/m
a = (e/n?) 3 =665Tkm A =4.0x10"%m?

m = 500kg E =17.0x 101 N/m?,
! = 5km



The corresponding nondimensional parameters (1) are:
?=694x%x10"7; 4=0.0576; £=7.51x10"%

Frequencies of two systems with different string lengths and the other parameters equal to
those of the example are given in Table 1. Spatial frequencies p;, of the associated modal
shapes of the linearized motion equations g (s) = ¥x(s) = sin pgs are also reported.

Appendix C

The coefficients of equations (12) are as follows:

_ wibgk; by — (wk — wi)Crij ko = Wikkj o = WKCikE
ky = —, 2=, 3 =—", 4= —,
dw;m; dw;m; dw;m; dwim; C.1)
W;Ckkj W;Cjikk WiCkk;j
ks = ———L, ke = — 1=, ky = ——2L,
4wkmk 4wkmk 4w¢ml
where

mg = M(hg) - hy with h =9
bijk = B(wj,0k) - wi,  cijk = C¥5,%k) -0y dijx = D(3j, %) - ;.

Appendix D

Complex amplitude modulation equations and variational equations for the six-mode model
used in Section 7 to analyse the stability of the two-mode non-planar oscillations (a;, #
0,a; # 0) are reported:

Goveming solution:

w0(s,1) = Ailt1)i(s)Er + Aj(11)p; (8™ + Ar(t1)pr ()€ + c.c.

) ) ) . (.1
wo(s, ) = A (t1)Pr(s)e™k% + Ay(t1)Pi(s)e ™ + Ag(t1)9hs(s)e™s™ +c.c.
Additional internal resonance conditions:

Wi + Wy — wg = €0
k T ] 4 . 2)

wj + W — ws = €0s.



A,, amplitude equations:

A;
A

Al

4
Al

+ 4+ o+ + o+ A+ +

2ki A;AjeT i 4 2k A A e Ormoatos)i 4 2y Ap A2t = 0
2k3A2e1h 4 2kod; A e imrmoutesit 4 ok, A2 iosty
2k1gAjAe~ 75 = 0

2k A Ajeilormestosit 2h12 A, Ajeilo3—aatas)ty
k13 A Agpe™ i = 0

2ksA; Ajet?h + 2k6ﬂkAje_i“3tl + 2k 14 A1 Apemi(oamoatosit
2k1s A, Age™09 =0

2krA; Ape'T 4 2k A, Ayem i 4 2k A A e e mTetos)t — g
2k1g A1 Az 4 2ki9Ag A e = 0.

Z, amplitude equations:

Z 42k 2,2 4 2hg Z, 2, + 2ka Zy 2y + i Z = 0

Z! + 263 ZE + 2ko Zi Z, + 2ka 2} + 21024 2y + i0; Z; = 0
242k 225 4 2k Zi + 2k3Z Zg + i 2, = 0

Zh + 2ksZ; 2y + 2ke Z; 2y + 2k1aZ, 21 + 2kis 2 2y + to 2k = 0
Z] 4 2k1Z: Zx + 2k162; 25 + 2k01Z: 2 + i Z; = O

Z! 4+ 2k13 21 Z; + 2k10Zk 2y + ity Z, = 0.

Additional o, conditions:

ap+oar—a,+04=0

a; +ar—a;+05 =0,

Variational equations:

67!+ 2k Z;,82; 4 2k8 2308 2 + 22 Z1 82y + 106 2; = 0
62! +2k11 230 Z; + 2k12 2106 2 + 213 23,8 25 + 10,62, = 0
EZ] + 2k1Z1y 62 + 2k16 2506 Zs + 2k17 236 2, + iy8 2 = 0
82 + 2k18 76 21 + 2k19 Lk 6 Z + 087, = 0,

where coefficients k;’s are reported in Appendix E.

(D.3)

D.4)

(D.5)

(D.6)



Appendix E

The coefficients of equations (D.3) are as follows:

By = ibia o wrbie —wibey (W - Wi wibjii
dw;m;’ dw;m; ’ 4om; dw;m;
k Wybjsr — wibjp by = LG _ (ws —wi)ejs;
W5 T W5y Wy
kyy = wibrji + w;ibri;
4w, m,
L (Wi 4 wi)erji his = (wWs — Wk )Cris k widiji
12 = bl _— Pl 5 —_ T
4w,.m, 4w, m, dwpmy (E.1)
6 = —
dwpmy
k wrdijr Wyl widjiz' k w]djsj
4= - 15= -7 = 6= >
dwpmy’ dwpmy’ 4uymy’ dwymy
k wrdjir
17= 7w
dwymy
widgis wydg;
o . - J 817 _ rWsir
kig = ——, kig= ——

dw,m, dwsmg





