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Estimating covariate functions associated to multivariate

risks : a level set approach

Elena Di Bernardino, Thomas Laloë And Rémi Servien

Conservatoire National des Arts et Métiers, Universit de Nice Sophia Antipolis, UMR 1331 Toxalim - INRA

Abstract: The aim of this paper is to study the behavior of a covariate function in a multivariate risks scena-

rio. The first part of this paper deals with the problem of estimating the c-upper level sets L(c) = {F (x) ≥ c},

with c ∈ (0, 1), of an unknown distribution function F on R
d
+. A plug-in approach is followed. We state

consistency results with respect to the volume of the symmetric difference. In the second part, we obtain

the Lp-consistency, with a convergence rate, for the regression function estimate on these level sets L(c).

We also consider a new multivariate risk measure: the Covariate-Conditional-Tail-Expectation. We provide

a consistent estimator for this measure with a convergence rate. We propose a consistent estimate when the

regression cannot be estimated on the whole data set. Then, we investigate the effects of scaling data on

our consistency results. All these results are proven in a non-compact setting. A complete simulation study

is detailed. Finally, a real environmental application of our risk measure is provided.

Key words and phrases: multidimensional distribution function, plug-in estimation, regression function.

1 Introduction

Traditionally, risk measures are thought of as mappings from a set of real-valued random variables to

the real numbers. However, it is often insufficient to consider a single real measure to quantify risks,

especially when the risk-problem is affected by other external risk factors whose sources cannot be

controlled. Note that the evaluation of an individual risk may strongly be affected by the degree of

dependence amongst all risks and these risks may also be strongly heterogeneous.

For instance, several hydrological phenomena are described by two or more correlated character-

istics. These dependent characteristics should be considered jointly to be more representative of the

multivariate nature of the phenomenon. Consequently, probabilities of occurrence of risks cannot be

estimated on the basis of univariate analysis. The multivariate hydrological risks literature mainly

treated one or more of the following three elements: (1) showing the importance and explaining the

usefulness of the multivariate framework, (2) fitting the appropriate multivariate distribution in order

to model risks and (3) defining and studying multivariate return periods (see Chebana and Ouarda

[7]), (i.e., multivariate quantile based measures of risks).

One of the most popular measures in hydrology and climate is undoubtedly the return period. A
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frequency analysis in hydrology focuses on the estimation of quantities (e.g., flows or annual rainfall)

corresponding to a certain return period. It is closely related to the notion of quantile which has

therefore been extensively studied in dimension one. For a random variable X that represents the

magnitude of an event that occurs at a given time and at a given location, the quantile of order 1− 1
T

expresses the magnitude of the event which is exceeded with a probability equal to 1
T . T is then called

the return period. In univariate risk theory the quantile is known as the Value-at-Risk (VaR) and is

defined by

QX(c) = inf{x ∈ R+ : FX(x) ≥ c}, for c ∈ (0, 1),

with FX the univariate distribution of event X. A second important univariate risk measure, based

on the quantile notion, is the Conditional-Tail-Expectation (CTE) defined by

CTEc(X) = E[X |X > QX(c) ], for c ∈ (0, 1).

From the years 2000 onward, much research has been devoted to risk measures and many ex-

tensions to multidimensional settings have been suggested (see, e.g., Jouini et al. [22]; Bentahar [4];

Embrechts and Puccetti [19]; Nappo and Spizzichino [24]; Ekeland et al. [17]).

For a non-negative d-dimensional risk portfolio with distribution function F , the c-upper level set

of F (i.e., L(c) = {x ∈ Rd
+ : F (x) ≥ c}) and its associated c-level curve (i.e., ∂L(c) = {x ∈ Rd

+ :

F (x) = c}) have recently been proposed as risk measures in multivariate hydrological models. Among

their many advantages, it appears that they are simple, intuitive, interpretable and probability-based

(see Chebana and Ouarda [7]). de Haan and Huang [11] model a risk-problem of flood in the bivariate

setting using an estimator of level curves ∂L(c) of the bivariate distribution function. Furthermore, as

noticed by Embrechts and Puccetti [19], ∂L(c) can be viewed as a natural multivariate version of the

univariate quantile. The interested reader is also referred to Tibiletti [29], Belzunce et al. [3], Nappo

and Spizzichino [24].

As a starting point, in the following, we consider the multivariate version of the CTE measure,

proposed by Di Bernardino et al. [15] and Cousin and Di Bernardino [8]. It is constructed as the

conditional expectation of a multivariate random vector given that the latter is located in the c-upper

level set of the associated multivariate distribution function. In this sense this measure is essentially

based on a “multivariate distributional approach”. More precisely they define, for i = 1, . . . , d and for

c ∈ (0, 1),

CTEi
c(X) = E[Xi |X ∈ L(c) ], (1.1)

where X = (X1, . . . , Xd) is a non-negative multivariate risk portfolio with distribution function F .

In particular, Cousin and Di Bernardino [8] proved that properties of the multivariate Conditional-

Tail-Expectation in (1.1) turn to be consistent with existing properties on univariate risk measures
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(positive homogeneity, translation invariance, increasing in risk-level c, . . . ).

In financial econometrics literature, we are often interested to analyse the behavior of an univari-

ate return measure (average return, skewness, . . . ) with respect to a set of d risk factors X (volatility

or variance, kurtosis, . . .). In other words, we consider an univariate covariate Y and a dependent

multivariate vector of risk-factors X. Furthermore, in climatology, one may be interested in how cli-

mate change over years might affect high temperatures. Multivariate examples include the study of

rainfall as a covariate function represented by the geographical location. In this sense Daouia et al.

[10] deal with the problem of estimating quantiles when covariate information is available.

So, the goal of this paper is the study of the behavior of a covariate Y on the level sets of a d-

dimensional vector of risk-factors X. More precisely, adapting the multivariate risk measure in (1.1),

we deal with the multivariate Covariate-Conditional-Tail-Expectation (CCTE) defined by:

CCTEc(X, Y ) := E[Y |X ∈ L(c)], (1.2)

where c ∈ (0, 1). In order to estimate this risk measure, we first need to estimate the level sets L(c)

associated to the d-dimensional distribution function F of X.

Considering the level sets of a distribution function, the commonly assumed property of compact-

ness for these sets is no more reasonable. Then, differing from the classical literature (Báıllo et al. [2];

Rigollet and Vert [26]; Cuevas et al. [9]), we need to work in a non-compact setting and this requires

special attention in the statement of our problem.

Considering a consistent estimator Fn of the distribution function F , we propose a plug-in ap-

proach to estimate the c-upper level set L(c) by

Ln(c) = {x ∈ Rd
+ : Fn(x) ≥ c}, for c ∈ (0, 1).

The regularity properties of F and Fn as well as the consistency properties of Fn will be specified in

the statements of our theorems. Our consistency result for L(c) is stated with respect to a criterion

of “physical proximity” between sets: the volume of the symmetric difference. Obviously, the conver-

gence rate suffers from the well-known curse of dimensionality (see Theorem 3.1).

Using Theorem 3.1, we state Lp-consistency with a convergence rate for the estimation of the

regression function

r(x) = E[Y |X = x],

on these level sets L(c), i.e., for x ∈ L(c), and c ∈ (0, 1) (see Theorems 4.1 and 4.2). The motivation

behind the point-wise estimation of r(x) for x ∈ L(c) is an interesting problem, for different practical
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problem. Indeed, this represents the expected value of a covariate Y given that a dependent multi-

variate vector of risk-factors X takes value in a specific risk area L(c) (for instance L(c) can represent

a risk-scenario or critical-layer and so on). For the importance of L(c) in the risk-management in the

environmental or hydrological fields see for Chebana and Ouarda [7], Salvadori et al. [27].

Finally, we provide a consistency result for the estimation of the CCTE risk measure, if Y is

completely available (see Theorem 5.1) or not (see Theorem 5.2). Furthermore, we investigate the

impact of a change in the scale of data on our results. In particular this property is related to the

suitable positive homogeneity property of risk measures (e.g. see Artzner et al. [1]).

Organization of the paper

The paper is organized as follows. We introduce some notation, tools and technical assumptions in

Section 2. Consistency and asymptotic properties of our estimator of L(c) are given in Section 3.

Section 4 is devoted to the Lp-consistency of the estimation of the regression function r and Section

5 to the consistency of the CCTE’s estimation. The effects of scaling data are analyzed in Section 6.

Illustrations with simulated data are presented in Section 7. A real example is studied in Section 8.

Section 9 summarizes and briefly mentions directions for future research. Finally, proofs are postponed

to Section 10.

2 Notation and preliminaries

In this section we introduce some notations and tools which will be useful later.

Let N∗ = N\{0}, R∗
+ = R+ \{0} and Rd

+
∗
= Rd

+ \{0}. Let F be the set of continuous distribution

functions Rd
+ → [0, 1] and X := (X1, X2, . . . , Xd) a random vector with distribution function F ∈ F .

Given an i.i.d sample {Xi}ni=1 in Rd
+ with distribution function F ∈ F , we denote by Fn an estimator

of F based on this finite sample. Let Y a random variable in J , where J ∈ R+ is supposed to be

bounded. We denote by {(Xi, Yi)}i=1,...,n the associated i.i.d sample.

Define, for c ∈ (0, 1), the c-upper level set of F ∈ F and its plug-in estimator

L(c) = {x ∈ R
d
+ : F (x) ≥ c}, Ln(c) = {x ∈ R

d
+ : Fn(x) ≥ c},

and

{F = c} = {x ∈ R
d
+ : F (x) = c}.

In addition, given T > 0, we set

L(c)T = {x ∈ [0, T ]d : F (x) ≥ c}, Ln(c)
T = {x ∈ [0, T ]d : Fn(x) ≥ c},
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{F = c}T = {x ∈ [0, T ]d : F (x) = c}.

Note that, in the presence of a plateau at level c, {F = c} can be a portion of quadrant Rd
+ in-

stead of a set of Lebesgue measure null in Rd
+. In the statement of our results we will require suitable

conditions in order to avoid this situation.

We denote by B(x, ρ) the closed ball centered on x ∈ Rd
+ and with positive radius ρ. Let

B(S, ρ) =
⋃

x∈S B(x, ρ), with S a closed set of Rd
+. For κ > 0 and ζ > 0, define

E = B({x ∈ R
d
+ : | F (x)− c |≤ κ}, ζ),

and, for a twice differentiable function F ,

m▽ = inf
x∈E

‖(∇F )x‖, MH = sup
x∈E

‖(HF )x‖,

where (∇F )x is the gradient vector of F evaluated at x and ‖(∇F )x‖ its Euclidean norm, (HF )x the

Hessian matrix evaluated in x and ‖(HF )x‖ its matrix norm induced by the Euclidean norm.

We define :

||g||p :=
(∫

Rd

| g(x) |p f(x) dx

)1/p

,

where f denotes the density function associated to the probability measure µ and

||g||p,λ :=

(∫

Rd

| g(x) |p dx

)1/p

.

Finally, let r(x) be the regression function such that

r(x) := E[Y |X = x].

3 Estimating level sets of a multidimensional distribution function

using a plug-in method

In this section, we consider the problem of estimating the level sets of a d-variate distribution function.

We consider the consistency in term of the volume (in the Lebesgue measure sense) of the sym-

metric difference between L(c)Tn and Ln(c)
Tn . This means that we define the distance between two

subsets A1 and A2 of Rd
+ by

dλ(A1, A2) = λ(A1 △A2),
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where λ stands for the Lebesgue measure on Rd and △ for the symmetric difference.

Let us introduce the following assumption:

A1 There exist positive increasing sequences (vn)n∈N∗ and (Tn)n∈N∗ such that

vn

∫

[0,Tn]d
| F − Fn |p λ(dx)

P→
n→∞

0,

for some 1 ≤ p < ∞.

We now establish our consistency result with convergence rate, in term of the volume of the

symmetric difference.

Theorem 3.1. Let c ∈ (0, 1). Let F ∈ F be a twice differentiable distribution function on Rd∗
+ .

Assume that there exist κ > 0, ζ > 0 such that m▽ > 0 and MH < ∞. Let T1 > 0 such that for all

t : | t − c | ≤ κ, ∂L(t)T1 6= ∅. Assume that for each n, with probability one, Fn is measurable. Let

(vn)n∈N∗ and (Tn)n∈N∗ positive increasing sequences such that Assumption A1 is satisfied. Then, it

holds that

pn dλ(L(c)
Tn , Ln(c)

Tn)
P→

n→∞
0,

with pn an increasing positive sequence such that pn = o

(
v

1
p+1
n /T

(d−1) p
p+1

n

)
.

The proof of Theorem 3.1 is postponed to Section 10.

Remark 3.1. Note that in the univariate case (d = 1) the convergence rate of Theorem 3.1 does not

depend on the truncation sequence Tn. The interested reader is referred to the proof of this result in

Section 10 for further details.

Theorem 3.1 provides a convergence rate, which is closely related to the choice of the sequence

Tn, for d > 1. Note that, as in Theorem 3 in Cuevas et al. [9], Theorem 3.1 above does not require

any continuity assumption on Fn. Furthermore, we remark that a sequence Tn whose divergence rate

is large, implies a convergence rate pn quite slow. Moreover, this phenomenon is emphasized by the

dimension d of the data, and we face here the well-known curse of dimensionality. In the following we

will illustrate this aspect by giving convergence rate in the case of the empirical distribution function

(see Example 1). Firstly, from Theorem 3.1 we can derive the following result.

Corollary 3.1. Let c ∈ (0, 1). Let F ∈ F be a twice differentiable distribution function on Rd∗
+ .

Assume that there exist κ > 0, ζ > 0 such that m▽ > 0 and MH < ∞. Let T1 > 0 such that for all

t : | t−c | ≤ κ, ∂L(t)T1 6= ∅. Assume that for each n, with probability one, Fn is measurable. Assume

that there exists a positive increasing sequence (wn)n∈N∗ such that wn ‖F −Fn‖∞ P→
n→∞

0. Then, it holds

that

pn dλ(L(c)
Tn , Ln(c)

Tn)
P→

n→∞
0,
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with pn an increasing positive sequence such that pn = o

(
wn

p
p+1 /Tn

d+(d−1) p
p+1

)
.

This result comes trivially from Theorem 3.1 and the fact that wn ‖F − Fn‖∞ P→
n→∞

0 implies

∀ p ≥ 1, vn

∫

[0,Tn]d
| F − Fn |p λ(dx)

P→
n→∞

0, with vn =
wp
n

T d
n

.

Let us now present a more practical example in the case of a d-variate empirical distribution

function.

Example 1. Let Fn the d-variate empirical distribution function. Then, it holds that wn ‖F −
Fn‖∞ P→

n→∞
0, with wn = o(

√
n). From Corollary 3.1, with p = 2, we obtain for instance:

pn = o

(
n1/3

Tn
7/3

)
, for d = 3; pn = o

(
n1/3

Tn
10/3

)
, for d = 4.

4 Lp-consistency of rn

In this section we study the Lp-consistency of an estimator rn of the regression function. More pre-

cisely, in the first part we provide a consistency result in terms of the Lp-distance of the absolute error

between rn 1{x∈Ln(c)Tn} and r 1{x∈L(c)}. In the second part we analyze the problem of a convergence

rate (see Theorem 4.2).

Let us introduce the following assumption:

A2 ||Fn − F ||p,λ P→ 0 and ||rn − r||p P→ 0, for some 1 ≤ p < ∞.

Theorem 4.1. Let c ∈ (0, 1). Let F ∈ F be a twice differentiable distribution function on Rd∗
+ .

Assume that there exist κ > 0, ζ > 0 such that m▽ > 0 and MH < ∞. Assume that for each n, with

probability one, Fn is measurable. Let T1 > 0 such that for all t : | t − c | ≤ κ, ∂L(t)T1 6= ∅. Let

(Tn)n∈N∗ be an increasing sequence of positive values such that A2 is verified. Then it holds that

||rn 1{x∈Ln(c)Tn} − r 1{x∈L(c)}||p P→ 0, for n → ∞.

The proof of Theorem 4.1 is postponed to Section 10. Theorem 4.1 proves that the estimate of the

regression function on the truncated estimated level set converges towards the real regression function

on the whole real level set.

Remark 4.1. If ||rn − r||∞ → 0, a.s. we have that

||rn 1{x∈Ln(c)} − r 1{x∈L(c)}||∞ = sup
Rd

|rn 1{x∈Ln(c)} − r 1{x∈L(c)}| 9 0, a.s.
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Indeed, we have supRd |rn 1{x∈Ln(c)} − r 1{x∈L(c)}| = maxLn∆L(r(x), rn(x)) which is greater than

zero if Ln∆L 6= ∅ .

Let us introduce the following assumptions :

A3 There exist positive increasing sequences (v1,n)n∈N∗ , (v2,n)n∈N∗ and (Tn)n∈N∗ such that

v1,n ||rn − r||p P→ 0,

v2,n

∫

[0,Tn]d
| F − Fn |p λ(dx)

P→ 0,

for some 1 ≤ p < ∞.

A4 The density function f of X is 1 + ǫ integrable, with ǫ > 0.

Note that Assumption A3 includes Assumption A1 in order to control the convergence rate of the

distribution function estimate. Furthermore, Assumption A3 implies to control of the convergence

rate of the regression estimate.

Theorem 4.2. Let c ∈ (0, 1). Let F ∈ F be a twice differentiable distribution function on Rd∗
+ with an

associated density f such that Assumption A4 is satisfied. Assume that there exist κ > 0, ζ > 0 such

that m▽ > 0 and MH < ∞. Let T1 > 0 such that for all t : | t− c | ≤ κ, ∂L(t)T1 6= ∅. Assume that

for each n, with probability one, Fn is measurable. Let (v1,n)n∈N∗ , (v2,n)n∈N∗ and (Tn)n∈N∗ positive

increasing sequences such that Assumption A3 is satisfied. Then it holds that

wn||rn 1{x∈Ln(c)Tn} − r 1{x∈L(c)Tn}||p
P→ 0, for n → ∞.

where wn = min {v1,n, an} with an = o

(
v

ǫ
(ǫ+1)p(p+1)

2,n /T
ǫ(d−1)

(ǫ+1)(p+1)
n

)
.

The proof of Theorem 4.2 is postponed to Section 10.

Remark 4.2. Note that we do not provide a convergence rate for ||rn 1{x∈Ln(c)Tn} − r 1{x∈L(c)}||p
because it implies the knowledge of the rate of convergence of ||r 1{x∈L(c)Tn} − r 1{x∈L(c)}||p =
(∫

L(c)\[0,Tn]d
|r(x)|pf(x)dx

)1/p
. Indeed the rate of convergence of P[X1 > Tn, . . . , Xd > Tn] → 0,

for n → ∞, is unknown. In order to overcome this problem we should have to assume that the vector

X belongs to a particular distribution class in order to know the rate of decay of its multivariate tails.

5 Covariate-Conditional-Tail-Expectation consistency

A risk measure has recently received growing attention in risk theory literature: the CTE measure.

According to Artzner et al. [1], Dedu and Ciumara [12], Denuit et al. [14], for a continuous univariate
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loss distribution function FX the CTE at level c ∈ [0, 1] is defined by

CTEc(X) = E[X |X ≥ F−1
X (c)].

Several multivariate generalizations of the classical univariate CTE have been proposed (see for

instance Cai and Li [6]). Using the same approach as Di Bernardino et al. [15], we define the multi-

variate CTE in such a way as to preserve both the complete information about dependence structure

between X and Y , and the marginal behavior of each component.

Definition 5.1. Consider X a random vector with distribution function F and Y a random variable.

For c ∈ (0, 1), we define the theoretical multivariate c-Covariate-Conditional-Tail-Expectation as

CCTEc(X, Y ) = E [Y |X ∈ L(c)] .

Using the truncated version of the c-upper level set defined in Section 2 we also define

CCTETn
c (X, Y ) = E

[
Y |X ∈ L(c)Tn

]
.

In the following we define consistent estimates for the CCTE in Definition 5.1. In particular,

Section 5.1 is devoted to the classical case where we have a whole sample {(Xi, Yi)}i=1,...,n. Conversely,

in Section 5.2, we investigate a rather different and more difficult case. We suppose that, for any reason,

the covariable Y can not be measured on the whole sample. For these two cases we obtain a consistent

estimator of the CCTE with a convergence rate.

5.1 Covariable Y is measured

In this subsection, we assume to have an i.i.d. sample {(Xi, Yi)}i=1,...,n (see Section 2) and we introduce

the following estimate for the CCTE.

Definition 5.2. Consider X a random vector with distribution function F and Y a random variable.

For c ∈ (0, 1), using the truncated theoretical multivariate c-Covariate-Conditional-Tail-Expectation

introduced in Definition 5.1, we define the associated estimate as

ĈCTE
Tn

c,n(X, Y ) = En

[
Y |X ∈ Ln(c)

Tn
]
,

where En denotes the empirical version of the expected value.

Using Definition 5.2, we now establish the consistency of this estimate with a convergence rate.

Theorem 5.1. Let c ∈ (0, 1). Let F ∈ F be a twice differentiable distribution function on Rd∗
+ with an

associated density f such that Assumption A4 is satisfied. Assume that there exist κ > 0, ζ > 0 such

that m▽ > 0 and MH < ∞. Let T1 > 0 such that for all t : | t− c | ≤ κ, ∂L(t)T1 6= ∅. Assume that
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for each n, with probability one, Fn is measurable. Let (v1,n)n∈N∗ , (v2,n)n∈N∗ and (Tn)n∈N∗ positive

increasing sequences such that Assumption A3 is satisfied. We have

βn

∣∣∣∣ĈCTE
Tn

c,n(X, Y )− CCTETn
c (X, Y )

∣∣∣∣
P−−−→

n→∞
0,

with

βn = min

(
p

ǫ
2(1+ǫ)
n , dn

)

where pn = o

(
v

p
p+1

2,n /T
d+(d−1)p

p+1
n

)
and dn = o (

√
n).

The proof of Theorem 5.1 is postponed to Section 10.

Remark 5.1. It could be interesting to consider the convergence
∣∣ĈCTE

Tn

c,n(X, Y )− CCTEc(X, Y )
∣∣.

We remark that in this case the speed of convergence will also depend on the convergence rate to zero

of
∣∣CCTETn

c (X, Y )− CCTEc(X, Y )
∣∣, then, in particular of P[(X,Y ) ∈ L(c) \ L(c)Tn ], for n → ∞. In

this sense, in Section 7 we will provide an illustration on how to choose Tn, apart from satisfying the

assumptions of Theorem 5.1.

Example 2. Let Fn the d-variate empirical distribution function. Then, it holds that v2,n = o (
√
n).

From Theorem 5.1, with p = 2, we obtain for instance:

pn = o

(
n1/3

T
7/3
n

)
, for d = 3.

This gives us

βn = min


o

(
n1/3

T
7/3
n

) ǫ
2(1+ǫ)

, o
(
n1/2

)

 .

In the case of a bounded density function f we obtain

βn = min


o

(
n1/3

T
7/3
n

) 1
2

, o
(
n1/2

)

 = o

(
n1/6

T
7/6
n

)
.

5.2 Covariable Y is partially unknown

In this subsection, we deal with a more difficult case. We suppose that the covariable Y cannot be

measured for all the individuals. It could happen if a measure of Y is very expensive or invasive (in

some medical treatment, for example). So we have two different i.i.d. samples : S1
N = {(Xi, Yi)}Ni=1

and S2
n = {Xj}nj=1, with n potentially much bigger than N .

In this case we use S1
N to get an estimate rN of the regression function r. Then, we apply this

estimate on the sample S2
n in order to estimate the CCTE measure. To this aim we define:
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Definition 5.3. Consider X a random vector with distribution function F , Y a random variable and

two i.i.d samples S1
N and S2

n. Using the truncated version of the c-upper level set defined in Section

2, for c ∈ (0, 1), we define

ĈCTE⋆
Tn

c,n,N (X, Y ) = En

[
rN (X)|X ∈ Ln(c)

Tn
]
.

The following result proves the consistency of the estimate introduced in Definition 5.3.

Theorem 5.2. Let c ∈ (0, 1). Let F ∈ F be a twice differentiable distribution function on Rd∗
+ with an

associated density f such that Assumption A4 is satisfied. Assume that there exist κ > 0, ζ > 0 such

that m▽ > 0 and MH < ∞. Let T1 > 0 such that for all t : | t− c | ≤ κ, ∂L(t)T1 6= ∅. Assume that

for each n, with probability one, Fn is measurable. Let (v1,N )N∈N∗ , (v2,n)n∈N∗ and (Tn)n∈N∗ positive

increasing sequences such that Assumption A3 is satisfied. Let r be a continuous positive regression

function such that E
[
r(X)2

]
< ∞. We have

βn,N

∣∣∣∣ĈCTE
⋆
Tn

c,n,N (X, Y )− CCTETn
c (X, Y )

∣∣∣∣
P→ 0, for N,n → ∞,

with

βn,N = min

(
p

ǫ
2(1+ǫ)
n , cN , dn

)
,

where pn = o

(
v

p
p+1

2,n /T
d+(d−1)p

p+1
n

)
, cN = o (E |rN (X)− r(X)|) and dn = o (

√
n).

The proof of Theorem 5.2 is postponed to Section 10. Note that we have a supplementary term

(cN ) comparing to Theorem 5.1. This term controls the rate of convergence of rN toward r.

Example 3. Using the same context as in Example 2, taking rN the kernel regression estimator of

Kohler et al. [23] and assuming that r is (1, C)-smooth, we have

cN = o
(
N2/5

)
.

Then we obtain

βn,N = min


o

(
n1/3

T
7/3
n

) ǫ
2(1+ǫ)

, o
(
N2/5

)
, o
(
n1/2

)

 .

In the case of a bounded density function f and as long as N >> n5/12

T
35/12
n

, we obtain

βN,n = min


o

(
n1/3

T
7/3
n

) 1
2

, o
(
N2/5

)
, o
(
n1/2

)

 = o

(
n1/6

T
7/6
n

)

which is the same rate as in Example 2.
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5.3 Estimating CCTE measure for large value of the risk level using the empirical

estimator Fn

In Section 7 we provide some numerical illustrations for the estimation of the c-Covariate-Conditional-

Tail-Expectation, proposed in Definition 5.2. In particular, we use the empirical estimator Fn to

construct the plug-in estimation of level sets Ln(c). In other words, we use an empirical version of the

estimation in Definition 5.2.

The aim of this subsection is to briefly discuss the adequacy of an empirical version of estimation

of Definition 5.2, in term of the risk level c. From a practical point of view, as we deal with a risk

measure (CCTE) then we are interested in considering some large values of the risk level c. On the

other hand, given an i.i.d sample {(Xi, Yi)}i=1,...,n, we apply an empirical version of the estimate

ĈCTEc,n(X, Y ) in the case of large but not-extreme values of c, i.e, when some data fall in the c-upper

level set Ln(c).

Although in any practical application c is fixed, we have to choose c in order to obtain both

some good empirical estimation of our CCTE and an interesting indicator for the associated risk

phenomenon. From a mathematical point of view, to obtain this type of compromise, we have to

describe the difference between high quantiles within and outside the sample. Following Embrechts

et al. [18], we have that:

(a) c is a high quantiles within the sample if c = cn −−−→
n→∞

1 and n (1− cn) −−−→
n→∞

χ ∈ (1,+∞],

(b) c is a high quantiles outside the sample if c = cn −−−→
n→∞

1 and n (1− cn) −−−→
n→∞

χ ∈ [0, 1).

The case (a) for χ = +∞ is addressed by Theorem 3.1 in Dekkers and de Haan [13]. Under these

assumptions on the risk level cn, this result basically tells us that we can just use empirical function

for estimating the associated quantile. Following these consideration, in our numerical illustrations we

pay attention to this compromise in the choice of the risk level c, in order to estimate high quantiles

within the sample in our risk measure CCTE (see Section 7).

6 About the effects of scaling data

In this section we study the impact of a change in the scale of data with respect to the estimate

ĈCTE
Tn

c,n(X, Y ). In particular, this property is related to the suitable positive homogeneity property

of risk measures (e.g. see Artzner et al. [1]). In the literature, the homogeneity property of a risk

measure is often motivated by a change of currency argument: the amount of required capital in order

to manager risks should be independent of the currency in which it is expressed.
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Given a set A ⊂ Rd
+ we denote by ∂A its boundary, and by β A the scaled set {β x, with x ∈ A}.

Suppose now that we scale our data using a scale parameter a ∈ R∗
+. In our case, the scaled random

vector will be (aX1, aX2, . . . , aXd) := aX. From now on we denote FaX (resp. FX) the distribution

function associated to aX (resp. to X). Using notation of Section 2, let

La(c) = {x ∈ R
d
+ : FaX(x) ≥ c}.

It is easy to prove (see for instance Section 3 in Tibiletti [29]) that

La(c) = aL(c) and La(c)
T = aL(c)T

and furthermore

Ea = B({x ∈ R
d
+ : | FaX(x)− c |≤ r}, ζ) = aE.

Moreover, if we suppose Fn,aX(x) = Fn,X(x/a), thus

Ln,a(c) = aLn(c) and Ln,a(c)
T = aLn(c)

T .

Define now

m▽

a = inf
x∈Ea

‖∇FaX(x)‖.

First, we can obtain the following lemma.

Lemma 6.1. It holds that

m▽

a =
1

a
m▽, ∀ a ∈ R

∗
+.

Furthermore, if

MH = sup
x∈E

‖(HFX)x‖ < +∞ then MH,a = sup
x∈aE

‖(HFaX)x‖ < +∞, with a ∈ R
∗
+.

The proof of Lemma 6.1 is postponed to Section 10.

We can now consider the effects of scaling data with respect to the volume of the symmet-

ric difference. Corollary 6.1 is a straightforward consequence of Theorem 3.1 using the fact that

LTn
a (c)∆LTn

n,a(c) = a
(
LTn(c)∆LTn

n (c)
)
, for a ∈ R∗

+.

Corollary 6.1. Assume that Fn,aX(x) = Fn,X(x/a). Under same notations and assumptions of

Theorem 3.1 it holds that

pn, a dλ(La(c)
Tn , Ln, a(c)

Tn)
P→

n→∞
0,

with pn, a an increasing positive sequence such that pn, a = o

(
v

1
p+1
n /

(
ad T

(d−1) p
p+1

n

))
.

Corollary 6.1 states that a change of scale of the data implies a convergence rate as

o

(
v

1
p+1
n /

(
ad T

(d−1) p
p+1

n

))
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instead of

o

(
v

1
p+1
n /T

(d−1)p
p+1

n

)
.

Logically, it means that the scale factor a ∈ R∗
+ impacts the volume in Rd with an exponent d.

Let us now investigate the effects of scaling data on Theorem 4.2 and Theorem 5.1. Let denote

raX,bY (x) = E[b Y | aX = x] (rn,aX,bY its estimate version) and CCTETn
c (aX, bY ) = E

[
b Y | aX ∈ La(c)

Tn
]

(ĈCTE
Tn

c,n(aX, bY ) its estimate version). We obtain the following result.

Theorem 6.1. Let a and b in R∗
+ and assume that rn,aX,bY (x) = b rn,X,Y

(
x
a

)
.

1. Under same hypothesis and notations of Theorem 4.2 it holds that

b ||rn,X,Y 1{x∈Ln(c)Tn} − rX,Y 1{x∈L(c)Tn}||p = ||rn,aX,bY 1{x∈La,n(c)Tn} − raX,bY 1{x∈La(c)Tn}||p.

2. Under same hypothesis and notations of Theorem 5.1 it holds that

b

∣∣∣∣ĈCTE
Tn

c,n(X, Y )− CCTETn
c (X, Y )

∣∣∣∣ =
∣∣∣∣ĈCTE

Tn

c,n(aX, bY )− CCTETn
c (aX, bY )

∣∣∣∣ .

The proof of Theorem 6.1 is postponed to Section 10. Using Theorem 6.1 we obtain that the rates

of convergence of Theorem 4.2 and Theorem 5.1 are not affected by any scaling on the data.

Remark 6.1. Note that if rn is the classical kernel estimator, assumption rn,aX(x) = rn,X
(
x
a

)
is not

automatically satisfied. However, it can be satisfied if the scaling is also applied to the bandwidth.

7 Illustrations

In the following we consider some different simulated cases for which we illustrate the finite sample

properties of our estimation of r and CCTEc(X, Y ). In particular, we will consider an independent

copula (Section 7.1), and Ali-Mikhail-Haq copula (Section 7.2). To compare the estimated results

with the theoretical ones we consider cases for which we can calculate (using Maple) the explicit value

of the theoretical CCTEc(X, Y ). However, our estimator can be applied to much more general cases.

In this section we consider the kernel regression estimate proposed by Kohler et al. [23] in order

to estimate r. Furthermore, the plug-in estimation of level sets, i.e., Ln(c), is constructed using the

empirical estimator Fn of the distribution function.

Following considerations of Section 5.3, choosing cn = log(2n)/(1 + log(n)), the assumption of

case (a) of Section 5.3 are satisfied with χ = +∞. This means that, for a sample size n = 1000

(resp. n = 10000), we could use the empirical estimation for the univariate quantile for c < 0.96,
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(resp. c < 0.97). These considerations give us also an indication in terms of the sample size n and the

magnitude of risk level c to use our empirical estimate ĈCTEc,n(X, Y ).

7.1 Independent Copula

We consider here a bivariate independent copula with exponentially distributed marginals with pa-

rameter 1. Furthermore we choose the regression function r(x, y) = 1/(exey), for all x, y ≥ 0 (Figure

1.1).

x y

r(x,y)

Figure 1.1: Regression function: r(x, y) = 1/(exey) for all x, y ≥ 0.

Lp-consistency of rn

In this section we provide an illustration of Theorem 4.2. In particular, we denote

EL2 := ||rn 1{x∈Ln(c)Tn} − r 1{x∈L(c)Tn}||2.

According to Remark 4.2, we take Tn = log(n) (the interested reader is also referred to Di Bernardino

et al. [15]). In Table 1.1 we illustrate the mean of EL2 (i.e., L2-consistency for the estimator rn) on

M = 50 simulated samples, for different level of risk c and different sample size n.

As expected, the performance of the estimation increases with the size of the sample. However,

the fact that the quality for the EL2 error seems better for large risk level c is quite surprising. This

behavior of the estimation comes from the fact that the regression r has a flat plateau for x, y → ∞
(see Figure 1.1).
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n Level c = 0.1 Level c = 0.25 Level c = 0.5 Level c = 0.7 Level c = 0.9

n=1000, EL2
0.0567 0.0377 0.0254 0.0197 0.0131

n=5000, EL2
0.0323 0.0176 0.0072 0.0051 0.0024

n=10000, EL2
0.0256 0.0134 0.0051 0.0025 0.0016

Table 1.1: EL2
for independent copula and exponentially distributed marginals with parameter 1. The

regression function is r(x, y) = 1/(exey) for all x, y ≥ 0.

CCTEc(X, Y ) estimation

In the following, we compare ĈCTE
Tn

c,n(X, Y ) with the theoretical CCTEc(X, Y ). Following Remark

5.1, we obtain that
∣∣CCTEc(X, Y )− ĈCTE

Tn

c (X, Y )
∣∣ decays to zero at least with a convergence

rate βn = o
(

n1/6

ln(n)4/6

)
, with a choice of sequence Tn = ln(n). This kind of compromise provides an

illustration on how to choose Tn, apart from satisfying the assumptions of Theorem 5.1.

In the following tables we denote Mean= ĈCTE
Tn

c (X, Y ), i.e., the mean of ĈCTE
Tn

c (X, Y ) on

M = 50 simulated samples. We denote σ̂ the empirical standard deviation

σ̂ =

√
1

M−1

∑M
j=1

(
ĈCTE

Tn

c (X, Y )j − ĈCTE
Tn

c (X, Y )

)2

.

Finally, we denote RMAE the Relative Mean Absolute Error, i.e.,

RMAE= 1
M

∑M
j=1

∣

∣

∣

∣

̂CCTE
Tn

c (X,Y )j−CCTEc(X,Y )

∣

∣

∣

∣

CCTEc(X,Y )
.

The results are gathered in Table 1.2. Furthermore, in Table 1.3, we provide an illustration of

the convergence rate of Theorem 5.1. In this case, we remark that βn = o
(

n1/6

ln(n)4/6

)
is at least the

convergence rate of this CCTE estimation.

As expected, the greater n is, the better the estimations are. Furthermore, results in Table 1.3

set out how βn = o
(

n1/6

ln(n)4/6

)
is at least the convergence rate of

∣∣ĈCTE
Tn

c,n(X, Y )−CCTEc(X, Y )
∣∣, in

this particular case.
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n
Level c = 0.1

CCTE0.1 = 0.14293

Level c = 0.25

CCTE0.25 = 0.07927

Level c = 0.5

CCTE0.5 =0.02791

Level c = 0.7

CCTE0.7 =0.00879

Level c = 0.9

CCTE0.9 =0.00087

1000

RMAE 0.0357 0.0388 0.0725 0.1187 0.2898

Mean 0.1432 0.0798 0.0281 0.0090 0.0009

σ̂ 0.0062 0.0038 0.0026 0.0012 0.0003

5000

RMAE 0.0151 0.0194 0.0317 0.0484 0.1623

Mean 0.1425 0.0795 0.0278 0.0087 0.0008

σ̂ 0.0027 0.0021 0.0011 0.0004 0.0002

10000

RMAE 0.0110 0.0137 0.0211 0.0453 0.0875

Mean 0.1428 0.0792 0.0279 0.0088 0.0008

σ̂ 0.0019 0.0013 0.0007 0.0004 9.43 10−5

Table 1.2: Estimation of CCTEc(X, Y ) in the case of independent copula and exponentially distributed

marginals with parameter 1.

Level c = 0.1

CCTE0.1 = 0.14293

Level c = 0.25

CCTE0.25 = 0.07927

Level c = 0.5

CCTE0.5 =0.02791

Level c = 0.7

CCTE0.7 =0.00879

Level c = 0.9

CCTE0.9 =0.00087

n=1000, RMAE 0.0311 0.0339 0.0632 0.1035 0.2526

n=5000, RMAE 0.0151 0.0191 0.0314 0.04798 0.1609

n=10000, RMAE 0.0116 0.0145 0.0223 0.0478 0.0925

Table 1.3: Approximated βn

∣∣ĈCTE
Tn

c,n(X, Y )−CCTEc(X, Y )
∣∣, with βn = o

(
n1/6

ln(n)4/6

)
, in the case of indepen-

dent copula and exponentially distributed marginals with parameter 1.
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7.2 Ali-Mikhail-Haq Copula

We consider here a bivariate Ali-Mikhail-Haq copula with parameter 0.5 and exponentially distributed

marginals with parameter 1 (see Nelsen [25]). We take the regression function r(x, y) = −(−2 +

e−x−y)3, for all x, y ≥ 0. Conversely to previous section we now deal with dependent variables

X1, . . . , Xn and an increasing regression function r (see Figure 1.2).

x y

r(x,y)

Figure 1.2: Regression function r(x, y) = −(−2 + e−x−y)3 for all x, y ≥ 0.

Lp-consistency of rn

In this section we provide an illustration of Theorem 4.2. As explained in Remark 5.1, we choose

Tn = n0.2. In Table 1.4 we illustrate EL2 (i.e. the L2-consistency for the estimator rn) for different

level of risk c and different sample size n.

n Level c = 0.1 Level c = 0.25 Level c = 0.5 Level c = 0.7 Level c = 0.9

n=1000, EL2
0.7736 0.7980 0.7599 0.5817 0.2928

n=5000, EL2
0.4846 0.5801 0.5047 0.3975 0.1781

n=10000, EL2
0.4167 0.4883 0.4459 0.3612 0.1679

Table 1.4: EL2
for Ali-Mikhail-Haq copula with parameter 0.5 and exponentially distributed marginals with

parameter 1. The regression function is r(x, y) = −(−2 + e−x−y)3, for all x, y ≥ 0.

As before, we see that the quality of the estimation is better when the size of the sample growths.

Again, the presence of a plateau for r(x, y) when x, y → ∞ explains the good results for large risk

levels c (see Figure 1.2).
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CCTEc(X, Y ) estimation

In the following, we compare ĈCTE
Tn

c,n(X, Y ) with the theoretical CCTEc(X, Y ) in the case of Ali-

Mikhail-Haq copula with parameter 0.5 (see Table 1.5). Furthermore, following Remark 5.1, we obtain

that
∣∣CCTEc(X, Y )− ĈCTE

Tn

c (X, Y )
∣∣ decays to zero at least with a convergence rate βn = o

(
n1/10

)
,

with a choice of sequence Tn = n1/5 (see Table 1.6). Again, our theoretical results are confirmed by

these simulations.

n
Level c = 0.1

CCTE0.1 = 6.37526

Level c = 0.25

CCTE0.25 = 7.03937

Level c = 0.5

CCTE0.5 =7.65131

Level c = 0.7

CCTE0.7 =7.89094

Level c = 0.9

CCTE0.9 = 7.98936

1000

RMAE 0.0081 0.0061 0.0038 0.0015 0.0004

Mean 6.3885 7.0421 7.6544 7.8917 7.9887

σ̂ 0.0639 0.0526 0.0345 0.0147 0.0041

5000

RMAE 0.0032 0.0028 0.0015 0.0006 0.0001

Mean 6.3761 7.0458 7.6461 7.8906 7.9891

σ̂ 0.0259 0.0249 0.0138 0.0071 0.0013

10000

RMAE 0.0021 0.0023 0.0008 0.0005 0.0001

Mean 6.3725 7.0302 7.6527 7.8911 7.9893

σ̂ 0.0171 0.0173 0.0081 0.0047 0.0012

Table 1.5: Estimation of CCTEc(X, Y ) in the case of Ali-Mikhail-Haq copula with parameter 0.5 and exponen-

tially distributed marginals with parameter 1.

Level c = 0.1

CCTE0.1 = 6.37526

Level c = 0.25

CCTE0.25 = 7.039378

Level c = 0.5

CCTE0.5 = 7.651305

Level c = 0.7

CCTE0.7 = 7.890936

Level c = 0.9

CCTE0.9 = 7.98936

n=1000, RMAE 0.0102 0.0076 0.0033 0.0018 0.0005

n=5000, RMAE 0.0043 0.0051 0.0021 0.0007 0.0001

n=10000, RMAE 0.0028 0.0032 0.0012 0.0006 0.0001

Table 1.6: Approximated βn

∣∣ĈCTE
Tn

c,n(X, Y )−CCTETn
c (X, Y )

∣∣, with βn = o
(
n1/10

)
in the case of Ali-Mikhail-

Haq copula with parameter 0.5 and exponentially distributed marginals with parameter 1.

8 Real data study : waves and water levels in coastal engineering

design

On coasts with high tidal ranges, or subject to high surges, both still water levels and waves can be

important in assessing flood risk; their relative importance depends on location and on the type of
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sea defence. The simultaneous occurrence of large waves and a high still water level is, therefore,

important in estimating their combined effect on sea defences. In design of a sea defence, a key step

is the estimation of the probability of failure to protect against sea conditions. It is important in

engineering design to identify the combinations of sea condition variables which cause each failure.

The interested reader is referred for instance to Hawkes et al. [20].

For any particular mode of failure (structural failure, excessive overtopping, . . . ), the regression

function r is dependent on the sea condition variables. Then, in particular, at any particular time

t, the overtopping covariate Y will be related to sea condition vector (X). In the literature the sea

condition variables are often represented by the significant Wave height Hm0 (X1), the Still Water

level SWL (X2), and the Wave period Tpb (X3), then X = (X1, X2, X3) (see Figure 1.3).

The regression function r(x) := E[Y |X = x] represents the relationship between the sea condi-

tions and the overtopping at a given time t. This relationship could be complex and in some real

analysis, can be represented by equations. The most advantage of the use of this regression function

is to reduce a joint probability risk problem to a single covariate problem.

In this section we analyze the Wave height (Hm0), Still Water level (SWL), Wave period (Tpb)

data, recorded during 828 storm events spread over 13 years in front of the Dutch coast near the town

of Petten (Figure 1.4).

These data has been recently studied in the literature (for details see for instance Draisma et al.

[16]). Following Tau and Dam [28], at a given time t, the principal equation used for overtopping

discharge (l/m/s) Y is given by:

Y = a e
−b (h−SWL)

Hm0

√
g (Hm0)3, (8.1)

with

a = 0.04

√
tan(β)L
Hm0 , b =

7.05
√

Hm0
L

tan(β) , L = g (Tpb)2

2π ,

where

- Hm0 (m) is the wave height at the toe of the structure at time t;

- Tpb (s) is the wave period at time t. In particular the number of waves in a storm (N) can easily

be computed from information about the wave period and the duration of the storm, i.e., N =

(duration(h)/Tpb(s))·3600;

- SWL (m) the level of the sea if it is flat, without any waves at time t;
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- h (m) is the height of the costal design above SWL= 0 (see Figure 1.3);

- g (m/s2) the gravitational acceleration (i.e., 9.8 m/s2);

- β (rad) is the seaward slope steepness. In the following we consider the case tan(β) = 0.3 and

tan(β) = 0.6 (see Figure 1.3).

Figure 1.3: Definition of some parameters for the calculation of overtopping.

Figure 1.4: Representation of the data in three dimensions.

Note that Theorem 6.1 allow us to make any changes on the units before or after the estimation.

We now estimate the mean overtopping rate (i.e., CCTEc(X, Y )) using Equation (8.1) for Y and

conditionally to the fact that the sea variable conditions X belong to the joint risk area L(c). In

particular, we consider the jointly large realisations of sea variables Hm0, SWL and Tpb for different

values of risk level c. Obviously, the dangerous effects of the sea conditions will be increasing with

respect to c. The results are gathered in Figure 1.5.

As expected, we obtain a decreasing behavior of mean overtopping discharge according to the

height of the costal design h for a fixed risk level c. Furthermore, for a fixed height of the costal

design, the higher the risk c, the higher the mean overtopping discharge. In our study we consider
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both the case tan(β) = 0.3 (Figure 1.5, left) and tan(β) = 0.6 (Figure 1.5, right). As expected, we

remark that for fixed risk level c and height of costal design h, a lower seaward slope steepness β

generates a smaller mean overtopping discharge.
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Figure 1.5: Mean overtopping discharge CCTEc(X, Y ) in function of the height of the costal design h for

different condition of risk-sea variables. We take here tan(β) = 0.3 (left) and tan(β) = 0.6 (right).

9 Conclusion

We propose in this paper a generalization to the estimation of the level sets of a d-variate distribution

function. The non-compactness of the level sets requires special attention in the statement of the

problem. The consistency results with a convergence rate are stated in term of the volume of the

symmetric difference. In a second part, we analyze the problem of the estimation of a regression

function on the levels sets of a d-variate distribution function and we obtain the consistency with

a convergence rate in term of the Lp-distance. Then, we study a new multivariate risk measure:

the Covariate-Conditional-Tail-Expectation, i.e. the Conditional-Tail-Expectation of the regression

function. A consistent estimator and a rate of convergence are provided. Moreover, we analyze the

impact of scaling data on our results. Our theoretical results are illustrated on a complete simulation

study. We discuss a real application in the evaluation of the mean overtopping discharge conditionally

to the fact that the sea variable conditions belong to some joint risk area. It highlights the importance

of the parameter Tn (which solved the problem of the compactness of the level sets) as well as the

curse of the dimensionality. An interesting future work could be a deeply investigation about these

points, with a focus on the optimal choice for this parameter.
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10 Proofs

Proof of Theorem 3.1: Under assumptions of Theorem 3.1, we can always take T1 > 0 such that for

all t : | t− c | ≤ κ, ∂L(t)T1 6= ∅. Then for each n, for all t : | t− c | ≤ κ, ∂L(t)Tn is a non-empty (and

compact) set on Rd
+.

We consider a positive sequence εn such that εn →
n→∞

0. For each n ≥ 1 the random sets

L(c)Tn △ Ln(c)
Tn , Qεn = {x ∈ [0, Tn]

d : | F − Fn |≤ εn} and Q̃εn = {x ∈ [0, Tn]
d : | F − Fn |> εn} are

measurable and

λ(L(c)Tn △ Ln(c)
Tn) = λ(L(c)Tn △ Ln(c)

Tn ∩ Qεn) + λ(L(c)Tn △ Ln(c)
Tn ∩ Q̃εn).

Since L(c)Tn △ Ln(c)
Tn ∩ Qεn ⊂ {x ∈ [0, Tn]

d : c− εn ≤ F < c+ εn} we obtain

λ(L(c)Tn △ Ln(c)
Tn) ≤ λ({x ∈ [0, Tn]

d : c− εn ≤ F < c+ εn}) + λ(Q̃εn).

From Assumption H (Section 2) and Proposition 2.1 in Di Bernardino et al. [15], it follows that

there exists a γ > 0 such that, if 2 εn ≤ γ then

dH(∂L(c+ εn)
Tn , ∂L(c− εn)

Tn) ≤ 2 εnA

where A = 2
m∇ and dH is the Hausdorff distance. From assumptions on first derivatives of F and

Property 1 in Imlahi et al. [21], we can write

λ({x ∈ [0, Tn]
d : c− εn ≤ F < c+ εn}) ≤ (2 εnA) d T

d−1
n .

Interestingly we remark that in the univariate case (d = 1) the Hausdorff distance between the two

points ∂L(c− εn)
Tn and ∂L(c+ εn)

Tn is also the Lebesgue measure (in dimension 1) for this interval.

Then λ({x ∈ [0, Tn] : c − εn ≤ F < c + εn}) ≤ 2 εnA. This means that in this case, the result does

not depend on the truncation sequence Tn.

If we now choose

εn = o

(
1

pn T
d−1
n

)
, (10.1)

we obtain that, for n large enough, 2 εn ≤ γ and

pn λ({x ∈ [0, Tn]
d : c− εn ≤ F < c+ εn}) →

n→∞
0.

Let us now prove that pn λ(Q̃εn)
P→

n→∞
0. To this end, we write

pn λ(Q̃εn) = pn

∫
1{x∈[0,Tn]d: |F−Fn|>εn} λ(dx) ≤

pn
εpn

∫

[0,Tn]d
| F − Fn |p λ(dx).
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Take εn such that

εn =

(
pn
vn

) 1
p

. (10.2)

So, from Assumption A1 in Section 3, we obtain pn λ(Q̃εn)
P→

n→∞
0. As pn = o

(
v

1
p+1
n /T

(d−1) p
p+1

n

)
we can

choose εn that satisfies (10.1) and (10.2). Hence the result. �

In the following proofs, K denotes a constant which value may change from line to line.

Proof of Theorem 4.1: We have

||r 1{x∈Ln(c)Tn} − r 1{x∈L(c)Tn}||p =

(∫

Rd

∣∣∣r(x)1{x∈Ln(c)Tn} − r(x)1{x∈L(c)Tn}

∣∣∣
p
f(x) dx

)1/p

≤
(∫

L(c)Tn∆Ln(c)Tn
|r(x)|p f(x) dx

)1/p

≤ K
(
µ
(
L(c)Tn∆Ln(c)

Tn
))1/p

≤ K
(
||f ||1+ǫ,λ

(
λ
(
L(c)Tn∆Ln(c)

Tn
)) ǫ

1+ǫ

)1/p

which gives us

||rn 1{x∈Ln(c)Tn} − r 1{x∈L(c)Tn}||p ≤ ||rn 1{x∈Ln(c)Tn} − r 1{x∈Ln(c)Tn}||p
+ ||r 1{x∈Ln(c)Tn} − r 1{x∈L(c)Tn}||p

≤ ||rn − r||p + K
(
||f ||1+ǫ,λ

(
λ
(
L(c)Tn∆Ln(c)

Tn
)) ǫ

1+ǫ

)1/p
.

Since

||r 1{x∈L(c)Tn} − r 1{x∈L(c)}||p =

(∫

Rd

|r(x)1{x∈L(c)∩[0,Tn]d} − r(x)1{x∈L(c)}|pf(x)dx
)1/p

=

(∫

L(c)\[0,Tn]d
|r(x)|pf(x)dx

)1/p

,

we finally get

||rn 1{x∈Ln(c)Tn} − r 1{x∈L(c)}||p = ||rn 1{x∈Ln(c)Tn} − r 1{x∈L(c)Tn} + r 1{x∈L(c)Tn} − r 1{x∈L(c)}||p
≤ ||rn 1{x∈Ln(c)Tn} − r 1{x∈L(c)Tn}||p + ||r 1{x∈L(c)Tn} − r 1{x∈L(c)}||p

≤ ||rn − r||p +K
(
||f ||1+ǫ,λ

(
λ
(
L(c)Tn∆Ln(c)

Tn
)) ǫ

1+ǫ

)1/p

+

(∫

L(c)\[0,Tn]d
|r(x)|pf(x)dx

)1/p

.
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From Theorem 3.1 and assumptions of Theorem 4.1, the last inequality concludes the proof. �

Proof of Theorem 4.2: Note that the proofs of Theorem 4.2 and Theorem 3.1 are strongly related.

We have

wn ||rn 1{x∈Ln(c)Tn} − r 1{x∈L(c)Tn}||p ≤ wn||rn 1{x∈Ln(c)Tn} − r 1{x∈Ln(c)Tn}||p
+ wn ||r 1{x∈Ln(c)Tn} − r 1{x∈L(c)Tn}||p
≤ wn ||rn − r||p + wnK

(
µ
(
L(c)Tn∆Ln(c)

Tn
))1/p

.

≤ wn ||rn − r||p + wnK
(
||f ||1+ǫ,λ

(
λ
(
L(c)Tn∆Ln(c)

Tn
)) ǫ

1+ǫ

)1/p

and Theorem 3.1 concludes the proof. �

Proof of Theorem 5.1: The proof is a straightforward application of Lemma 10.1 and Lemma

10.2. �

Lemma 10.1. Under assumptions of Theorem 5.1, we have

p
ǫ

2(1+ǫ)
n |E

[
Y |X ∈ L(c)Tn

]
− E

[
Y |X ∈ Ln(c)

Tn
]
| P−−−→

n→∞
0,

with ǫ > 0 such that f is 1 + ǫ integrable.

Proof of Lemma 10.1: Using Theorem 3.1, we obtain

p
ǫ

2(1+ǫ)
n |P

[
X ∈ L(c)Tn∆Ln(c)

Tn
]
| ≤ p

ǫ
2(1+ǫ)
n dλ

(
L(c)Tn , Ln(c)

Tn
) ǫ

1+ǫ ||f ||1+ǫ
P−−−→

n→∞
0. (10.3)

Then we get

p
ǫ

2(1+ǫ)
n

∣∣P
[
X ∈ L(c)Tn

]
− P

[
X ∈ Ln(c)

Tn
]∣∣ P−−−→

n→∞
0.

Note g the density of the pair (X, Y ). Under assumptions, we also obtain

p
ǫ

2(1+ǫ)
n

∣∣∣∣
∫
y1{x∈L(c)Tn}g(x, y)λ(dxdy)−

∫
y1{x∈Ln(c)Tn}g(x, y)λ(dxdy)

∣∣∣∣

≤ p
ǫ

2(1+ǫ)
n

∣∣∣∣
∫
y1{x∈L(c)Tn∆Ln(c)Tn}g(x, y)λ(dxdy)

∣∣∣∣

≤ p
ǫ

2(1+ǫ)
n

(∫
y2g(x, y)λ(dxdy)

)1/2(∫
g(x, y)1{x∈L(c)Tn∆Ln(c)Tn}λ(dxdy)

)1/2

≤ p
ǫ

2(1+ǫ)
n E

[
Y 2
] 1
2

(∫
f(x)1{x∈L(c)Tn∆Ln(c)Tn}λ(dx)

)1/2

≤ p
ǫ

2(1+ǫ)
n E

[
Y 2
] 1
2 dλ

(
L(c)Tn , Ln(c)

Tn
) ǫ

2(1+ǫ) ||f ||1/21+ǫ
P−−−→

n→∞
0. (10.4)
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Then

p
r

2(1+r)
n

∣∣E[Y |X ∈ L(c)Tn ]− E[Y |X ∈ Ln(c)
Tn ]
∣∣

= p
r

2(1+r)
n

∣∣∣∣
∫
y 1{x∈L(c)Tn}g(x, y)λ(dxdy) P[X ∈ L(c)Tn ]−1 −

∫
y 1{x∈Ln(c)Tn}g(x, y)λ(dxdy) P[X ∈ Ln(c)

Tn ]−1

≤ p
r

2(1+r)
n

P[X ∈ L(c)Tn ]P[X ∈ Ln(c)Tn ]

(
P[X ∈ L(c)Tn ]

∣∣∣∣
∫
y 1{x∈L(c)Tn}g(x, y)λ(dxdy)

−
∫
y 1{x∈Ln(c)Tn}g(x, y)λ(dxdy)

∣∣∣∣+
∫
y 1{x∈Ln(c)Tn}g(x, y)λ(dxdy) ·

∣∣P[X ∈ L(c)Tn ]− P[X ∈ Ln(c)
Tn ]
∣∣
)
.

Using (10.3) and (10.4) we obtain the result. �

Lemma 10.2. Under assumptions of Theorem 5.1, we have

dn
∣∣E
[
Y |X ∈ Ln(c)

Tn
]
− En

[
Y |X ∈ Ln(c)

Tn
]∣∣ P−−−→

n→∞
0

where dn = o (
√
n).

Proof of Lemma 10.2: We have

dn
∣∣E
[
Y |X ∈ Ln(c)

Tn
]
− En

[
Y |X ∈ Ln(c)

Tn
]∣∣ = dn

∣∣∣∣∣

∫
y1{x∈Ln(c)Tn}g(x, y)λ(dxdy)

P (X) ∈ Ln(c)Tn
−
∑n

i=1 Yi 1{Xi∈Ln(c)Tn}∑n
i=1 1{Xi∈Ln(c)Tn}

∣∣∣∣∣ .

Under assumptions of the Lemma 10.2 and using Theorem 27.2 in Billingsley [5], we obtain that

dn

∣∣∣∣∣P[X ∈ Ln(c)
Tn ] − 1

n

n∑

i=1

1{Xi∈Ln(c)Tn}

∣∣∣∣∣
P−−−→

n→∞
0,

and

dn

∣∣∣∣∣

∫
y1{x∈Ln(c)Tn}g(x, y)λ(dxdy)−

1

n

n∑

i=1

Yi 1{Xi∈Ln(c)Tn}

∣∣∣∣∣
P−−−→

n→∞
0.

Hence the result. �

Proof of Theorem 5.2: The proof is a straightforward application of Lemmas 10.1, 10.3 and 10.4.

�

Lemma 10.3. Under assumptions of Theorem 5.2, we have

cN
∣∣E[Y |X ∈ Ln(c)

Tn ]− E[rN (X) |X ∈ Ln(c)
Tn ]
∣∣ P−−−−→

N→∞
0,

with cN = o(E|rN (X)− r(X)|).

Proof of Lemma 10.3 : We have

∣∣E[Y |X ∈ Ln(c)
Tn ]− E[rN (X) |X ∈ Ln(c)

Tn ]
∣∣ =

∣∣∣
∫
Ln(c)Tn

(r(x)− rN (x))f(x)dλ(x)
∣∣∣

P[X ∈ Ln(c)Tn ]

≤ K ×
∫

Ln(c)Tn
|r(x)− rN (x)| f(x)dλ(x)

≤
∫

Rd

|r(x)− rN (x)| f(x)dλ(x) = E|rN (X)− r(X)|.
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Hence the result. �

Lemma 10.4. Under assumptions of Theorem 5.2, we have

dn
∣∣E
[
rN (X)|X ∈ Ln(c)

Tn
]
− En

[
rN (X)|X ∈ Ln(c)

Tn
]∣∣ P→n→∞ 0

where dn = o (
√
n).

Proof of Lemma 10.4 : We have

dn
∣∣E
[
rN (X)|Ln(c)

Tn
]
− En

[
rN (X)|Ln(c)

Tn
]∣∣ = dn

∣∣∣∣∣

∫
Ln(c)Tn

rN (x)f(x)λ(dx)

P[X ∈ Ln(c)Tn ]
−
∑n

i=1 rN (Xi)1{Xi∈Ln(c)Tn}∑n
i=1 1{Xi∈Ln(c)Tn}

∣∣∣∣∣ .

Under assumptions of the Lemma and using Theorem 27.2 in Billingsley [5], we obtain that

dn

∣∣∣∣∣P[X ∈ Ln(c)
Tn ]− 1

n

n∑

i=1

1{Xi∈Ln(c)Tn}

∣∣∣∣∣
P→n→∞ 0,

and

dn

∣∣∣∣∣

∫

Ln(c)Tn
rN (x)f(x)λ(dx)− 1

n

n∑

i=1

rN (Xi)1{Xi∈Ln(c)Tn}

∣∣∣∣∣
P→n→∞ 0

which gives us the Lemma. �

Proof of Lemma 6.1: First, we remark that

FaX(x) = FX

(x
a

)
.

Then, we obtain

m▽

a = inf
x∈aE

∥∥∥∥
(

∂

∂x1
FX

(x
a

)
, . . . ,

∂

∂xd
FX

(x
a

))∥∥∥∥ = inf
x∈aE

∥∥∥∥
1

a

(
∂FX

∂x1

(x
a

)
, . . . ,

∂FX

∂xd

(x
a

))∥∥∥∥

=
1

a
inf
x∈E

∥∥∥∥
(
∂FX

∂x1
(x), . . . ,

∂FX

∂xd
(x)

)∥∥∥∥ =
1

a
m▽.

Second part of Lemma 6.1 comes down from trivial calculus. �

Proof of Theorem 6.1 : We have

FaX(x) = FX

(x
a

)
, faX(x) =

1

a
fX

(x
a

)
and raX,bY (x) = b rX,Y

(x
a

)
.

Proof of 1. in Theorem 6.1: We have

||rn,aX,bY 1{x∈La,n(c)Tn} − raX,bY 1{x∈La(c)Tn}||p

=

(∫

Rd

∣∣∣rn,aX,bY (x)1{x∈La,n(c)Tn} − raX,bY (x)1{x∈La(c)Tn}

∣∣∣
p
faX(x)dx

)1/p

=

(∫

Rd

bp
∣∣∣rn,X,Y

(x
a

)
1{x/a∈Ln(c)Tn} − rX,Y

(x
a

)
1{x/a∈L(c)Tn}

∣∣∣
p 1

a
fX

(x
a

)
dx

)1/p
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and taking t = x/a we obtain

||rn,aX,bY 1{x∈La,n(c)Tn} − raX,bY 1{x∈La(c)Tn}||p

=

(∫

Rd

bp
∣∣∣rn,X,Y (t)1{t∈Ln(c)Tn} − rX,Y (t)1{t∈L(c)Tn}

∣∣∣
p
fX (t) dt

)1/p

= b||rn,X,Y 1{x∈Ln(c)Tn} − rX,Y 1{x∈L(c)Tn}||p

Hence the result. �

Proof of 2. in Theorem 6.1: We have
∣∣∣∣ĈCTE

Tn

c,n(aX, bY )− CCTETn
c (aX, bY )

∣∣∣∣ =
∣∣En

[
bY |aX ∈ Ln,a(c)

Tn
]
− E

[
bY |aX ∈ La(c)

Tn
]∣∣ .

Using La(c)
Tn = aL(c)Tn and the assumptions, we obtain

∣∣∣∣ĈCTE
Tn

c,n(aX, bY )− CCTETn
c (aX, bY )

∣∣∣∣ =
1

b

∣∣En

[
Y |aX ∈ aLn(c)

Tn
]
− E

[
Y |aX ∈ aL(c)Tn

]∣∣ .

Hence the result. �
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