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1 Introduction

Traditionally, risk measures are thought of as mappings from a set of real-
valued random variables to the real numbers. However, it is often insufficient
to consider a single real measure to quantify risks, especially when the risk-
problem is affected by other external risk factors. Note that the evaluation
of an individual risk may strongly be affected by the degree of dependence
amongst all risks. Modeling the dependency structure of multivariate data
is helpful to obtain meaningful and accurate inference and prediction results
in risk analysis. Several important challenges exist in this sense: the abil-
ity to incorporate important known covariates in the model; the dependence
between variables is neither linear nor constant; they exhibit tail dependence,
and so on. For instance, several hydrological phenomena are described by
two or more correlated characteristics. These dependent characteristics should
be considered jointly to be more representative of the multivariate nature of
the phenomenon. Consequently, probabilities of occurrence of risks cannot be
estimated on the basis of univariate analysis. The multivariate hydrological
risks literature mainly treated one or more of the following three elements:
(1) showing the importance and explaining the usefulness of the multivari-
ate framework, (2) fitting the appropriate multivariate distribution in order
to model risks and (3) defining and studying multivariate return periods (see
Chebana and Ouarda (2011)). One of the most popular measures in hydrology
and climate is undoubtedly the return period. It is closely related to the notion
of quantile which has therefore been extensively studied in dimension one. For
a random variable X that represents the magnitude of an event that occurs at
a given time and at a given location, the quantile of order 1− 1

T expresses the
magnitude of the event which is exceeded with a probability equal to 1

T . T is
then called the return period. In univariate risk theory the quantile is known
as the Value-at-Risk (VaR) and is defined by

QX(c) = inf{x ∈ R : FX(x) ≥ c}, for c ∈ (0, 1),

with FX the univariate distribution of random variable X. A second important
univariate risk measure, based on the quantile notion, is the Conditional-Tail-
Expectation (CTE) defined by

CTEc(X) = E[X |X > QX(c) ], for c ∈ (0, 1).

From the year 2000 onward, much research has been devoted to risk measures,
and many extensions to multidimensional settings have been suggested (see,
e.g., Jouini et al (2004); Bentahar (2006); Embrechts and Puccetti (2006);
Nappo and Spizzichino (2009); Ekeland et al (2012)). As a starting point, in
the following, we consider the multivariate version of the CTE measure, pro-
posed by Di Bernardino et al (2013) and Cousin and Di Bernardino (2013). It
is constructed as the conditional expectation of a multivariate random vector
given that the latter is located in the c-upper level set of the associated mul-
tivariate distribution function. In this sense this measure is essentially based
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on a “multivariate distributional approach”. More precisely they define, for
i = 1, . . . , d and for c ∈ (0, 1),

CTEic(X) = E[Xi |X ∈ L(c) ], (1.1)

where X = (X1, . . . , Xd) is a non-negative multivariate risk portfolio with dis-
tribution function F . In particular, Cousin and Di Bernardino (2013) proved
that properties of the multivariate Conditional-Tail-Expectation in (1.1) turn
to be consistent with existing properties on univariate risk measures (posit-
ive homogeneity, translation invariance, increasing in risk-level c, . . . ). In the
financial econometrics literature, we are often interested in analyzing the be-
havior of a univariate return measure (average return, skewness, . . . ) with
respect to a set of d risk factors X (volatility or variance, kurtosis, . . .). In
other words, we consider a dependent multivariate vector of risk-factors X
and a univariate covariate Y (i.e. a dependent variable on X). Furthermore,
in climatology, one may be interested in how climate change over years might
affect high temperatures. Multivariate examples include the study of rainfall
as a covariate function represented by the geographical location. In this sense
Daouia et al (2010) deal with the problem of estimating quantiles when cov-
ariate information is available.

So, the goal of this paper is the study of the behavior of a covariate Y on the
level sets of a d-dimensional vector of risk-factors X. More precisely, adapting
the multivariate risk measure in (1.1), we deal with the multivariate Covariate-
Conditional-Tail-Expectation (CCTE) defined by:

CCTEc(X, Y ) := E[Y |X ∈ L(c)], (1.2)

where c ∈ (0, 1). In order to estimate this risk measure, we first need to estim-
ate the level sets L(c) associated to the d-dimensional distribution function F
of X. For a non-negative d-dimensional risk portfolio with distribution func-
tion F , the c-upper level set of F (i.e., L(c) = {x ∈ Rd+ : F (x) ≥ c}) and its
associated c-level curve (i.e., ∂L(c) = {x ∈ Rd+ : F (x) = c}) have recently been
proposed as risk measures in multivariate hydrological models. Among their
many advantages, it appears that they are simple, intuitive, interpretable and
probability-based (see Chebana and Ouarda (2011)). A risk-problem of flood
in the bivariate setting using an estimator of level curves ∂L(c) of the bivariate
distribution function is proposed by de Haan and Huang (1995). Furthermore,
as noticed by Embrechts and Puccetti (2006), ∂L(c) can be viewed as a nat-
ural multivariate version of the univariate quantile. The interested reader is
also referred to Tibiletti (1993), Belzunce et al (2007), Nappo and Spizzichino
(2009).

The problem of estimating level sets of an unknown function (for instance of
a density function and more recently a regression function) has received at-
tention. However, most of the existing literature has focused on the density or
regression function (Báıllo et al (2001); Cavalier (1997); Cuevas et al (2006);
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Laloë and Servien (2013); Rigollet and Vert (2009)). Mason and Polonik (2009)
obtained the asymptotic normality of plug-in level set estimates in the density
case. As we consider the level sets of a multivariate distribution function, i.e.
L(c) for some fixed c ∈ (0, 1), the commonly assumed property of compact-
ness for these sets (required both in the density and in the regression cases) is
no more reasonable. Then, differently from the literature cited above, in the
present work, a special attention is given to this non-compact setting.

Considering a consistent estimator Fn of the distribution function F , we pro-
pose a plug-in approach to estimate the c-upper level set L(c) by

Ln(c) = {x ∈ Rd+ : Fn(x) ≥ c}, for c ∈ (0, 1).

The regularity properties of F and Fn as well as the consistency properties of
Fn will be specified in the statements of our theorems. Our consistency result
for L(c) is stated with respect to a criterion of “physical proximity” between
sets: the volume of the symmetric difference. Obviously, the convergence rate
suffers from the well-known curse of dimensionality (see Theorem 1). Using
Theorem 1, we state Lp-consistency with a convergence rate for the estimation
of the regression function

r(x) = E[Y |X = x],

on these level sets L(c), i.e., for x ∈ L(c), and c ∈ (0, 1) (see Theorems 2 and
3). The motivation behind the point-wise estimation of r(x) for x ∈ L(c) is an
interesting problem, for different practical problems. Indeed, this represents
the expected value of a covariate Y given that a dependent multivariate vec-
tor of risk-factors X takes value in a specific risk area L(c) (for instance L(c)
can represent a risk-scenario or critical-layer and so on). For the importance
of L(c) in the risk-management in the environmental or hydrological fields see
for Chebana and Ouarda (2011), Salvadori et al (2011). Finally, we provide a
consistency result for the estimation of the CCTE risk measure, if Y is com-
pletely available (see Theorem 4) or not (see Theorem 5). Furthermore, we
investigate the impact of a change in the scale of data on our results. In par-
ticular this property is related to the suitable positive homogeneity property
of risk measures (e.g. see Artzner et al (1999)).

The paper is organized as follows. We introduce some notation, tools and
technical assumptions in Section 2. Consistency and asymptotic properties of
our estimator of L(c) are given in Section 3. Section 4 is devoted to the Lp-
consistency of the estimation of the regression function r on the level set L(c)
and Section 5 to the consistency of the CCTE’s estimation. The effects of
scaling data are analyzed in Section 6. Illustrations with simulated data are
presented in Section 7, and a comparison with parametric and semi-parametric
approaches is detailed. A real example is studied in Section 8. Section 9 sum-
marizes and briefly mentions directions for future research. Finally, proofs are
postponed to Section 10.
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2 Notation and preliminaries

In this section we introduce some notations and tools which will be useful later.

Let N∗ = N \ {0}, R∗+ = R+ \ {0} and Rd+
∗

= Rd+ \ {0}. Let F be the set
of continuous distribution functions Rd+ → [0, 1] and X := (X1, X2, . . . , Xd)
a random vector with distribution function F ∈ F . Given an i.i.d. sample
{Xi}ni=1 in Rd+ with distribution function F ∈ F , we denote by Fn an estimator
of F based on this finite sample. Let Y be a random variable with values in
J ⊂ R+, where J is supposed to be bounded. We denote by {(Xi, Yi)}i=1,...,n

the associated i.i.d. sample.
Define, for c ∈ (0, 1), the c-upper level set of F ∈ F and its plug-in estimator

L(c) = {x ∈ Rd+ : F (x) ≥ c}, Ln(c) = {x ∈ Rd+ : Fn(x) ≥ c},

and
∂L(c) = {x ∈ Rd+ : F (x) = c}.

In addition, given T > 0, we set

L(c)T = {x ∈ [0, T ]d : F (x) ≥ c}, Ln(c)T = {x ∈ [0, T ]d : Fn(x) ≥ c},

∂L(c)T = {x ∈ [0, T ]d : F (x) = c}.

Note that, in the presence of a plateau at level c, ∂L(c) can be a portion of
quadrant Rd+ instead of a set of Lebesgue measure null in Rd+. In the statement
of our results we will require suitable conditions in order to avoid this situation.

We denote by B(x, ρ) the closed ball centered on x ∈ Rd+ and with positive
radius ρ. Let B(S, ρ) =

⋃
x∈S B(x, ρ), with S a closed set of Rd+. For κ > 0

and ζ > 0, define

E = B({x ∈ Rd+ : | F (x)− c |≤ κ}, ζ),

and, for a twice differentiable function F ,

mO = inf
x∈E
‖(∇F )x‖, MH = sup

x∈E
‖(HF )x‖M,

where (∇F )x is the gradient vector of F evaluated at x and ‖(∇F )x‖ its Eu-
clidean norm, (HF )x the Hessian matrix evaluated in x and ‖(HF )x‖M its
matrix norm induced by the Euclidean norm.

We define:

‖g‖p :=

(∫
Rd
| g(x) |p f(x) dx

)1/p

,

where f denotes the density function associated to the probability measure µ,

‖g‖p,λ :=

(∫
Rd
| g(x) |p dx

)1/p

and ‖g‖∞ := sup
{
| g(x) | : x ∈ Rd

}
.
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For the sake of simplicity, we use from now on the notation ‖.‖ instead of ‖.‖2.

Let r(x) be the regression function such that

r(x) := E[Y |X = x]

and let rn be a consistent estimate of r.

Finally, given two functions f and g, f(n) = o(g(n)) as n→∞ means that for
every positive constant ε there exists a constant N such that |f(n)| ≤ ε|g(n)|,
for all n ≥ N. The o(·)-notation is called in the literature the Landau symbol.

3 Estimating level sets of a multidimensional distribution function
using a plug-in method

We consider the consistency in terms of the volume (in the Lebesgue measure
sense) of the symmetric difference between L(c)Tn and Ln(c)Tn . This means
that we define the distance between two subsets A1 and A2 of Rd+ by

dλ(A1, A2) = λ(A14A2),

where λ stands for the Lebesgue measure on Rd and 4 for the symmetric
difference.

Let us introduce the following assumption:

A1 There exist positive increasing sequences (vn)n∈N∗ and (Tn)n∈N∗ such that
vn →∞, Tn →∞, and

vn
∫
[0,Tn]d

| F (x)− Fn(x) |p λ(dx)
P→

n→∞
0, for some 1 ≤ p <∞.

We now establish our consistency result with convergence rate.

Theorem 1 Let c be in (0, 1). Let F ∈ F be a twice differentiable distribution
function on Rd∗+ . Assume that there exist κ > 0, ζ > 0 such that mO > 0
and MH < ∞. Let T1 > 0 such that for all t : | t − c | ≤ κ, ∂L(t)T1 6= ∅.
Assume that for each n, Fn is measurable. Let (vn)n∈N∗ and (Tn)n∈N∗ positive
increasing sequences such that Assumption A1 is satisfied. Then, it holds that

pn dλ(L(c)Tn , Ln(c)Tn)
P→

n→∞
0,

with pn an increasing positive sequence such that pn = o

(
v

1
p+1
n /T

(d−1) p
p+1

n

)
.

Remark 1 Note that in the univariate case (d = 1) the convergence rate of
Theorem 1 does not depend on the truncation sequence Tn. The interested
reader is referred to the proof of this result in Section 10 for further details.
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Theorem 1 provides a convergence rate, which is closely related to the choice of
the sequence Tn, for d > 1. Note that, as in Theorem 3 in Cuevas et al (2006),
Theorem 1 above does not require any continuity assumption on Fn. Further-
more, we remark that a sequence Tn whose divergence rate is large, implies a
convergence rate pn quite slow. Moreover, this phenomenon is emphasized by
the dimension d of the data, and we face here the well-known curse of dimen-
sionality. In the following we will illustrate this aspect by giving convergence
rate in the case of the empirical distribution function (see Example 1). Firstly,
from Theorem 1 we can derive the following result.

Corollary 1 Let c ∈ (0, 1). Let F ∈ F be a twice differentiable distribution
function on Rd∗+ . Assume that there exist κ > 0, ζ > 0 such that mO > 0
and MH < ∞. Let T1 > 0 such that for all t : | t − c | ≤ κ, ∂L(t)T1 6= ∅.
Assume that for each n, Fn is measurable. Assume that there exists a positive

increasing sequence (wn)n∈N∗ such that wn ‖F − Fn‖∞
P→

n→∞
0. Then, it holds

that
pn dλ(L(c)Tn , Ln(c)Tn)

P→
n→∞

0,

with pn an increasing positive sequence such that pn = o
(
wn

p
p+1 /Tn

d+(d−1) p
p+1

)
.

This result comes trivially from Theorem 1 and the fact that wn ‖F−Fn‖∞
P→

n→∞
0

implies

∀ p ≥ 1, vn
∫
[0,Tn]d

| F − Fn |p λ(dx)
P→

n→∞
0, with vn =

wpn
Tdn
.

Let us now present a more practical example in the case of a d-variate empirical
distribution function.

Example 1 Let Fn the d-variate empirical distribution function. Then, it holds

that wn ‖F − Fn‖∞
P→

n→∞
0, with wn = o(

√
n). From Corollary 1, with p = 2,

we obtain for instance:

pn = o
(
n1/3

Tn7/3

)
, for d = 3; pn = o

(
n1/3

Tn10/3

)
, for d = 4.

4 Lp-consistency of rn on the level sets

In this section we study the Lp-consistency of an estimator rn of the regres-
sion function r(x), for x ∈ L(c). More precisely, in the first part we provide
a consistency result in terms of the Lp-distance of the absolute error between
rn 1Ln(c)Tn and r 1L(c) (see Theorem 2). In the second part we analyze the
problem of a convergence rate (see Theorem 3). Remind that the level set
L(c) is not compact. The point-wise estimation of r(x) for x ∈ L(c) is an
interesting aim, for different practical problem, as previously discussed in the
introduction of this paper. Then, since the final goal is to study the behavior
of the regression function r(x), knowing that x is in the “risk area” L(c), it
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is natural to check if rn(x), for x in the estimated level set Ln(c) is globally
close to r(x), for x in the theoretical level set L(c).

Let us introduce the following assumptions:

A2 ‖Fn − F‖p,λ
P→ 0 and ‖rn − r‖p

P→ 0, for some 1 ≤ p <∞.

A3 The density function f of X is such that ‖f‖1+ε,λ <∞, with ε > 0.

Theorem 2 Let c be in (0, 1). Let F ∈ F be a twice differentiable distribution
function on Rd∗+ with an associated density f such that Assumption A3 is
satisfied. Assume that there exist κ > 0, ζ > 0 such that mO > 0 and MH <∞.
Assume that for each n, Fn is measurable. Assume that condition A2 is
satisfied. Let (Tn)n∈N∗ be an increasing sequence of positive values with T1 > 0
such that for all t : | t− c | ≤ κ, ∂L(t)T1 6= ∅. Then it holds that

‖rn 1Ln(c)Tn − r 1L(c)‖p
P→ 0, for n→∞.

Remark 2 If ‖rn − r‖∞ → 0, a.s. we have

‖rn 1Ln(c) − r 1L(c)‖∞ = sup
Rd
|rn 1Ln(c) − r 1L(c)|9 0, a.s.

Indeed, we have supRd |rn 1Ln(c) − r 1L(c)| = maxx∈Ln(c)4L(c)(r(x), rn(x))
which is greater than zero if Ln(c)4L(c) 6= ∅.

Let us introduce the following assumption:

A4 There exist positive increasing sequences (v1,n)n∈N∗ , (v2,n)n∈N∗ and (Tn)n∈N∗
such that v1,n →∞, v2,n →∞, Tn →∞, and

v1,n ‖rn − r‖p
P→ 0, v2,n

∫
[0,Tn]d

| F (x)− Fn(x) |p λ(dx)
P→ 0,

for some 1 ≤ p <∞.

Note that the control of the convergence rate of the distribution function
estimate which was previously handled by Assumption A1 is now included in
Assumption A4.

Theorem 3 Let c be in (0, 1). Let F ∈ F be a twice differentiable distribution
function on Rd∗+ with an associated density f such that Assumption A3 is
satisfied. Assume that there exist κ > 0, ζ > 0 such that mO > 0 and MH <∞.
Let T1 > 0 such that for all t : | t − c | ≤ κ, ∂L(t)T1 6= ∅. Assume that for
each n, Fn is measurable. Let (v1,n)n∈N∗ , (v2,n)n∈N∗ and (Tn)n∈N∗ positive
increasing sequences such that Assumption A4 is satisfied. Then it holds that

wn‖rn 1Ln(c)Tn − r 1L(c)Tn ‖p
P→ 0, for n→∞.

where wn = min {v1,n, an} with an = o

(
v

ε
(ε+1)p(p+1)

2,n /T
ε(d−1)

(ε+1)(p+1)
n

)
.
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Remark 3 Note that we do not provide a convergence rate for ‖rn 1Ln(c)Tn −
r 1L(c)‖p because it implies the knowledge of the rate of convergence of

‖r 1L(c)Tn − r 1L(c)‖p =
(∫

L(c)\[0,Tn]d |r(x)|pf(x)dx
)1/p

. Indeed the rate of

convergence of P[X1 > Tn, . . . , Xd > Tn] → 0, for n → ∞, is unknown. In
order to overcome this problem we should have to assume that the vector X
belongs to a particular distribution class in order to know the rate of decay of
its multivariate tails.

5 Covariate-Conditional-Tail-Expectation consistency

A risk measure has recently received growing attention in risk theory literat-
ure: the CTE measure. According to Artzner et al (1999), Dedu and Ciumara
(2010), Denuit et al (2005), for a continuous univariate loss distribution func-
tion FX the CTE at level c ∈ (0, 1) is defined by

CTEc(X) = E[X |X ≥ F−1X (c)].

Several multivariate generalizations of the classical univariate CTE have been
proposed (see for instance Cai and Li (2005)). Using the same approach as
Di Bernardino et al (2013), we define the multivariate CTE in such a way as to
preserve both the complete information about dependence structure between
X and Y , and the marginal behavior of each component.

Definition 1 Consider a random vector X with distribution function F and
a random variable Y . For c ∈ (0, 1), we define the theoretical multivariate
c-Covariate-Conditional-Tail-Expectation as

CCTEc(X, Y ) = E [Y |X ∈ L(c)] .

Using the truncated version of the c-upper level set defined in Section 2 we
also define

CCTETnc (X, Y ) = E
[
Y |X ∈ L(c)Tn

]
.

In the following we define consistent estimates for the CCTE in Definition 1.

5.1 Covariable Y is measured

In this subsection, we assume to have an i.i.d. sample {(Xi, Yi)}i=1,...,n (see
Section 2) and we introduce the following estimate for the CCTE.

Definition 2 Consider a random vector X with distribution function F and a
random variable Y . For c ∈ (0, 1), using the truncated theoretical multivariate
c-Covariate-Conditional-Tail-Expectation introduced in Definition 1, we define
the associated estimate as
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ĈCTE
Tn

c,n(X, Y ) = En
[
Y |X ∈ Ln(c)Tn

]
,

where En denotes the empirical version of the expected value.

Using Definition 2, we now establish the consistency of this estimate with a
convergence rate.

Theorem 4 Let c be in (0, 1). Let F ∈ F be a twice differentiable distribution
function on Rd∗+ with an associated density f such that Assumption A3 is
satisfied. Assume that there exist κ > 0, ζ > 0 such that mO > 0 and MH <∞.
Let T1 > 0 such that for all t : | t − c | ≤ κ, ∂L(t)T1 6= ∅. Assume that for
each n, Fn is measurable. Let (v1,n)n∈N∗ , (v2,n)n∈N∗ and (Tn)n∈N∗ positive
increasing sequences such that Assumption A4 is satisfied. We have

βn

∣∣∣∣ĈCTE
Tn

c,n(X, Y )− CCTETnc (X, Y )

∣∣∣∣ P−−−−→
n→∞

0,

with βn = min
(
p

ε
2(1+ε)
n , dn

)
, where pn = o

(
v

1
p+1

2,n /T
(d−1)p
p+1

n

)
and dn = o (

√
n).

Remark 4 Obviously, it could also be very interesting to consider the con-

vergence
∣∣ĈCTE

Tn

c,n(X, Y ) − CCTEc(X, Y )
∣∣. We remark that in this case the

speed of convergence will also depend on the convergence rate to zero of∣∣CCTETnc (X, Y )− CCTEc(X, Y )
∣∣, then, in particular of P[X ∈ L(c)\L(c)Tn ],

for n → ∞. This could not be done without adding strong assumptions and
careful developments and, by consequence, remains out of the scope of this
paper.

Example 2 Let Fn the d-variate empirical distribution function. Then, as in
Example 1 and using Theorem 4 with p = 2, we obtain for instance:

pn = o
(
n1/3

T
7/3
n

)
, for d = 3.

This gives us βn = min

(
o
(
n1/3

T
7/3
n

) ε
2(1+ε)

, o
(
n1/2

))
. In the case of a bounded

density function f we obtain βn = min

(
o
(
n1/3

T
7/3
n

) 1
2

, o
(
n1/2

))
= o

(
n1/6

T
7/6
n

)
.

5.2 Covariable Y is partially unknown

In this subsection, we deal with a more difficult case. We suppose that the
covariable Y cannot be measured for all the individuals. It could happen if
a measure of Y is very expensive or invasive (in some medical treatment, for
example). So we have two different i.i.d. samples: S1

N = {(Xi, Yi)}Ni=1 and
S2
n = {Xj}nj=1, with n potentially much bigger than N .

In this case we use S1
N to get an estimate rN of the regression function r.

Then, we apply this estimate on the sample S2
n in order to estimate the CCTE

measure. To this aim we define:
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Definition 3 Consider a random vector X with distribution function F , a
random variable Y and two i.i.d. samples S1

N and S2
n. Using the truncated

version of the c-upper level set defined in Section 2, for c ∈ (0, 1), we define

ĈCTE?
Tn

c,n,N (X, Y ) = En
[
rN (X)|X ∈ Ln(c)Tn

]
.

The following result proves the consistency of the estimate introduced in Defin-
ition 3.

Theorem 5 Let c be in (0, 1). Let F ∈ F be a twice differentiable distribution
function on Rd∗+ with an associated density f such that Assumption A3 is
satisfied. Assume that there exist κ > 0, ζ > 0 such that mO > 0 and MH <
∞. Let T1 > 0 such that for all t : | t − c | ≤ κ, ∂L(t)T1 6= ∅. Assume
that for each n, Fn is measurable. Let (v1,N )N∈N∗ , (v2,n)n∈N∗ and (Tn)n∈N∗
positive increasing sequences such that Assumption A4 is satisfied. Let r be a
continuous positive regression function such that E

[
r(X)2

]
<∞. We have

βn,N

∣∣∣∣ĈCTE?
Tn

c,n,N (X, Y )− CCTETnc (X, Y )

∣∣∣∣ P→ 0, for N,n→∞,

with βn,N = min
(
p

ε
2(1+ε)
n , cN , dn

)
, where pn = o

(
v

p
p+1

2,n /T
d+(d−1)p
p+1

n

)
, cN =

o (E |rN (X)− r(X)|) and dn = o (
√
n).

Note that we have a supplementary term (cN ) comparing to Theorem 4. This
term controls the rate of convergence of rN toward r.

Example 3 Using the same context as in Example 2, taking rN the kernel
regression estimator of Kohler et al (2009), assuming that r is a (1 + k,C)-
smooth with 0 < k ≤ 1 function1 and that there exist ψ > 2 (1 + k) such that
E‖X‖ψ <∞, we have cN = o

(
N2/5

)
. Then we obtain

βn,N = min

(
o
(
n1/3

T
7/3
n

) ε
2(1+ε)

, o
(
N2/5

)
, o
(
n1/2

))
.

In the case of a bounded density function f and as long as N >> n5/12

T
35/12
n

, we

obtain

βN,n = min

(
o
(
n1/3

T
7/3
n

) 1
2

, o
(
N2/5

)
, o
(
n1/2

))
= o

(
n1/6

T
7/6
n

)
,

which is the same rate as in Example 2.

1 This requires that the partial derivatives of the regression function r are k-Hölderian
with a constant C (for further details see Definition 1 in Kohler et al (2009)).
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6 About the effects of scaling data

In this section we study the impact of a change in the scale of data with respect

to the estimate ĈCTE
Tn

c,n(X, Y ). In particular, this property is related to the
suitable positive homogeneity property of risk measures (e.g. see Artzner et al
(1999)). In the literature, the homogeneity property of a risk measure is often
motivated by a change of currency argument: the amount of required capital
in order to manage risks should be independent of the currency in which it is
expressed. Suppose that we scale our data using a scale parameter a ∈ R∗+. In
our case, the scaled random vector will be (aX1, aX2, . . . , aXd) =: aX. From
now on we denote FaX (resp. FX) the distribution function associated to aX
(resp. to X). Using notation of Section 2, let

La(c) = {x ∈ Rd+ : FaX(x) ≥ c}.

We can now consider the effects of scaling data with respect to the volume
of the symmetric difference. Corollary 2 is a straightforward consequence of
Theorem 1 using the fact that LTna (c)4LTnn,a(c) = a

(
LTn(c)4LTnn (c)

)
, fora ∈

R∗+.

Corollary 2 Assume that Fn,aX(x) = Fn,X(x/a).
Under same notations and assumptions of Theorem 1 it holds that

pn, a dλ(La(c)Tn , Ln, a(c)Tn)
P→

n→∞
0,

with pn, a an increasing positive sequence such that pn, a =

o

(
v

1
p+1
n /

(
ad T

(d−1) p
p+1

n

))
.

Corollary 2 states that a change of scale of the data implies a convergence rate
as

o

(
v

1
p+1
n /

(
ad T

(d−1) p
p+1

n

))
instead of o

(
v

1
p+1
n /T

(d−1)p
p+1

n

)
.

Logically, it means that the scale factor a ∈ R∗+ impacts the volume in Rd
with an exponent d.

Let us now investigate the effects of scaling data on Theorem 3 and Theorem
4. Let denote raX,bY (x) = E[b Y | aX = x] (rn,aX,bY its estimate version) and

CCTETnc (aX, bY ) = E
[
b Y | aX ∈ La(c)Tn

]
(ĈCTE

Tn

c,n(aX, bY ) its estimate
version). We obtain the following result.

Theorem 6 Let a and b in R∗+ and assume that rn,aX,bY (x) = b rn,X,Y
(
x
a

)
.

1. Under same hypotheses and notations of Theorem 3 we have

b ‖rn,X,Y 1Ln(c)Tn − rX,Y 1L(c)Tn ‖p =

‖rn,aX,bY 1La,n(c)Tn − raX,bY 1La(c)Tn ‖p.
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2. Under same hypotheses and notations of Theorem 4 we have

b

∣∣∣∣ĈCTE
Tn

c,n(X, Y ) − CCTETnc (X, Y )
∣∣ =∣∣∣∣ĈCTE

Tn

c,n(aX, bY )− CCTETnc (aX, bY )

∣∣∣∣ .
Using Theorem 6 we obtain that the rates of convergence of Theorem 3 and
Theorem 4 are not affected by any scaling on the data.

Remark 5 Note that if rn is the classical kernel estimator, assumption
rn,aX(x) = rn,X

(
x
a

)
is not automatically satisfied. However, it can be sat-

isfied if the scaling is also applied to the bandwidth.

7 Illustrations

In the following we consider some different simulated cases for which we illus-
trate the finite sample properties of our estimation of r and CCTEc(X, Y ).
In particular, we will consider an independent copula (Section 7.1), and Ali-
Mikhail-Haq copula (Section 7.2). To compare the estimated results with the
theoretical ones we consider cases for which we can calculate (using Maple)
the explicit value of the theoretical CCTEc(X, Y ). However, our estimator can
be applied to much more general cases.

In this section we consider the kernel regression estimate proposed by Kohler
et al (2009) in order to estimate r. Furthermore, the plug-in estimation of level
sets, i.e., Ln(c), is constructed using the empirical estimator Fn of the distri-
bution function. Remark that these two estimates both satisfy Assumptions
A1, A2 and A4, and that the considered random vectors X in this section
satisfy the conditions required for the kernel regression estimate (see Example
3 page 11).

7.1 Independent Copula

We consider here a bivariate independent copula with exponentially distrib-
uted marginals with parameter 1. Furthermore we choose the bounded regres-
sion function y = r(x1, x2) = 1/(ex1ex2), for all x1, x2 ≥ 0 (Figure 1).

7.1.1 Lp-consistency of rn

In this section we provide an illustration of Theorem 3. Remark that the
assumptions of Theorem 3 are satisfied. In particular, we denote

EL2
:= ‖rn 1Ln(c)Tn − r 1L(c)Tn ‖2.
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x1

x2

r(x1, x2)

Figure 1 Regression function: y = r(x1, x2) = 1/(ex1ex2 ) for all x1, x2 ≥ 0.

According to Remark 3, we take Tn = ln(n) (the interested reader is also re-
ferred to Di Bernardino et al (2013)). In Table 1 we illustrate the mean of EL2

(i.e., L2-consistency for the estimator rn) on M = 50 simulated samples, for
different level of risk c and different sample size n.

n c = 0.1 c = 0.25 c = 0.5 c = 0.7 c = 0.9

n = 1000 0.0567 0.0377 0.0254 0.0197 0.0131

n = 5000 0.0323 0.0176 0.0072 0.0051 0.0024

n = 10000 0.0256 0.0134 0.0051 0.0025 0.0016

Table 1 EL2 for independent copula and exponentially distributed marginals with para-
meter 1. The bounded regression function is y = r(x1, x2) = 1/(ex1ex2 ) for all x1, x2 ≥ 0.

As expected, the performance of the estimation increases with the size of the
sample. However, the fact that the quality for the EL2

error seems better for
large risk level c is quite surprising. This behavior of the estimation comes
from the fact that the regression r has a flat plateau for x1, x2 → ∞ (see
Figure 1).

7.1.2 CCTEc(X, Y ) estimation

In the following, we compare ĈCTE
Tn

c,n(X, Y ) with the theoretical CCTEc(X, Y ).

Following Remark 4, we obtain that
∣∣CCTEc(X, Y )− ĈCTE

Tn

c (X, Y )
∣∣ de-

cays to zero at least with a convergence rate o
(

n1/6

ln(n)4/6

)
, with a choice of

sequence Tn = ln(n). This kind of compromise provides an illustration on how
to choose Tn, apart from satisfying the assumptions of Theorem 4.
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In the following tables we denote Mean= ĈCTE
Tn

c (X, Y ), i.e., the mean of

ĈCTE
Tn

c (X, Y ) on M = 50 simulated samples. We denote σ̂ the empirical
standard deviation

σ̂ =

√
1

M−1
∑M
j=1

(
ĈCTE

Tn

c (X, Y )j − ĈCTE
Tn

c (X, Y )

)2

.

Finally, we denote RMAE the Relative Mean Absolute Error, i.e.,

RMAE= 1
M

∑M
j=1

∣∣∣∣ĈCTE
Tn

c (X,Y )j−CCTEc(X,Y )

∣∣∣∣
CCTEc(X,Y )

.

The results are gathered in Table 2. Furthermore, in Table 3, we provide an
illustration of the convergence rate of Theorem 4. In this case, we remark that

βn = n1/6

ln(n)4/6
is at least the convergence rate of this CCTE estimation.

n c = 0.1 c = 0.25 c = 0.5 c = 0.7 c = 0.9

CCTE=0.142 CCTE=0.0792 CCTE=0.0279 CCTE=0.0087 CCTE=0.0009

1000
RMAE 0.0357 0.0388 0.0725 0.1187 0.2898

Mean 0.1432 0.0798 0.0281 0.0090 0.0009

σ̂ 0.0062 0.0038 0.0026 0.0012 0.0003

5000
RMAE 0.0151 0.0194 0.0317 0.0484 0.1623

Mean 0.1425 0.0795 0.0278 0.0087 0.0008

σ̂ 0.0027 0.0021 0.0011 0.0004 0.0002

10000
RMAE 0.0110 0.0137 0.0211 0.0453 0.0875

Mean 0.1428 0.0792 0.0279 0.0088 0.0008

σ̂ 0.0019 0.0013 0.0007 0.0004 9.43 10−5

Table 2 Estimation of CCTEc(X, Y ) in the case of independent copula and exponentially
distributed marginals with parameter 1.

c = 0.1 c = 0.25 c = 0.5 c = 0.7 c = 0.9

n = 1000 0.0311 0.0339 0.0632 0.1035 0.2526

n = 5000 0.0151 0.0191 0.0314 0.0479 0.1609

n = 10000 0.0116 0.0145 0.0223 0.0478 0.0925

Table 3 Approximated βn ·RMAE, with βn = n1/6

ln(n)4/6
, in the case of independent copula

and exponentially distributed marginals with parameter 1.

As expected, the greater n is, the better the estimations are. Furthermore,

results in Table 3 set out how βn = n1/6

ln(n)4/6
is at least the convergence rate of∣∣ĈCTE

Tn

c,n(X, Y )− CCTEc(X, Y )
∣∣, in this particular case.
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7.2 Ali-Mikhail-Haq Copula

We consider here a bivariate Ali-Mikhail-Haq copula with parameter 0.5 and
exponentially distributed marginals with parameter 1 (see Nelsen (1999)). We
take the bounded regression function y = r(x1, x2) = −(−2 + e−x1−x2)3, for
all x1, x2 ≥ 0. Conversely to the previous section we now deal with dependent
variables X1, . . . , Xn (i.e., only the coordinates of the Xi are dependent) and
an increasing regression function r (see Figure 2).

x1 x2

r(x1, x2)

Figure 2 Regression function y = r(x1, x2) = −(−2 + e−x1−x2 )3 for all x1, x2 ≥ 0.

7.2.1 Lp-consistency of rn

In this section we provide an illustration of Theorem 3. We can verify that
the assumptions of Theorem 3 are satisfied. As explained in Remark 4, we
choose Tn = n0.2. In Table 4 we illustrate EL2 (i.e. the L2-consistency for the
estimator rn) for different level of risk c and different sample size n.

n c = 0.1 c = 0.25 c = 0.5 c = 0.7 c = 0.9

n = 1000 0.7736 0.7980 0.7599 0.5817 0.2928

n = 5000 0.4846 0.5801 0.5047 0.3975 0.1781

n = 10000 0.4167 0.4883 0.4459 0.3612 0.1679

Table 4 EL2
for Ali-Mikhail-Haq copula with parameter 0.5 and exponentially distributed

marginals with parameter 1. The bounded regression function is y = r(x1, x2) = −(−2 +
e−x1−x2 )3, for all x1, x2 ≥ 0.

As before, we see that the quality of the estimation is better when the size
of the sample growths. Again, the presence of a plateau for r(x1, x2) when
x1, x2 →∞ explains the good results for large risk levels c (see Figure 2).
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7.2.2 CCTEc(X, Y ) estimation

In the following, we compare ĈCTE
Tn

c,n(X, Y ) with the theoretical
CCTEc(X, Y ) in the case of Ali-Mikhail-Haq copula with parameter
0.5 (see Table 5). Furthermore, following Remark 4, we obtain that∣∣CCTEc(X, Y )− ĈCTE

Tn

c (X, Y )
∣∣ decays to zero at least with a convergence

rate o
(
n1/10

)
, with a choice of sequence Tn = n1/5. Again, our theoretical

results are confirmed by these simulations (see Table 6).

n c = 0.1 c = 0.25 c = 0.5 c = 0.7 c = 0.9

CCTE=6.3752 CCTE=7.0393 CCTE=7.6513 CCTE=7.8909 CCTE= 7.9893

500
RMAE 0.0127 0.0091 0.0037 0.0023 0.0005

Mean 6.3660 7.0283 7.6429 7.8860 7.9899

σ̂ 0.0968 0.0830 0.0380 0.0240 0.0051

1000
RMAE 0.0081 0.0061 0.0038 0.0015 0.0004

Mean 6.3885 7.0421 7.6544 7.8917 7.9887

σ̂ 0.0639 0.0526 0.0345 0.0147 0.0041

5000
RMAE 0.0032 0.0028 0.0015 0.0006 0.0001

Mean 6.3761 7.0458 7.6461 7.8906 7.9891

σ̂ 0.0259 0.0249 0.0138 0.0071 0.0013

10000
RMAE 0.0021 0.0023 0.0008 0.0005 0.0001

Mean 6.3725 7.0302 7.6527 7.8911 7.9893

σ̂ 0.0171 0.0173 0.0081 0.0047 0.0012

Table 5 Estimation of CCTEc(X, Y ) in the case of Ali-Mikhail-Haq copula with parameter
0.5 and exponentially distributed marginals with parameter 1.

c = 0.1 c = 0.25 c = 0.5 c = 0.7 c = 0.9

n = 500 0.0236 0.0169 0.0068 0.0043 0.0009

n = 1000 0.0161 0.0121 0.0076 0.0030 0.0008

n = 5000 0.0075 0.0066 0.0035 0.0014 0.0002

n = 10000 0.0053 0.0057 0.0020 0.0013 0.0002

Table 6 Approximated βn ·RMAE, with βn = n1/10 in the case of Ali-Mikhail-Haq copula
with parameter 0.5 and exponentially distributed marginals with parameter 1.

A comparative study

In this section we provide a detailed comparative study to illustrate the ad-
vantages of our non-parametric estimation procedure. In particular, we com-
pare the performances of the estimation of CCTEc using a parametric (resp.
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semi-parametric) estimation procedure based on Maximum Likelihood Estim-
ation (MLE), by fitting a parametric copula model with parametric (resp.
non-parametric) marginals (see Tables 7, 8 and 9).

We consider the following parametric estimator of the Covariate-Conditional-
Tail-Expectation, i.e.,

CCTEPc = En[Y |X ∈ L̂−→
θ ,c

], for c ∈ (0, 1),

where

L̂−→
θ ,c

= {x ∈ Rd+ : F̂−→
θ ,c

(x) ≥ c}, and F̂−→
θ ,c

(x) = Cθ̂(F̂θ̂X1
(x1), . . . , F̂θ̂Xd

(xd)),

with Cθ̂ a copula with parameter θ̂ fitted by MLE, and F̂θ̂Xi
the parametric

marginal distribution of Xi, for i = 1, . . . , d with parameter (or eventually a

vector of parameters) θ̂Xi fitted by MLE.

We also introduce the semi-parametric estimator of the Covariate-Conditional-
Tail-Expectation, i.e.,

CCTESPc = En[Y |X ∈ L̂θ,n,c], for c ∈ (0, 1),

where

L̂θ,n,c = {x ∈ Rd+ : F̂θ,n,c(x) ≥ c}, F̂θ,n,c(x) = Cθ̂(FX1,n(x1), . . . , FXd,n(xd)),

with Cθ̂ a copula with parameter θ̂ fitted by MLE, and FXi,n the empirical
marginal distribution of Xi, for i = 1, . . . , d.

The idea is to compare the performance of these three different estimators
(non-parametric, semi-parametric and parametric). We aim to consider two
different situations: when the copula model used in the parametric and semi-
parametric estimator is the good one or not. For the second case we consider
the Clayton and Gumbel copulas. The Clayton copula is closer to the true
one (Ali-Mikhail-Haq) since they are both non-heavy tail copulas (upper-tail
dependence coefficient λU = 0, see Nelsen (1999)). Conversely the Gumbel
copula presents an upper-tail dependence structure. In this sense the Gumbel
copula is substantially different from the others two. The results are gathered
in Tables 7, 8 and 9.

Not surprisingly, we see that our estimator performs better than the paramet-
ric and the semi-parametric one in the case when the chosen class of copulas
does not contain the true model (i.e., here Clayton and Gumbel copulas). And
as expected the worst results are for the Gumbel copula as it is the farthest
from the true model. We also note that in this case the semi-parametric ap-
proach gives no better results than the parametric one. Remark also that
our non-parametric estimation is comparable to the parametric and semi-
parametric ones in case the chosen class of copulas contains the true model.
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c = 0.1 c = 0.25 c = 0.7 c = 0.9

ĈCTE
Tn
c,n 0.008171 0.005974 0.001528 0.000348

AMH Copula, CCTEP
c 0.007726 0.005920 0.001637 0.000344

AMH Copula, CCTESP
c 0.008356 0.006091 0.001617 0.000361

Clayton Copula, CCTEP
c 0.007958 0.007207 0.001566 0.000343

Clayton Copula, CCTESP
c 0.008696 0.007570 0.001402 0.000377

Gumbel Copula, CCTEP
c 0.011499 0.007324 0.001811 0.000392

Gumbel Copula, CCTESP
c 0.011699 0.006584 0.001765 0.000483

Table 7 RMAE of the estimations of the CCTE using our estimator, CCTESP
c (semi-

parametric), CCTEP
c (parametric) for Ali-Mikhail-Haq, Clayton and Gumbel copulas for

different levels of c. (X1, X2) is a vector with Ali-Mikhail-Haq copula with parameter 0.5
and exponentially distributed marginals with parameter 1. Sample size n = 1000, Monte-
Carlo iterations M = 300.

c = 0.1 c = 0.25 c = 0.7 c = 0.9

ĈCTE
Tn
c,n 0.003745 0.002851 0.000705 0.000175

AMH Copula, CCTEP
c 0.003586 0.002746 0.000703 0.000151

AMH Copula, CCTESP
c 0.003912 0.002773 0.000636 0.000162

Clayton Copula, CCTEP
c 0.004497 0.005322 0.000758 0.000158

Clayton Copula, CCTESP
c 0.004349 0.005113 0.000732 0.000157

Gumbel Copula, CCTEP
c 0.010739 0.005604 0.000892 0.000191

Gumbel Copula, CCTESP
c 0.010616 0.005554 0.000867 0.000213

Table 8 RMAE of the estimations of the CCTE using our estimator, CCTESP
c (semi-

parametric), CCTEP
c (parametric) for Ali-Mikhail-Haq, Clayton and Gumbel copulas for

different levels of c. (X1, X2) is a vector with Ali-Mikhail-Haq copula with parameter 0.5
and exponentially distributed marginals with parameter 1. Sample size n = 5000, Monte-
Carlo iterations M = 300.

c = 0.1 c = 0.25 c = 0.7 c = 0.9

ĈCTE
Tn
c,n 0.002556 0.002029 0.000479 0.000105

AMH Copula, CCTEP
c 0.002529 0.001949 0.000476 0.000102

AMH Copula, CCTESP
c 0.002555 0.001992 0.000476 0.000117

Clayton Copula, CCTEP
c 0.003691 0.005542 0.000569 0.000118

Clayton Copula, CCTESP
c 0.003597 0.005364 0.000620 0.000125

Gumbel Copula, CCTEP
c 0.010701 0.005546 0.000752 0.000170

Gumbel Copula, CCTESP
c 0.010609 0.005527 0.000768 0.000169

Table 9 RMAE of the estimations of the CCTE using our estimator, CCTESP
c (semi-

parametric), CCTEP
c (parametric) for Ali-Mikhail-Haq, Clayton and Gumbel copulas for

different levels of c. (X1, X2) is a vector with Ali-Mikhail-Haq copula with parameter 0.5
and exponentially distributed marginals with parameter 1. Sample size n = 10000, Monte-
Carlo iterations M = 300.
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8 Real data study: waves and water levels in coastal engineering
design

On coasts with high tidal ranges, or subject to high surges, both still water
levels and waves can be important in assessing flood risk; their relative import-
ance depends on location and on the type of sea defence. The simultaneous
occurrence of large waves and a high still water level is, therefore, important
in estimating their combined effect on sea defences. In design of a sea defence,
a key step is the estimation of the probability of failure to protect against sea
conditions. It is important in engineering design to identify the combinations
of sea condition variables which cause each failure. The interested reader is
referred for instance to Hawkes et al (2002).

For any particular mode of failure (structural failure, excessive overtopping,
. . . ), the regression function r is dependent on the sea condition variables.
Then, in particular, at any particular time t, the overtopping covariate Y
will be related to the sea condition vector (X). In the literature the sea con-
dition variables are often represented by the significant Wave height Hm0
(X1), the Still Water level SWL(X2), and the Wave period Tpb(X3), then
X = (X1, X2, X3) (see Figure 3).

The regression function r(x) := E[Y |X = x] represents the relationship
between the sea conditions and the overtopping at a given time t. This re-
lationship could be complex and in some real analysis, can be represented by
equations. The most advantage of the use of this regression function is to re-
duce a joint probability risk problem to a single covariate problem.

In this section we analyze the Wave height (Hm0), Still Water level (SWL),
Wave period (Tpb) data, recorded during 828 storm events spread over 13
years in front of the Dutch coast near the town of Petten (Figure 4).

These data has been recently studied in the literature (for details see for in-
stance Draisma et al (2004)). Following Tau and Dam (2011), at a given time
t, the principal equation used for overtopping discharge (l/m/s) Y is given by:

Y = a e
−b (h−SWL)

Hm0

√
g (Hm0)3, (8.1)

with

a = 0.04
√

tan(β)L
Hm0 , b =

7.05
√

Hm0
L

tan(β) , L = g (Tpb)2

2π ,
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where

- Hm0 (m) is the wave height at the toe of the structure at time t;
- Tpb(s) is the wave period at time t. In particular the number of waves in a

storm (N) can easily be computed from information about the wave period
and the duration of the storm, i.e., N = (duration(h)/Tpb(s))·3600;

- SWL(m) the level of the sea if it is flat, without any waves at time t;
- h (m) is the height of the costal design above SWL= 0 (see Figure 3);
- g (m/s2) the gravitational acceleration (i.e., 9.8 m/s2);
- β (rad) is the seaward slope steepness. In the following we consider the

case tan(β) = 0.3 and tan(β) = 0.6 (see Figure 3).

Figure 3 Definition of some parameters for the calculation of overtopping.

Figure 4 Representation of the data in three dimensions.

Note that Theorem 6 allows us to make any changes on the units before
or after the estimation. We now estimate the mean overtopping rate (i.e.,
CCTEc(X, Y )) using Equation (8.1) for Y and conditionally to the fact that
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the sea variable conditions X belong to the joint risk area L(c). In particu-
lar, we consider the jointly large realisations of sea variables Hm0, SWLand
Tpbfor different values of risk level c. Obviously, the dangerous effects of the
sea conditions will be increasing with respect to c. The results are gathered in
Figure 5.

As expected, we obtain a decreasing behavior of mean overtopping discharge
according to the height of the costal design h for a fixed risk level c. Fur-
thermore, for a fixed height of the costal design, the higher the risk c, the
higher the mean overtopping discharge. In our study we consider both the case
tan(β) = 0.3 (Figure 5, left) and tan(β) = 0.6 (Figure 5, right). As expected,
we remark that for fixed risk level c and height of costal design h, a lower
seaward slope steepness β generates a smaller mean overtopping discharge.
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Figure 5 Mean overtopping discharge CCTEc(X, Y ) in function of the height of the costal
design h for different condition of risk-sea variables. We take here tan(β) = 0.3 (left) and
tan(β) = 0.6 (right).

9 Conclusion

We propose in this paper a generalization to the estimation of the level sets of a
d-variate distribution function. The non-compactness of the level sets requires
special attention in the statement of the problem. The consistency results with
a convergence rate are stated in terms of the volume of the symmetric differ-
ence. In a second part, we analyze the problem of the estimation of a regression
function on the level sets of a d-variate distribution function and we obtain
the consistency with a convergence rate in terms of the Lp-distance. Then,
we study a new multivariate risk measure: the Covariate-Conditional-Tail-
Expectation, i.e. the Conditional-Tail-Expectation of the regression function.
A consistent estimator and a rate of convergence are provided. Moreover, we
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analyze the impact of scaling data on our results. Our theoretical results are
illustrated on a complete simulation study. We discuss a real application in the
evaluation of the mean overtopping discharge conditionally to the fact that the
sea variable conditions belong to some joint risk area. It highlights the import-
ance of the parameter Tn (which solved the problem of the non-compactness
of the level sets) as well as the curse of dimensionality. An interesting future
work could be a deep investigation about these points, with a focus on the op-
timal choice for this parameter. Furthermore, the proposed methods are based
on an i.i.d. samples framework. We remark that in real applications such as
seasonal pattern in the temperature and water level rise series, data can have
different types of serial correlations like nonlinear or non-stationary correla-
tions (Fan and Yao 2003). It would be interesting in a future work to include
other more interesting and complex types of serial correlation structures and
to analyze how this affects the performance of the proposed procedure. Finally,
a study on the lower bounds of our estimation problem could be an interesting
development of the present work.

10 Proofs

Proof of Theorem 1: Under assumptions of Theorem 1, we can always take
T1 > 0 such that for all t : | t− c | ≤ κ, ∂L(t)T1 6= ∅. Then for each n, for all
t : | t− c | ≤ κ, ∂L(t)Tn is a non-empty (and compact) set on Rd+.

We consider a positive sequence εn such that εn →
n→∞

0. For each n ≥ 1

the random sets L(c)Tn4Ln(c)Tn , Qεn = {x ∈ [0, Tn]d : | F − Fn |≤ εn} and

Q̃εn = {x ∈ [0, Tn]d : | F − Fn |> εn} are measurable and

λ(L(c)Tn4Ln(c)Tn) = λ(L(c)Tn4Ln(c)Tn∩ Qεn)+λ(L(c)Tn4Ln(c)Tn∩ Q̃εn).

Since L(c)Tn4Ln(c)Tn ∩ Qεn ⊂ {x ∈ [0, Tn]d : c− εn ≤ F < c+ εn} we obtain

λ(L(c)Tn4Ln(c)Tn) ≤ λ({x ∈ [0, Tn]d : c− εn ≤ F < c+ εn}) + λ(Q̃εn).

From assumptions of Theorem 1 and Proposition 2.1 in Di Bernardino et al
(2013), it follows that there exists a γ > 0 such that, if 2 εn ≤ γ then

dH(∂L(c+ εn)Tn , ∂L(c− εn)Tn) ≤ 2 εnA

where A = 2
m∇

and dH is the Hausdorff distance. From assumptions on first
derivatives of F and Property 1 in Imlahi et al (1999), we can write

λ({x ∈ [0, Tn]d : c− εn ≤ F < c+ εn}) ≤ (2 εnA) d T d−1
n .

Interestingly we remark that in the univariate case (d = 1) the Hausdorff
distance between the two points ∂L(c − εn)Tn and ∂L(c + εn)Tn is also the
Lebesgue measure (in dimension 1) for this interval. Then λ({x ∈ [0, Tn] :
c− εn ≤ F < c+ εn}) ≤ 2 εnA. This means that in this case, the result does
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not depend on the truncation sequence Tn.

If we now choose

εn = o

(
1

pn T
d−1
n

)
, (10.1)

we obtain that, for n large enough, 2 εn ≤ γ and

pn λ({x ∈ [0, Tn]d : c− εn ≤ F < c+ εn}) →
n→∞

0.

Let us now prove that pn λ(Q̃εn)
P→

n→∞
0. To this end, we write

pn λ(Q̃εn) = pn

∫
1{[0,Tn]d: |F−Fn|>εn} λ(dx) ≤ pn

εpn

∫
[0,Tn]d

| F −Fn |p λ(dx).

Take εn such that

εn =

(
pn
vn

) 1
p

. (10.2)

So, from Assumption A1, we obtain pn λ(Q̃εn)
P→

n→∞
0.As pn = o

(
v

1
p+1
n /T

(d−1) p
p+1

n

)
we can choose εn that satisfies (10.1) and (10.2). Hence the result. �

In the following proofs, K denotes a constant whose value may change from
line to line.

Proof of Theorem 2: We have

‖r 1Ln(c)Tn − r 1L(c)Tn ‖p

=

(∫
Rd

∣∣r(x) 1Ln(c)Tn − r(x) 1L(c)Tn
∣∣p f(x) dx

)1/p

≤

(∫
L(c)Tn4Ln(c)Tn

|r(x)|p f(x) dx

)1/p

≤ K
(
µ
(
L(c)Tn4Ln(c)Tn

))1/p
≤ K

(
‖f‖1+ε,λ

(
λ
(
L(c)Tn4Ln(c)Tn

)) ε
1+ε

)1/p
which gives us

‖rn 1Ln(c)Tn − r 1L(c)Tn ‖p ≤ ‖rn − r‖p

+ K
(
‖f‖1+ε,λ

(
λ
(
L(c)Tn4Ln(c)Tn

)) ε
1+ε

)1/p
.

Since

‖r 1L(c)Tn − r 1L(c)‖p =

(∫
L(c)\[0,Tn]d

|r(x)|pf(x)dx

)1/p

,
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we finally get

‖rn 1Ln(c)Tn − r 1L(c)‖p
= ‖rn 1Ln(c)Tn − r 1L(c)Tn + r 1L(c)Tn − r 1L(c)‖p
≤ ‖rn 1Ln(c)Tn − r 1L(c)Tn ‖p + ‖r 1L(c)Tn − r 1L(c)‖p

≤ ‖rn − r‖p +K
(
‖f‖1+ε,λ

(
λ
(
L(c)Tn4Ln(c)Tn

)) ε
1+ε

)1/p
+

(∫
L(c)\[0,Tn]d

|r(x)|pf(x)dx

)1/p

.

From Theorem 1 and assumptions of Theorem 2, the last inequality concludes
the proof. �

Proof of Theorem 3: Note that the proofs of Theorem 3 and Theorem 1 are
strongly related. We have

wn ‖rn 1Ln(c)Tn − r 1L(c)Tn ‖p
≤ wn‖rn 1Ln(c)Tn − r 1Ln(c)Tn ‖p + wn ‖r 1Ln(c)Tn − r 1L(c)Tn ‖p

≤ wn ‖rn − r‖p + wnK
(
‖f‖1+ε,λ

(
λ
(
L(c)Tn4Ln(c)Tn

)) ε
1+ε

)1/p
and Theorem 1 concludes the proof. �

Proof of Theorem 4: The proof is a straightforward application of Lemma 1
and Lemma 2. �

Lemma 1 Under assumptions of Theorem 4, we have

p
ε

2(1+ε)
n |E

[
Y |X ∈ L(c)Tn

]
− E

[
Y |X ∈ Ln(c)Tn

]
| P−−−−→
n→∞

0,

with ε > 0 such that f is 1 + ε integrable.

Proof of Lemma 1: Using Theorem 1, we obtain

p
ε

2(1+ε)
n |P

[
X ∈ L(c)Tn4Ln(c)Tn

]
| ≤ p

ε
2(1+ε)
n dλ

(
L(c)Tn , Ln(c)Tn

) ε
1+ε ‖f‖1+ε

P−−−−→
n→∞

0.

(10.3)
Then we get

p
ε

2(1+ε)
n

∣∣P [X ∈ L(c)Tn
]
− P

[
X ∈ Ln(c)Tn

]∣∣ P−−−−→
n→∞

0.
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Denote g the density of the pair (X, Y ). Under assumptions, and since Y is
bounded, we also obtain

p
ε

2(1+ε)
n

∣∣∣∣∫ y1L(c)Tn g(x, y)λ(dxdy)−
∫
y1Ln(c)Tn g(x, y)λ(dxdy)

∣∣∣∣
≤ p

ε
2(1+ε)
n

∣∣∣∣∫ y1L(c)Tn4Ln(c)Tn g(x, y)λ(dxdy)

∣∣∣∣
≤ p

ε
2(1+ε)
n

(∫
y2g(x, y)λ(dxdy)

)1/2(∫
g(x, y)1L(c)Tn4Ln(c)Tnλ(dxdy)

)1/2

≤ p
ε

2(1+ε)
n E

[
Y 2
] 1

2

(∫
f(x)1L(c)Tn4Ln(c)Tnλ(dx)

)1/2

≤ p
ε

2(1+ε)
n E

[
Y 2
] 1

2 dλ
(
L(c)Tn , Ln(c)Tn

) ε
2(1+ε) ‖f‖1/21+ε

P−−−−→
n→∞

0. (10.4)

Then

p
ε

2(1+ε)
n

∣∣E[Y |X ∈ L(c)Tn ]− E[Y |X ∈ Ln(c)Tn ]
∣∣

= p
ε

2(1+ε)
n

∣∣∣∣∫ y 1L(c)Tn g(x, y)λ(dxdy) P[X ∈ L(c)Tn ]−1

−
∫
y 1Ln(c)Tn g(x, y)λ(dxdy) P[X ∈ Ln(c)Tn ]−1

∣∣∣∣
≤ p

ε
2(1+ε)
n

P[X ∈ L(c)Tn ]P[X ∈ Ln(c)Tn ]

(
P[X ∈ L(c)Tn ]

∣∣∣∣∫ y 1L(c)Tn g(x, y)λ(dxdy)

−
∫
y 1Ln(c)Tn g(x, y)λ(dxdy)

∣∣∣∣
+

∫
y 1Ln(c)Tn g(x, y)λ(dxdy) ·

∣∣P[X ∈ L(c)Tn ]− P[X ∈ Ln(c)Tn ]
∣∣).

Using (10.3) and (10.4) we obtain the result. �

Lemma 2 Under assumptions of Theorem 4 and with dn = o (
√
n), we have

dn
∣∣E [Y |X ∈ Ln(c)Tn

]
− En

[
Y |X ∈ Ln(c)Tn

]∣∣ P−−−−→
n→∞

0.

Proof of Lemma 2: We have

dn
∣∣E [Y |X ∈ Ln(c)Tn

]
− En

[
Y |X ∈ Ln(c)Tn

]∣∣
= dn

∣∣∣∣
∫
y1Ln(c)Tn g(x, y)λ(dxdy)

P[X ∈ Ln(c)Tn ]
−
∑n
i=1 Yi 1{Xi∈Ln(c)Tn}∑n
i=1 1{Xi∈Ln(c)Tn}

∣∣∣∣ .
Under assumptions of the Lemma 2 and using Theorem 27.2 in Billingsley
(1995), we obtain that

dn

∣∣∣∣∣P[X ∈ Ln(c)Tn ] − 1

n

n∑
i=1

1{Xi∈Ln(c)Tn}

∣∣∣∣∣ P−−−−→
n→∞

0,
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and

dn

∣∣∣∣∣
∫
y1Ln(c)Tn g(x, y)λ(dxdy)− 1

n

n∑
i=1

Yi 1{Xi∈Ln(c)Tn}

∣∣∣∣∣ P−−−−→
n→∞

0.

Hence the result. �

Proof of Theorem 5: The proof is a straightforward application of Lemmas 1,
3 and 4. �

Lemma 3 Under assumptions of Theorem 5, we have

cN
∣∣E[Y |X ∈ Ln(c)Tn ]− E[rN (X) |X ∈ Ln(c)Tn ]

∣∣ P−−−−→
N→∞

0,

with cN = o(E |rN (X)− r(X)|).

Proof of Lemma 3: We have∣∣E[Y |X ∈ Ln(c)Tn ] − E[rN (X) |X ∈ Ln(c)Tn ]
∣∣

=

∣∣∣∫Ln(c)Tn (r(x)− rN (x))f(x)dλ(x)
∣∣∣

P[X ∈ Ln(c)Tn ]

≤ K

∫
Ln(c)Tn

|r(x)− rN (x)| f(x)dλ(x)

≤
∫
Rd
|r(x)− rN (x)| f(x)dλ(x) = E |rN (X)− r(X)|.

Hence the result. �

Lemma 4 Under assumptions of Theorem 5, we have

dn
∣∣E [rN (X)|X ∈ Ln(c)Tn

]
− En

[
rN (X)|X ∈ Ln(c)Tn

]∣∣ P→n→∞ 0

where dn = o (
√
n).

Proof of Lemma 4: We have

dn
∣∣E [rN (X)|Ln(c)Tn

]
− En

[
rN (X)|Ln(c)Tn

]∣∣
= dn

∣∣∣∣∣
∫
Ln(c)Tn

rN (x)f(x)λ(dx)

P[X ∈ Ln(c)Tn ]
−
∑n
i=1 rN (Xi)1{Xi∈Ln(c)Tn}∑n

i=1 1{Xi∈Ln(c)Tn}

∣∣∣∣∣ .
Under the assumptions of the lemma and using Theorem 27.2 in Billingsley
(1995), we obtain that

dn

∣∣∣∣∣P[X ∈ Ln(c)Tn ]− 1

n

n∑
i=1

1{Xi∈Ln(c)Tn}

∣∣∣∣∣ P→n→∞ 0,
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and

dn

∣∣∣∣∣
∫
Ln(c)Tn

rN (x)f(x)λ(dx)− 1

n

n∑
i=1

rN (Xi)1{Xi∈Ln(c)Tn}

∣∣∣∣∣ P→n→∞ 0

which gives us the Lemma. �

Proof of Theorem 6: We have

FaX(x) = FX

(x
a

)
, faX(x) =

1

a
fX

(x
a

)
and raX,bY (x) = b rX,Y

(x
a

)
.

Proof of 1. in Theorem 6: We have

‖rn,aX,bY 1La,n(c)Tn − raX,bY 1La(c)Tn ‖p

=

(∫
Rd

∣∣rn,aX,bY (x)1La,n(c)Tn − raX,bY (x)1La(c)Tn
∣∣p faX(x)dx

)1/p

=

(∫
Rd
bp
∣∣∣rn,X,Y (x

a

)
1{x/a∈Ln(c)Tn} − rX,Y

(x
a

)
1{x/a∈L(c)Tn}

∣∣∣p 1

a
fX

(x
a

)
dx

)1/p

and taking t = x/a we obtain

‖rn,aX,bY 1La,n(c)Tn − raX,bY 1La(c)Tn ‖p

=

(∫
Rd
bp
∣∣rn,X,Y (t) 1Ln(c)Tn − rX,Y (t) 1L(c)Tn

∣∣p fX (t) dt

)1/p

= b‖rn,X,Y 1Ln(c)Tn − rX,Y 1L(c)Tn ‖p

Hence the result. �

Proof of 2. in Theorem 6: We have∣∣∣∣ĈCTE
Tn

c,n(aX, bY ) − CCTETnc (aX, bY )
∣∣

=
∣∣En [bY |aX ∈ Ln,a(c)Tn

]
− E

[
bY |aX ∈ La(c)Tn

]∣∣ .
Using La(c)Tn = aL(c)Tn and the assumptions, we obtain∣∣∣∣ĈCTE

Tn

c,n(aX, bY ) − CCTETnc (aX, bY )
∣∣

=
1

b

∣∣En [Y |aX ∈ aLn(c)Tn
]
− E

[
Y |aX ∈ aL(c)Tn

]∣∣ .
Hence the result. �
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