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Abstract— In the present note, we give two examples of
bilinear quantum systems showing good agreement between the
total variation of the control and the variation of the energy
of solutions, with bounded or unbounded coupling term. The
corresponding estimates in terms of the total variation of the
control appear to be optimal.

I. INTRODUCTION

A. Control of quantum systems

The state of a quantum system evolving in a Riemannian

manifold Ω is described by its wave function, a point ψ
in L2(Ω,C). When the system is submitted to an electric

field (e.g., a laser), the time evolution of the wave function

is given, under the dipolar approximation and neglecting

decoherence, by the Schrödinger bilinear equation:

i
∂ψ

∂t
= (−∆+ V (x))ψ(x, t) + u(t)W (x)ψ(x, t) (1)

where ∆ is the Laplace-Beltrami operator on Ω, V andW are

real potential accounting for the properties of the free system

and the control field respectively, while the real function of

the time u accounts for the intensity of the laser.

In view of applications (for instance in NMR), it is

important to know whether and how it is possible to choose

a suitable control u : [0, T ] → R in order to steer (1)

from a given initial state to a given target. This question

has raised considerable interest in the community in the last

decade. After the negative results of [1] and [2] excluding

exact controllability on the natural domain of the operator

−∆+ V when W is bounded, the first, and at this day the

only one, description of the attainable set for an example of

bilinear quantum system was obtained by ([3], [4]). Further

investigations of the approximate controllability of (1) were

conducted using Lyapunov techniques ([5], [6], [7], [8], [9],

[10]) and geometric techniques ([11], [12]).

B. Various notions of energies

Quantum control is a trans-disciplinary field where differ-

ent communities use the same word “energy” with possibly

different meaning.

Mathematically, the energy of system (1) is any norm in

(a subspace of) L2(Ω,C) and the energy for the control

u in any norm in the space of admissible controls. A

recurrent issue when studying systems of the type of (1)

is to obtain a priori estimates of the energy of the system in

terms of some energy of the control. Such energy estimates

are crucial for many reasons, both for mathematical and

engineering purposes, including for instance the proof of

the well-posedness of the system and the regularity of the

solutions [13], or estimates of the distance between the

original infinite dimensional systems and some its finite

dimensional approximations (see Section II-C below).

Physically, the energy of the quantum system (1) with

wave function ψ is E(ψ) =
∫
Ω

[
(−∆+ V )ψ

]
ψ dµ. The

physical energy is therefore constant in time whenever the

control u is zero. When the control u is nonzero, and

provided suitable regularity hypotheses, the energy evolves

as
dE

dt
= 2u(t)ℑ

(∫

Ω

[
(∆ + V )ψ

]
Wψ dµ

)
. (2)

Note that the time derivative of the energy E at time t
depends on the value u(t) of the intensity of the external

field and on the wave function ψ(t).
A natural question is to relate the mathematical energy of

the control with the physical energy of the system.

Standard candidates for these estimates are the Lp norms

‖u‖Lp(0,T ) =
(∫ T

0
|u(t)|pdt

) 1
p

, for some suitable p > 0.

Indeed, many previous works addressed the problem of the

optimal control of the system (1) for costs involving the L2

norm of the control (see for instance [14] or [15]). The main

reason for choosing the L2 norm is the fact that the natural

Hilbert structure of L2 allows the use of the powerful tools

of Hilbert optimization. It is common belief that there is a

natural relation of the L2 norm of u and the energy of the

system. The note [16] showed that, in general, the L1-norm

provides more information on the evolution of the system

than other Lp-norms for p > 1.

C. Framework and notations

To take advantage of the powerful tools of the theory of

linear operators, we reformulate the bilinear dynamics (1) in

more abstract framework. In the separable Hilbert space H ,



we consider the bilinear system

dψ

dt
(t) = Aψ(t) + u(t)Bψ(t) (3)

where the (time independent) linear operators A and B
satisfy some regularity assumptions.

Assumption 1: The triple (A,B,Φ) is such that

1) A is skew-adjoint, possibly unbounded, on its domain

D(A);
2) −iA is positive;

3) B is bounded relatively to A: there exist a and b in R

such that ‖Bψ‖ ≤ a‖Aψ‖+ b‖ψ‖;

4) Φ = (φj)j∈N is a Hilbert basis of H made of

eigenvectors of A: for every j in N, there exists λj
in R such that Aφj = −iλjφj ;

If A and B satisfy Assumption 1.3, we denote

‖B‖A = inf{a ∈ R | ∃b ∈ R

for which ‖Bψ‖ ≤ a‖Aψ‖+ b‖ψ‖, ∀ψ ∈ D(A)}.
It is known that if (A,B,Φ) satisfies Assumption 1, then

for every u : [0, Tu] → (−1/‖B‖A, 1/‖B‖A) with bounded

variation, there exists a continuous mapping t 7→ Υu
t taking

value in the unitary group U(H) of H such that, for every ψ
in D(A), t 7→ Υu

t ψ is differentiable almost everywhere and

satsifies (3) for almost every t in (0, T ]. For a proof of this

well-posedness result, see [17] for a general theory of time

dependent (non-necessarily skew-adjoint) Hamiltonians or

[18] for an elementary proof adapted to the bilinear structure

of (3).

Definition 1: Let (A,B,Φ) satisfy Assumption 1. The

system (A,B) is approximately controllable if, for every

ψ0, ψ1 in the unit Hilbert sphere, for every ε > 0, there

exists uε : [0, Tε] → R such that ‖Υuε

Tε
ψ0 − ψ1‖ < ε.

The following sufficient criterion for approximate controlla-

bility is the central result of [12], centered on the notion of

non-degenerate (or non-resonant) transitions.

Definition 2: Let (A,B,Φ) satisfy Assumption 1. A pair

(j, k) of integers is a non-degenerate transition of (A,B,Φ)
if (i) 〈φj , Bφk〉 6= 0 and (ii) for every (l,m) in N

2, |λj −
λk| = |λl − λm| implies (j, k) = (l,m) or 〈φl, Bφm〉 = 0
or {j, k} ∩ {l,m} = ∅.

Definition 3: Let (A,B,Φ) satisfy Assumption 1. A sub-

set S of N
2 is a non-degenerate chain of connectedness

of (A,B,Φ) if (i) for every (j, k) in S, (j, k) is a non-

degenerate transition of (A,B) and (ii) for every ra, rb in

N, there exists a finite sequence ra = r0, r1, . . . , rp = rb in

N such that, for every j ≤ p− 1, (rj , rj+1) belongs to S.

Proposition 1: Let (A,B,Φ) satisfy Assumption 1. If

(A,B) admits a non-degenerate chain of connectedness, then

(A,B) is approximately controllable.

D. Main result

The contribution of this note is to show the good agree-

ment between the total variation of the control and the

variation of the A-norm of the wave function. The A-norm,

equal to ‖Aψ‖ for every ψ in D(A) is not equal, in general,

to the energy ‖|A|1/2ψ‖. However, if φj is an eigenvector

of A with associated eigenvalue −iλj , then ‖Aφj‖ = |λj | =
‖|A|1/2φj‖2.

We have to distinguish between the cases where B is

bounded and when it is not.

1) Bounded case: When B is bounded, the growth of the

A norm of Υu
t ψ is at most linear with respect to the total

variation of the control (see Section II-B.1). We present, in

Section IV-A, an example for which the growth is indeed

linear. More precisely, we will show the following.

Proposition 2: There exists (A,B,Φ) satisfying Assump-

tion 1 with B bounded such that, for every M in R, there

exists uM : [0, TM ] → R with bounded variation with

‖AΥuM

TM
φ1‖ ≥M and M ≥ ‖B‖

4 TV[0,TM ](uM ).
2) Unbounded case: When B is unbounded, the growth of

the A norm of Υu
t ψ is at most exponential with respect to the

total variation of the control (see Section II-B.2). We present,

in Section IV-B, an example for which the growth is indeed

exponential. More precisely, we will show the following.

Proposition 3: There exists a triple (A,B,Φ) satisfying

Assumption 1 with B unbounded such that, for every

M large enough in R, there exists uM : [0, TM ] →
R with bounded variation with ‖AΥuM

TM
φ1‖ ≥ M and

M ≥ 4 exp

(√
2

3
‖B‖ATV[0,TM ](uM )

)
− 6.

E. Content of the paper

In Section II, we review some classical estimates for the

growth of |A|r-norms of the wave function in terms of Lp

norms (Section II-A) and total variation (Section II-B) of

the control. Some examples of use of these estimates for

the approximation of the infinite dimensional system (3) by

its finite dimensional approximations are given in Section

II-C. Section III is a quick survey of basic facts about

averaging theory for finite dimensional bilinear systems.

These convergence results will be instrumental in Section

IV to prove Proposition 2 (Section IV-A) and Proposition 3

(Section IV-B).

II. SOME ENERGY ESTIMATES

A. Weakness of Lp estimates

Let (A,B,Φ) satisfy Assumption 1 and admit a non-

degenerate chain of connectedness. For every r > 0, for

every j, k in N and ε > 0 we define Aε
r(j, k) as the set of

functions u : [0, Tu] → R in L1([0, Tu]) ∩ Lr([0, Tu]) such

that ‖Υu
Tu
φj − φk‖ < ε. We consider the quantity

Cr(φj , φk) = sup
ε>0

(
inf

u∈Aε
r(j,k)

‖u‖Lr(0,Tu)

)
.

This quantity is the infimum of the Lr-norm of a control

achieving approximate controllability. It clearly satisfies the

triangle inequality. Next proposition states that Cr is a

distance on the space of eigenlevels only when r = 1. Its

proof is given in [16].

Proposition 4: C1 is a distance on the set {φj , j ∈ N}.

For r > 1, Cr is equal to zero on the set {φj , j ∈ N}.

Proposition 4 illustrates various flaws of Lp estimates of

system (3). First, and contrary to the immediate intuition,



Lp norms with p > 1 (and in particular the L2 norm)

do not permit to distinguish among the energy levels of

A. Precisely, if (A,B,Φ) admits a non-degenerate chain

of connectedness, for every non empty open set V in SH ,

there exists u : [0, T ] → (−1/a, 1/a) in Lp([0, T ]) with

‖u‖Lp([0,T ]) arbitrarly small such that Υu
Tφ1 belongs to V ,

see [19].

While the L1 norm allows to distinguish among the energy

levels of A, the distance C1 depends only on B and the

non-degenerate chains of connectedness of (A,B,Φ) (and

not on the eigenvalues of A). For instance, the computation

of C1(φ1, φ2) done in Section IV of [16] remains valid,

with unchanged result, if one replaces A by ±i|A|k for any

positive integer k.

B. Estimates based on total variation

The following estimates can be deduced from the general

theory due to Kato [17]. They are valid in context much

broader than Assumption 1. In particular, there is no need

for H to admit a Hilbert basis made of eigenvectors of A.

In the following we will impose u(0) = 0. This is always

the case if one replaces A by A + u(0)B. Moreover if

(A,B,Φ) satisfies Assumption 1 then there exists Φ′ and b ∈
R such that (A+ u(0)B− ib, B,Φ′) satisfies Assumption 1

as well.

1) Bounded case:

Proposition 5: Let (A,B,Φ) satisfy Assumption 1 with

B bounded. Then, for every u : [0, T ] → R with bounded

variation and u(0) = 0, for every j in N, ‖AΥu
Tφj‖ −

‖Aφj‖ ≤ 2‖B‖TV[0,T ](u).
Proof: Notice that if u(0) = 0 then |u(T )| ≤

TV[0,T ](u). Hence it is enough to prove for every j in N

that ‖(A+ u(T )B)Υu
Tφj‖ − ‖Aφj‖ ≤ ‖B‖TV[0,T ](u).

Any bounded variation function can be approximated

pointwise by a sequence of piecewise constant functions

(un)n∈N such that |un| ≤ |u| and TV[0,T ](un) ≤
TV[0,T ](u).

Following [18], we have that Υun

T φj → Υu
Tφj . Thus it

is sufficient to prove the statement for piecewise constant

controls. The proof for piecewise constant controls follows

from the estimate ‖(A+uB) exp (t(A+ uB))φ‖−‖Aφ‖ ≤
‖B‖|u|. Indeed for a piecwise constant function the associ-

ated Υu
t is a product of exp ti(A+ uiB) for different values

of ui and ti. The details of the proof are similar to those of

[18, Section 2].

2) Unbounded case:

Proposition 6: Let (A,B,Φ) satisfy Assumption 1 with

B unbounded. Then, for every 0 < δ < 1, for every u :
[0, T ] → (−(1 − δ)/‖B‖A, (1 − δ)/‖B‖A) with bounded

variation and u(0) = 0, for every ψ in D(A), ‖AΥu
Tψ‖ ≤

e‖B‖ATV[0,T ](u)/δ‖Aψ‖.

The proof in the unbounded case, which can be found in

[18, Proposition 3], follows the lines of the bounded case.

C. Good Galerkin Approximations

Assumption 2: The quadruple (A,B,Φ, k) is such that

1) (A,B,Φ) satisfies Assumption 1;

2) −iA is positive;

3) k is a positive real number;

4) for every u in R, the domains D(|A+ uB|k) of |A+
uB|k and D(|A|k) of |A|k coincide;

5) there exists d, r in R, r < k such that ‖Bψ‖ <
d‖|A|rψ‖ for every ψ;

6) the supremum ck(A,B) of the subset of R

{|ℜ〈|A|kψ,Bψ〉|/|〈|A|kψ, ψ〉|, ψ ∈ D(|A|k)} is fi-

nite.

For every N in N, we define the orthogonal projection

πN : ψ ∈ H 7→
∑

j≤N

〈φj , ψ〉φj ∈ H.

Definition 4: Let N ∈ N. The Galerkin approximation of

(3) of order N is the system in H

ẋ =
(
A(N) + uB(N)

)
x (ΣN )

where A(N) = πNAπN and B(N) = πNBπN are the

compressions of A and B (respectively).

We denote by Xu
(Φ,N)(t, s) the propagator of (ΣN ).

Definition 5: The system (A,B,Φ) admits a sequence of

Good Galerkin Approximations (GGA in short), in time T ∈
(0,+∞], in a subspace D (with norm ‖ · ‖D) of H , in terms

of a functional norm N(·) on a functional space U if, for

any K, ε > 0, for any ψ in D, there exists N in N such

that, for any u in U, N(u) ≤ K implies ‖(Xu
(Φ,N)(t, 0) −

Υu
t,0)ψ‖D < ε for any t < T .

Proposition 7: Let (A,B,Φ, k) satisfy Assumption 2.

Then (A,B,Φ) admits a sequence of good Galerkin approx-

imations in infinite time, in D(A) in terms of L1 norm for

locally integrable controls.

Last proposition is proved in [20] for piecewise constant

controls. The generalization to L1 controls follows from [18].

Proposition 8: Let d > 0, r < 1 and (A,B,Φ) sat-

isfy Assumption 1 with ‖Bψ‖ ≤ d‖|A|rψ‖ for every ψ
in D(|A|r). Then (A,B,Φ) admits a sequence of good

Galerkin approximations in infinite time, in D(A) in terms

of TV + L1 norm for controls with bounded variation.

This proposition is proved in [18]. Notice, that if imposing

u(0) = 0 for the control term then the L1 norm of the control

over any finite time interval is bounded by a multiple of the

total variation TV .

III. PERIODIC CONTROL LAWS OF BILINEAR

QUANTUM SYSTEMS

A. Averaging theory

The mathematical concept of averaging of dynamical

systems was introduced more than a century ago and has

now developed into a well-established theory, see for instance

the books of Guckenheimer & Holmes [21], Bullo & Lewis

[22] or Sanders, Verhulst & Murdock [23]. It was observed

that, for regular F and small ε, the trajectories of the system

ẋ = εF (x, t, ε) remain ε close, for time of order 1/ε, to

the trajectories of the average system ẋ = F̃ (x) where

F̃ (x) = limt→∞ 1/t
∫ t

0 F (x, t, 0).



In quantum physics, this concept of averaging is used

intensively to transfer a system of type (3) from an eigenstate

of A associated with eigenvalue −iλj to another associated

with eigenvalue −iλk with a periodic control with small

enough amplitude and frequency |λj − λk|.
The following results is proved in [24].

Proposition 9: Let (A,B,Φ) satisfy Assumption 1. As-

sume that (j, k) is a non-degenerate transition of (A,B,Φ).
Define T = 2π/|λj − λk| and let u∗ : R →
(−1/‖B‖A, 1/‖B‖A) be T -periodic and with bounded

variation on [0, T ]. If

∫ T

0

u∗(τ)ei(λj−λk)τdτ 6= 0 and

∫ T

0

u∗(τ)ei(λl−λm)τdτ = 0 for every (l,m) such that (i)

{j, k} 6= {l,m}, (ii) {j, k} ∩ {l,m} 6= ∅, (iii) |λl − λm| ∈
(N \ {1})|λj − λk| and (iv) blm 6= 0, then, for every n
in N, there exists T ∗

n in (nT ∗ − T, nT ∗ + T ) such that

|〈φk, Xu
(Φ,N)(T

∗
n , 0)φj〉| tends to 1 as n tends to infinity, with

T ∗ =
πT

2|bj,k|
∣∣∣
∫ T

0u
∗(τ)ei(λj−λk)τdτ

∣∣∣
, I =

∫ T

0

|u∗(τ)|dτ,

K =
IT ∗

T
and C = sup

(j,k)∈Λ

∣∣∣∣∣∣

∫ T

0
u∗(τ)ei(λl−λm)τdτ

sin
(
π |λl−λm|

|λj−λk|

)

∣∣∣∣∣∣
,

where Λ is the set of all pairs (l,m) in {1, . . . , N}2 such that

blm 6= 0 and {l,m}∩{j, k} 6= ∅ and |λl−λm| /∈ Z|λ2−λ1|.
Notice that Proposition 9 does not claim that

‖A(Xu
(Φ,N)(T

∗
n , 0)φj − φk)‖ tends to zero as n tends

to infinity. However,

lim inf
n→∞

‖AXu
(Φ,N)(T

∗
n , 0)φj‖

≥ lim inf
n→∞

λk|〈φk, Xu
(Φ,N)(T

∗
n , 0)φj〉| = λk.

Using Propostion 7 or Proposition 8 these can be extended

to inifinite dimensional system (3) with (A,B,Φ, k) satisfing

Assumption 2 or Assumption 1 with ‖Bψ‖ ≤ d‖|A|rψ‖ for

every ψ in D(|A|r) for some d > 0 and r < 1.

B. Averaging using the sine function

Let (A,B,Φ) satisfy Assumption 1 and (j, k) be a non-

degenerate transition of (A,B,Φ). We define ω = |λj −
λk|. We apply Proposition 9 with u∗ : t 7→ sin(ωt). For

n large enough, ‖u∗(t)/n‖L∞ ≤ 1/‖B‖A. Straightforward

computations give

T =
2π

ω
, T ∗ =

π

|bjk|
, I =

4

ω
,

and we compute

TV[0,T∗

n)

(
u∗

n

)
=

1

n

∫ T∗

n

0

ω| cos(ωt)|dt

=
ω

n




∫ ⌊

nT∗

n
T

⌋

T

0

| cos(ωt)|dt+
∫ T∗

n

⌊

nT∗

n
T

⌋

T

| cos(ωt)|dt
)
.

As n tends to infinity,
ω

n

∫ T∗

n

⌊

nT∗

n
T

⌋

T

| cos(ωt)|dt tends to zero,

hence

lim
n→∞

TV[0,T∗

n)

(
u∗

n

)
= lim

n→∞
ω

n

⌊
nT ∗

n

T

⌋∫ T

0

| cos(ωt)|dt

= lim
n→∞

4
ωT ∗

n

n
=

2ω

|bjk|
.

IV. EXAMPLES

A. The bounded case: 2D rotation of a linear molecule

Consider a linear molecule whose only degree of freedom

is the planar rotation, in a fixed plan, about its fixed center

of mass. This system has been thoroughly studied (see the

references given in [25] or [20] for instance).

In this model, the Schrödinger equation reads

i
∂ψ

∂t
= −∆ψ + cos θψ, θ ∈ Ω, (4)

Ω = R/2πZ is the unit circle endowed with the Riemannian

structure inherited from R,H is the space of odd functions of

L2(Ω,C), A = i∆ (∆ is the restriction to H of the Laplace-

Beltrami operator of Ω) and B : ψ 7→ (θ 7→ cos(θ)ψ(θ)) is

the multiplication by cosine.

In the Hilbert basis Φ = (θ 7→ sin(kθ))k∈N of H , A
is diagonal with diagonal −ik2, k = 1 . . .∞ and B is tri-

diagonal with bk,k = 0, bk,k+1 = −i/2, bj,k = 0 for every

k, j in N such that |j − k| > 1.

The triple (A,B,Φ) satisfies Assumption 1, B is bounded

and ‖Bψ‖ ≤ 0‖Aψ‖ +
√
2‖ψ‖ for every ψ in H . The

set {(k, k + 1), k ∈ N} is a non-degenerate chain of

connectedness for (A,B,Φ).
For every j, nj in N, we define the control u∗,j,nj : t ∈

[0, 2njπ] 7→ sin((2j + 1)t)/nj , and for every N in N,

we define u∗,(n1,n2,...,nN−1) by the concatenation of u∗,1,n1 ,

u∗,2,n2 , . . ., u∗,N−1,nN−1 .

By Proposition 9,

lim inf
n1,...,nN−1→∞

‖AΥu∗,(n1,n2,...,nN−1)

φ1‖ ≥ λN = N2.

From Section III-B, we compute

lim inf
n1,n2,...,nN−1→∞

TV[0,2π(n1+n2+...+nN−1](u
∗,(n1,n2,...,nN−1))

=
N−1∑

j=1

4(2j + 1) = 4N2,

which proves Proposition 2.

B. The unbounded case: perturbation of the harmonic oscil-

lator

The second model we consider is a perturbation of the

quantum harmonic oscillator, with dynamics give by

i
∂ψ

∂t
=
[
(−∆+ x2) + (−∆+ x2)−1

]
ψ + u(t)x2ψ. (5)

With the notations of Section I-C, H is the Hilbert

space of the odd functions of L2(R,C), A =
−i
[
(−∆+ x2) + (−∆+ x2)−1

]
where ∆ is the restriction



of the Laplacian to the space of odd functions and B is

the multiplication, in H by −ix2. Denoting by Hn the

nth Hermite function, we check that AH2n−1 = −i((4n −
1) + (4n − 1)−1)H2n−1, hence Φ = (H2n−1)n∈N is a

Hilbert basis of H made of eigenvectors of A. Moreover,

BH1 = −i(1/2H1+
√
3/2H3) and, for every n in N, n ≥ 2,

BH2n−1 = −i

[√
n

(
n− 1

2

)
H2n−3 +

(
n− 1

2

)
H2n−1

+

√

n

(
n+

1

2

)
H2n+1

]
.

In the basis Φ, A is diagonal with diagonal entries (−i((4n−
1) + (4n − 1)−1))n∈N and B is tri-diagonal. The system

(A,B,Φ) is tri-diagonal in the sense of [18] and satisfies

Assumption 1 with ‖B‖A ≤
√
6
4 (Proposition 12 of [18]

applied with r = 1 and C = 1/4).

For every j, nj in N, we define the control u∗,j,nj : t ∈
[0, 2njπ] 7→ sin((2j + 1)t)/nj , and for every N in N,

we define u∗,(n1,n2,...,nN−1) by the concatenation of u∗,1,n1 ,

u∗,2,n2 , . . ., u∗,N−1,nN−1 .

By Proposition 9,

lim inf
n1,...,nN−1→∞

‖AΥu∗,(n1,n2,...,nN−1)

φ1‖ ≥ λN ≥ 4N − 1.

From Section III-B, we compute, similarly to what we

have done in Section II-B.1,

lim inf
n1,n2,...,nN−1→∞

TV[0,2π(n1+n2+...+nN−1](u
∗,(n1,n2,...,nN−1))

=
N−1∑

j=1

2

N

≤ 2 log(N + 1),

which proves Proposition 3.

V. CONCLUSIONS

A. Contribution

We exhibited two examples showing that the Kato esti-

mates for the A-norm of the solutions of a bilinear quantum

system, with bounded or unbounded coupling term, are

optimal up to a multiplicative constant. These estimates are

given in terms of the total variation of the control.

B. Perspectives

An interesting, and probably difficult, question is the

optimal control of bilinear quantum systems when the cost is

the total variation of the control. Approximation procedures

(as the Good Galerkin Approximations presented in this note)

allow to consider only a finite dimensional problem. The

main difficulty will come from the non-smoothness of the

cost (total variation) which will lead to the use of tools of

non-smooth analysis.
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