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Abstract—In this paper, we provide a homology based algo-
rithm for disaster recovery of wireless networks. We consider
a damaged wireless network presenting coverage holes that we
need to restore by patching the holes. We propose an algorithm
which adds supernumerary vertices to cover the entire area,
then run an improved reduction algorithm to reach an optimal
result with a minimum number of added vertices. The algorithm
is homology based, using simplicial homology representation to
compute the coverage and abstract simplicial complex structure
to know redundancy vertices information. We present various
original methods for the addition of vertices of which we compare
the performances between each other and with known methods.

I. INTRODUCTION

Wireless networks are present everywhere, must it be sensor
networks or cellular networks. Fields where wireless sensor
networks can be used range from battlefield surveillance to
target enumeration in agriculture and include environmental
monitoring. In most applications, the topology of the network,
such as its connectivity and its coverage, is a critical factor.
Cellular networks are used for radio communication, where
coverage is also a critical factor. Indeed the covered area is
often the main characteristic of a cellular network. However
such networks are not necessary built with redundancy and
can be sensitive to disasters.

In case of disaster, a wireless network can be damaged: cov-
erage holes can appear, connectivity can be lost. Paradoxically,
reliable and efficient communication is especially needed in
such situations. Therefore solutions for damage recovery for
the coverage of wireless networks are much needed. Extensive
research on the coverage problem in wireless networks exists:
we can cite location-based [6] and range-based [17] methods.
However, connectivity based schemes seem of greater interest
since they do not need exact location or distance information.
In [8], the authors introduced the Vietoris-Rips complex, based
on the proximity graph of a wireless network, as a tool to
compute its topology. Coverage computation via simplicial
homology comes down to linear algebra computations. It is for
instance used in [4] and [13] as a tool for a network operator
to evaluate the quality of its network. We can also mention
the distributed algorithms of [16] that detects coverage holes.

In this paper, we present a homology based algorithm for
disaster recovery of wireless networks. We represent wireless
networks with C̆ech simplicial complexes characterizing its
coverage. Given a set of vertices and their communication

radius, our algorithm first adds supernumerary vertices in order
to patch every existing coverage hole, then runs an improved
version of the reduction algorithm presented in [15] in order
to reach an optimal result with a minimum number of added
vertices. Various methods for the addition of vertices are
proposed. We compare classic methods with new and original
methods.

This is the first algorithm that we know of that adds too
many vertices then remove them to reach an optimal result
instead of adding the exact needed number of vertices. This
allows flexibility in the choice of the new vertices positions,
which can be useful when running the algorithm in a real life
scenario. The disaster recovery problem can be viewed as a set
cover problem: where the universe is the area to be covered
and the subsets are the balls of communication range, then
the quesion is to find the optimal set of subsets that cover the
universe. A greedy algorithm can solve this problem [3]: a grid
of potential vertices is unfold on the area, the potential vertex
the furthest from the existing vertices is added, and so on
until the furthest potential vertex is in communication range.
ε-nets [10] provide also an algorithm for the set cover problem
via a sampling of the universe. We can also cite landmark-
based routing, seen in [7] and [1], which, using furthest
point sampling, provides a set of communication nodes for
routing that we can interpret as a minimal set of vertices
to cover an area. On top of flexibility, the originality of our
algorithm lies in the choice of the vertices addition methods we
suggest. Indeed, we compare classic methods (grid, uniform
positionning) with new methods never applied to wireless
networks. Determinantal point processes are objects from
stochastic geometry in which there is repulsion between points,
therefore they have the ability to locate coverage holes where
there are no close points. We suggest also the use of the Sobol
sequence, a statistical tool built to provide uniform coverage
of the unit square.

The remainder of this paper is structured as follows: first we
present the main idea of our algorithm, using some definitions
from simplicial homology in the second section. Then in the
third section, we propose different vertices addition method.
The reduction algorithm is presented in section 4. Finally we
provide performance comparison between our methods and
known methods in the last section. We conclude in the last
section.



II. MAIN IDEA

A. Simplicial homology

First we need to remind some definitions from simplicial
homology for better understanding of our representation.

Graphs can be generalized to more generic combinatorial
objects known as simplicial complexes. While graphs model
binary relations, simplicial complexes represent higher order
relations. A simplicial complex is a combinatorial object
made up of vertices, edges, triangles, tetrahedra, and their n-
dimensional counterparts. Given a set of vertices V and an
integer k, a k-simplex is an unordered subset of k+1 vertices
[v0, v1 . . . , vk] where vi ∈ V and vi 6= vj for all i 6= j. Thus,
a 0-simplex is a vertex, a 1-simplex an edge, a 2-simplex a
triangle, a 3-simplex a tetrahedron, etc.

Any subset of vertices included in the set of the k+1 vertices
of a k-simplex is a face of this k-simplex. Thus, a k-simplex
has exactly k+1 (k−1)- faces, which are (k−1)-simplices. For
example, a tetrahedron has four 2-faces which are triangles.
A simplicial complex is a collection of simplices which is
closed with respect to the inclusion of faces, i.e. all faces
of a simplex are in the set of simplices, and whenever two
simplices intersect, they do so on a common face. An abstract
simplicial complex is a purely combinatorial description of the
geometric simplicial complex and therefore does not need the
property of intersection of faces. For details about algebraic
topology, we refer to [9].

The k-th Betti numbers of an abstract simplicial complex
X are defined as the number of k-th dimensional holes in X .
For example, β0 counts the number of 0-dimensional holes,
that is the number of connected components. And β1 counts
the number of holes in the plane. If we are in dimension d,
the k-th Betti number for k ≥ d has no geometric meaning.

B. Algorithm

We consider as inputs the set of existing vertices: the
antennas of a damaged wireless network, and their coverage
radius r = ε

2 . In this paper, we only consider the 2-dimensional
case for simulation reasons, although it is possible to extend
our method to greater dimensions. Then we construct the C̆ech
abstract simplicial complex:

Definition 1 (C̆ech complex): Given (X, d) a metric space,
ω a finite set of points in X , and r a real positive number.
The C̆ech complex of parameter r of ω, denoted Cr(ω), is the
abstract simplicial complex whose k-simplices correspond to
(k + 1)-tuples of vertices in ω for which the intersection of
the k + 1 balls of radius r centered at the k + 1 vertices is
non-empty.
The C̆ech complex characterizes the coverage of a domain.
Therefore the Betti number β1 of the C̆ech complex counts the
number of coverage holes of the wireless network it represents.

The algorithm begins by adding vertices in addition to
the set of existing vertices presenting coverage holes. We
experimented various vertices addition methods in order to
provide comparison as flexibility is the greatest advantage
of our algorithm. It is however possible to consider new

methods, especially methods where some vertices position are
pre-defined in real life scenarios. All experimented methods
are relatively simple, to not increment the total complexity of
the algorihtm. They are meant to not be precise and add too
many vertices to patch all existing coverage holes.

We present four methods in the next section, three of them
being based on random representations. In these last methods
the number of added vertices Na is calculated in the same
manner. We choose to first add only the minimum number
of vertices needed to cover the whole area considering there
are already existing vertices. Then, the Betti numbers β0 and
β1 are computed via linear algebra thanks to the simplicial
complex representation. If the network is still disconnected or
if there are still coverage holes, the number of added vertices
is incremented with an exponential growth. If we denote Ni
the number of existing vertices:
• Na is set to: Na = d a2

π(ε/2)2 e −Ni.
• After adding the Na vertices, β0 and β1 are computed.

If β0 6= 1 or β1 6= 0, one more vertex is added.
• Then if still β0 6= 1 or β1 6= 0, two vertices are

added, then four, and eight, doubling the number of added
vertices each time.

The next step of our approach is to run a reduction algorithm
which maintains the topology of our network: the algorithm
removes vertices from the abstract simplicial complex without
modifying its Betti numbers. At this step, we remove some of
the supernumerary vertices we just added in order to achieve
an optimal result with a minimum number of added vertices. A
full descritption of the reduction algorithm is given in section
4.

We give in Algorithm 1 an outline of the whole algorithm.
We take as input the list of initial vertices and their positions,
the C̆ech complex parameter, and a list of boundary vertices
from the initial vertices that let us to know the area to cover.
It is important to note that we only need vertices positions
in order to compute the connections between vertices: only
connectivity information is needed to build the C̆ech complex.

Algorithm 1 Disaster recovery algorithm
Require: Set ωi of Ni initial vertices, parameter ε, list Lb of

boundary vertices.
Computation of the C̆ech complex X = Cε/2(ωi)
Na = d a2

π(ε/2)2 e −Ni
Addition of Na vertices to X following chosen method
Computation of β0(X) and β1(X)
i = 1
while β0 6= 1 or β1 6= 0 do
Na = Na + i
Addition of Na vertices to X following chosen method
Computation of β0(X) and β1(X)
i = 2 ∗ i

end while
Reduction algorithm on X
return List La of kept added vertices.



III. NEW VERTICES ADDITION METHOD

We consider a damaged wireless network presenting cover-
age holes of which we can see an example in Figure 1.
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Fig. 1. A damaged wireless network with a fixed boundary.

We present here four methods for new vertices positionning.
The first one is deterministic: the number of added vertices and
their positions are set. The three other methods use stochastic
geometry or random distributions. In these last methods, the
number of vertices is computed as presented in the previous
section. In this section, we denote (xi, yi) the position of the
i-th vertex.

A. Grid
The first method we suggest to add vertices ensures perfect

coverage: we place new vertices along a square grid in a lattice
graph where the distance between two neighbouring vertices
is ε/
√
2. The number of vertices is set. Therefore this method

is completely independent from the initial configuration. We
give in Algorithm 2 the grid method on the square a2.

Algorithm 2 Grid method

Na =
(
b a
ε/
√
2
c+ 1

)2
for i = 1→ m do

for j = 1→ m do
xNi+i+(j−1)m = (i−1)ε√

2

yNi+i+(j−1)m = (j−1)ε√
2

end for
end for

We can see an example of the grid vertices addition method
in Figure 2 on the damaged network of Figure 1. Existing
vertices are black circles while added vertices are red plusses.
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Fig. 2. With the grid addition method.

B. Uniform

Here, the number of added vertices Na is computed ac-
cordingly to the method presented in section 2, taking into
account the number of existing vertices. Then the Na vertices
are sampled following a uniform law on the entire area.
The uniform addition method on the square a2 is given in
Algorithm 3, and an example is shown in Figure 3.

Algorithm 3 Uniform method
for i = 1→ Na do
xNi+i =rand∗a
yNi+i =rand∗a

end for
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Fig. 3. With the uniform addition method.

C. Determinantal

In this method, the number of vertices is still computed in
the same way. However, this method allows us to not only
take the number of existing vertices into account but also
their positions: added vertices positions are sampled following
a determinantal point process taking the Ni existing vertices
as the first vertices of the process. These process have the
particularity of creating repulsion between vertices, therefore
offer a more uniform coverage of a given domain.

The principle behind determinantal point process repulsion
is that the probability density used to draw the vertices posi-
tions, is computed following a Gram-Schmidt orthonormalisa-
tion process in a given basis [11]. So that the probability to
draw a vertex at the exact same position of an already existing
vertex is zero. And the probability increases with increasing
distance from other vertices. Therefore the probability density
is the greater in the location the farthest from every vertices,
so this method has the ability to locate coverage holes and
patch them with new vertices. This construction allows us to
consider the first Ni vertices as vertices already drawn in the
determinantal point process. Then each vertex position is taken
into account as it is drawn.

The determinantal method is given in Algorithm 4. We
denote v the vector of the chosen basis that takes as argument
the vertices positions, and for more readability we write xi for
the position vector (xi, yi). We simulated this method with a
Ginibre basis, of which we can see a realisation in Figure 4.



Algorithm 4 Determinantal method
Computation of v(x1), . . . , v(xNi)

e1 = v(x1)
‖v(x1)‖

for i = 2→ Ni do
w = v(xi)−

∑i−1
j=1(ej · v(xi))ej

ei =
w
‖w‖

end for
for i = 1→ Na do
p(x) = 1

Na−i+1

(
‖v(x)‖2 −

∑Ni+i−1
j=1 |ej · v(x)|2

)
Draw xNi+i following p(x)
w = v(xNi+i)−

∑Ni+i−1
j=1 (ej · v(xNi+i))ej

eNi+i =
w
‖w‖

end for
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Fig. 4. With the determinantal addition method with a Ginibre basis.

D. Sobol sequence

In this last presented method, we do not take into account
the positions of existing vertices at the initial state anymore,
but we do take into account the positions of the new added
vertices. The Sobol sequence [14] is a statistical tool used to
form a uniform partition on the domain, and thus fills space in
a highly uniform manner. The Sobol initialisation set is known,
for instance on a square the first position is the middle of the
square, then come the middles of the four squares included
in the big square, etc. To randomize the positions drawn, the
points are scrambled.
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Fig. 5. With the Sobol sequence addition method.

For our simulation, we used the set of initialisation numbers
provided by Bratley and Fox in [2]. Then we scrambled the
points produced with the random method described in [12].

IV. REDUCTION ALGORITHM

In this section, we present the reduction algorithm first
introduced in [15], and explain how we adapt it to achieve an
optimal result in patching holes of our damaged network. The
algorithm takes as input an abstract simplicial complex: here
it is the C̆ech complex of the wireless network plus the added
vertices, and a list of boundary vertices in order to know the
area to cover. At this step we have ensured that we have one
connected component β0 = 1, and no coverage hole β1 = 0,
via the addition of a sufficient number of vertices.

As seen in Section 2, we use the C̆ech simplicial complex to
characterize the coverage of a wireless network. In simplicial
homology, a given area is said to be covered if it is paved
by 2-simplices, that are triangles. Therefore, we only need 2-
simplices to ensure coverage, higher simplices are superfluous.
To characterize the superfluousness of a 2-simplex, we define
a degree for every 2-simplex:

Definition 2: The degree of a 2-simplex [v0, v1, v2] is the
size of the greatest simplex it is a face of:

D[v0, v1, v2] = max{d | [v0, v1, v2] ⊂ d-simplex}.

We immediately have D[v0, v1, v2] ≥ 2 for any 2-simplex.
Then, we are not interested in removing 2-simplices but

0-simplices: vertices. To transmit the superfluousness of its
2-simplices to a vertex, we define indices for every vertex:

Definition 3: The index of a vertex v is the minimum of
the degrees of the 2-simplices it is a vertex of:

I[v] = min{D[v0, v1, v2] | v ∈ [v0, v1, v2]},

If a vertex v is not a vertex of a 2-simplex then I[v] = 0. If
a vertex v is a boundary vertex then I[v] = −1.

The indices give us an order for the removal of vertices: the
greater the index of a vertex, the more likely it is superfluous
for the coverage of its C̆ech simplicial complex. In our disaster
recovery case, we do not want to remove the remaining
vertices of our damaged network. So these remaining vertices
are given a negative index to flag them as unremovable, and
only the newly added vertices are considered for removing.
Finally, the vertices with the greatest index are candidates for
removal: one is chosen randomly. The removal of a vertex
leads to the degradation of all the k-simplices it was a vertex
of, to (k − 1)-simplices for every integer k.

At every vertex removal, we need to ensure that the homol-
ogy is unchanged: we compute the two first Betti numbers
β0 and β1 every time a vertex is removed. If they change,
the vertex is put back into the abstract simplicial complex
with a negative index to flag it as unremovable. Otherwise, the
removal of the vertex is confirmed. The modified degrees of
the 2-simplices and the indices of the vertices are recalculated.
We can note that only the vertices of maximum index can have
their index changed. The algorithm goes on removing vertices
until every remaining vertex is unremovable, thus achieving
optimal result. For more information on the reduction algo-
rithm we refer to [15].



We give in Algorithm 5 the reduction algorithm. We denote
sk the number of k-simplices, D1, . . . , Ds2 the degrees of 2-
simplices, and v1, . . . , vs0 the vertices.

Algorithm 5 Reduction algorithm
Require: Simplicial complex X , list Lb of boundary vertices.

Computation of D1(X), . . . , Ds2(X)
Computation of I[v1(X)], . . . , I[vs0(X)]
for all v ∈ Li ∪ Lb do
I[v] = −1

end for
Imax = max{I[v1(X)], . . . , I[vs0(X)]}
while Imax > 0 do

Draw w a vertex of index Imax

X ′ = X\{w}
Computation of β0(X ′) and β1(X ′)
if β0 6= 1 or β1 6= 0 then
I[w] = −1

else
Computation of D1(X

′), . . . , Ds′2
(X ′)

for i→ 1 : s′0 do
if I[vi(X ′)] = Imax then

Computation of I[vi(X ′)]
end if

end for
Imax = max{I[v1(X ′)], . . . , I[vs′0(X

′)]}
X = X ′

end if
end while
return X

We can see in Figure 6 an execution of the reduction
algorithm on the configuration of Figure 4. Removed vertices
are represented by blue diamonds.
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Fig. 6. The reduction algorithm run on the determinantal method example.

V. PERFORMANCE COMPARISON

A. Addition method comparison

First, we compare the complexities of our four methods.
As before, Ni is the number of existing vertices and Na the
number of added vertices. Three of the presented methods
are of complexity O(Na). The grid and the uniform methods
only compute Na positions, and the Sobol method scramble
Na positions already known by most simulation tools. The

determinantal method is a little bit more complex: first tak-
ing into account the existing vertices in the Gram-Schmidt
orthonormalisation is of complexity O(N2

i ), then the position
drawing with the rejection sampling via orthonormalisation
is of complexity O(Na(Na + Ni)) at most. Thus we have a
final complexity of O(N2

i +N
2
a +NaNi)). The determinantal

method is the more complex because it takes into account the
position of existing vertices. To these complexities we have to
add the complexity of computing the coverage via the Betti
numbers which is of the order of the number of triangles times
the number of edges that is O((Na +Ni)

5( εa )
6) according to

[5].
Then, we can compare the mean number of added vertices.

The first method being determinist, the number of added
vertices is constant: Na = (b a

ε/
√
2
c + 1)2. This method is

also mathematically optimal for the number of added vertices
to cover the whole area, however it is not optimal in a
real life scenario where positions can not be defined with
such precision. We can see in Table I the mean number of
added vertices on 500 simulations for each random method
in different scenarios on a square of side a = 1 with
communication range ε = 0.5 and a Vietoris-Rips simplicial
complex, which is the clique complex of the geometric graph.
The Vietoris-Rips complex is an approximation of the C̆ech
complex, much easier to simulate. Scenarios are defined by the
mean percentage of area covered before running the recovery
algorithm: if there are many or few existing vertices, and thus
few or many vertices to add. We need to note that number
of added vertices is computed following our incrementation
method presented in section 2 and the presented results are
for Na the number of added vertices before the reduction
algorithm ran.

% of area initially covered 20% 40% 60% 80%
Uniform method 32.51 29.34 24.64 15.63

Determinantal method 16.00 14.62 12.36 7.79
Sobol sequence method 29.00 29.40 24.09 16.96

TABLE I
MEAN NUMBER OF ADDED VERTICES

The determinantal method gives the best results, by far,
thanks to its ability to locate coverage holes in the existing
vertices distributions. We can also observe that the Sobol
sequence method gives better results than the uniform method
for a large percent of uncovered area. Since the Sobol sequence
partitions uniformally the area, it takes advantages that there
are not too many existing vertices.

Finally the grid method is good both in complexity and in
number of added vertices. However it does not take advantages
of our recovery algorithm which allows flexibility in the
vertices positions sample method. The determinantal method
provides the best results in all scenarios among the random
methods. Nevertheless, if complexity is a key factor the Sobol
sequence or the uniform method give good results depending
on the percentage of covered area.



B. Comparison with the greedy algorithm

We now compare our performance results to the main
known method: the greedy algorithm for the set cover problem.
The greedy algorithm method lays a square grid of parameter
ε/
√
2 of potential new vertices. Then the first added vertex

is the furthest from all existing vertices. The algorithm goes
on adding the furthest potential vertex of the grid from all
vertices. We can see that this algorithm is ressource con-
suming: first the algorithm computes the distances of the
Ni existing vertices to the m = (b a

ε/
√
2
c + 1)2 potential

vertices, then after adding the i-th vertex it computes the
distances from this vertex to the m − i remaining potential
vertices. Therefore the complexity of the greedy algorithm is
of O((Ni +Na)(b a

ε/
√
2
c+ 1)2)) at most.

For the complexity of our algorithm, we consider first the
complexity of building the simplicial complex associated with
the network which is in O((Ni+Na)

C), where C is the clique
number. This complexity seems really high since C can only
be upper bounded by Ni+Na in the general case but it is the
only way to compute the coverage when vertices position are
not defined along a grid. Then the complexity of the reduction
algortihm is of the order of O((1 + ( εa )

2)Ni+Na) (see [15]).
So the greedy algorithm appears less complex than ours in the
general case. However when ε is small before a or when the
dimension is greater than 2, then the power factor becomes
d > 2 and C is a finite integer, so the trend is reversed.

The number of vertices added in the final state both with
our recovery algorithm and the greedy algorithm tends to
approximatively the same number: the minimum number of
vertices required to cover the uncovered area depending on
the initial configuration, hence the slight differences. Results
presented in Table II were simulated in the same conditions as
for Table I and concern the final number of added vertices: the
number of added vertices kept after the reduction algorithm,
or added with the greedy algorithm. It is important to note
that our algorithm with the grid method gives the exact same
result as the greedy algorithm, added vertices positions being
the same.

% of area initially covered 20% 40% 60% 80%
Homology algorithm 4.04 3.63 2.85 1.78

Greedy algorithm 3.67 3.37 2.82 1.85

TABLE II
MEAN FINAL NUMBER OF ADDED VERTICES

The greedy algorithm is optimal, as ours, since it adds the
minimum number of vertices. But it is not flexible at all, and
its success depends highly on the adherence of the chosen
positions: a coverage hole appears as soon as a vertex is
slightly moved.

VI. CONCLUSION AND FUTURE WORK

In this paper, we adopt the simplicial homology repre-
sentation for wireless networks which characterizes not only
the connectivity but also the coverage of a given network.

Based on that representation, we write an algorithm which
patches coverage holes of wireless networks. First, we suggest
various methods for adding supernumerary vertices: classic
methods that can reproduce the results of known algorithms
or have minimum complexity, and original methods, from
other fields, never applied to wireless networks. Among these
methods, the determinantal method, which creates repulsion
between vertices, provides the best results for patching holes
with a minimum number of vertices. Then, we improve a
simplicial complex reduction algorithm in order to remove any
superfluously added vertex, and achieve an optimal result.

As for future work, we intend to explore new applications
for the advantages we draw from the simplicial homology
representation in Self Organizing Networks or frequency reuse
in LTE cellular network, as well as in green networking.
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