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Abstract

A micromechanical model is proposed for a collection of cohesive zone models embedded be-
tween each mesh of a finite element-type discretization (cohesive-volumetric approach). The
corresponding model concerns isotropic and elastic bulk behaviours and can be applied what-
ever the cohesive zone model, the mesh type and the triaxiality loading ratio. The overall elastic
behaviour is derived using a variational approach Hashin and Shtrikman (1963); Suquet (1995)
and is obtained as function of local parameters, bulk properties of relevant material and mesh
density. For an isotropic discretization, a bound is obtained on the cohesive stiffnesses: the
additional compliance inherent to intrinsic cohesize zone models is bounded by lower value.
Others criteria on cohesive parameters (critical opening, cohesive energy, peak stress, etc.) can
be obtained trough inverse analysis.

1 Introduction

The cohesive approaches had emerged as one of the most efficient methods to simulate numerical
fracture processes from crack initiation to overall failure. However, their numerical implementa-
tion exhibits a strong mesh sensitivity which is still an issue of concern: it is shown in Tijssens
et al. (2000) that the fracture paths depend on the mesh geometry and size. Despite this path
sensitivity, the authors show that the overall force-displacement response is not very sensitive
to the mesh size and can be predicted with reasonable accuracy. Another aspect of this mesh
sensitivity concerns the intrinsic Cohesive Zone Models (CZM), i.e. traction-separation laws
with initial slope: embedding cohesive zone models along each element boundaries leads to an
additional compliance since the density of the cohesive interfaces increases as the mesh is refined.
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Following Song et al. (2006), this artificial compliance can be illustrated on a simple 1D example
(see Figure 1). In that case, the equilibrium condition reads: F/S = EMε = CN[[u]], where F is
the applied force, ε the strain in the bulk elements (mesh size Lmesh, section S), EM the Young
modulus used in the bulk element constitutive behaviour, CN the initial cohesive stiffness of the
intrinsic model and [[u]] is the displacement jump across the cohesive zone. From the definition

of the overall strain ε̃ = F/S
EM + F/S

CNLmesh
, one can deduce the normalized apparent Young modulus:

Ẽ

EM
=

F/S

EMε
=

ξ

1 + ξ
with ξ =

CNLmesh

EM
. (1)

According to this last equation, the ratio ξ seems to be the key parameter of controlling the
mesh sensitivity in intrinsic CZMs. More precisely, the added compliance vanishes (Ẽ → EM )
when ξ → +∞, see Figure 1 right. In other words, the overall elastic behaviour is not affected
by the introduction of intrinsic CZMs between bulk elements and therefore the mesh sensitivity
effect vanishes.
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Figure 1: Illustration of the relationship between apparent Young modulus and mesh size in
1D-case: (left) a representative part of 1D finite element mesh with embedded cohesive zone
model, (right) overall Young modulus normalized by bulk modulus vs mesh size.

Following the same type of ideas, various authors have proposed semi-empirical bounds for
the ratio CNLmesh

EM in order to define ’invisible’ CZMs at the scale of a structure. Performing
numerical tension and shear tests, Espinosa and Zavattieri (2003) have noticed that the elastic
wave speeds are unchanged across a cohesive line between two elastic and isotropic media when
CNLmesh

EM ≥ 10. Estimating the added compliance for cross-triangle elements arranged in quadri-
lateral pattern submitted to uniaxial tension, biaxial uniform tension and pure shear, Tomar

et al. (2004) obtain: CNLmesh

EM ≥
√

2+1
κ(1−νM )

with κ = 1 for plane stress and κ = 1/(1 − (νM )2) for

plane strain, where νM is the Poisson ratio of the bulk material.
In this note, these criteria are generalized to three dimensional situations and to any type of

loadings. On the other hand, the extension of the study to non linear damageable cohesive laws
allows to derive an elliptic micromechanical damage model for brittle materials and exhibits
others criteria on the cohesive parameters: critical opening, peak stress, cohesive energy, etc.
The derived damage model does not use 1D damageable cohesive interfaces (Daridon et al.
(2011)); nor is it limited to particular cohesive law (Li and Wang (2004)).
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2 Linear micromechanical model

2.1 Cohesive-volumetric discretization as a ’matrix-inclusion’ composite

Consider a cohesive-volumetric finite element discretization: each volumetric element is con-
nected to each other using CZMs as boundary conditions. The main idea is to replace this
discretization by a continuous matrix containing penny-shaped cohesive inclusions (Figure 2).
The matrix has the same behaviour as the bulk finite element one whereas the penny-shaped

! " n

Figure 2: Principle of the approach: a cohesive-volumic finite element mesh is replaced by a
continuous matrix corresponding to bulk elements and a collection of penny-shaped cohesive
inclusions corresponding to the edges of the underlying mesh; (left) 2-D illustration, (right) 3-D
illustration.

inclusions have a cohesive behaviour defined by a traction-separation law. The spatial distribu-
tion of the cohesive inclusions corresponds to those of the edges of the underlying mesh and has
the same spatial density, denoted by Z. In particular, in the case of a statistical isotropic mesh,
e.g. a Delaunay-type mesh, the inclusions are randomly distributed in space and in orientation.
The shape of the inclusions is assumed to be of penny-shaped type, which corresponds to no
thickness wiskers in two dimensions. The aim is to obtain the overall equivalent behaviour of
such composite material using a Hashin-Shtrikman estimate Hashin and Shtrikman (1963).

2.2 Phases properties

In the sequel, we limit ourselves to linear elastic behaviours. Moreover, the matrix phase is
considered as isotropic and its constitutive relation reads:

σ = CM : ε with CM = 3kMJ + 2µMK, (2)

where σ (resp. ε) is the stress (resp. strain) field, CM is a fourth order stiffness tensor, kM and
µM are the bulk and the shear modulus respectively. The symmetric tensors J and K define the
generic basis of the fourth order isotropic symmetric tensors: J = (1/3)i⊗ i, K = I− J, 2Iijkl =
(iikijl + iilijk), i being the second order identity tensor. Initially, the cohesive constitutive
law is supposed to be elastic (intrinsic model). The traction-seperation law corresponds to a
linear relation between the cohesive stress vector Rcoh and the opening vector [[u]], in a local
normal-tangent basis oriented by the normal vector n to the cohesive inclusion:

Rcoh = K · [[u]] with K =

(
CNn⊗ n+ CT

uT ⊗ uT

uT · uT

)
, (3)
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where CN (resp. CT) is the normal (resp. tangential) initial ’stiffness’ of the cohesive law, uN
(resp. uT) is the normal (resp. tangential) component of [[u]] = uNn+ uT. The cohesive stress
tensor is given combining (3) and Rcoh = σcoh · n (Acary and Monerie (2006)):

σcoh = (CNEl + CTKl) ([[u]]⊗s n) , (4)

where ⊗s is the symmetric dyadic product (2a ⊗s b = aibj + ajbi for any vector a and b) and
El, Kl are two components of the fourth order transversely isotropic and symmetric tensors:
El = n⊗n⊗n⊗n and Kl = 2(js⊗js +jt⊗jt) with js = n⊗s s and jt = n⊗s t, where s and
t are two orthogonal vectors defining the transversal plane (n, t, s define the local orthogonal
basis of the cohesive inclusion). The rescaling requires to define the strain over the cohesive
phase through a fictitious thickness e intended to tend toward to 0 Michel et al. (1994):

εcoh =
[[u]]⊗s n

e
. (5)

and therefore to construct a fourth order stiffness tensor Ccoh leading to the following constitutive
relationship for inclusions:

σcoh = Ccoh : εcoh with Ccoh = e (CNEl + CTKl) . (6)

Again, the parameter e is a fictitious thickness that should tend to zero. Since oblate ellispoids
tend to penny-shaped inclusions when their thickness tends to zero, the cohesive inclusions are
now considered as oblate ellipsoids and their volume fraction f is the product of the density Z
(inversely propotional to a length: the mesh size Lmesh) and the fictitious thickness e: f = eZ
(cylindrical hypothesis instead of oblate one without any consequence when e→ 0).

2.3 Hashin-Shtrikman estimate

A Hashin-Shtrikman estimate Hashin and Shtrikman (1963) is used to establish an analytical
expression of the overall elastic stiffness Chom. This variational representation is based on the
use of polarization fields related to a homogeneous reference medium (stiffness C0). In the case
of a biphasic medium, the Hashin-Shtrikman estimate can be expressed as:

CHS(C0) =
[
fCcoh : T + (1− f)CM

]
: [fT + (1− f)I]−1 . (7)

where the fourth order tensor T is given by T = (C∗ + Ccoh)−1 : (C∗ + CM) with C∗ being the
Hill influence tensor which depends on the shape of the inclusions and on the reference medium
C0.

3 Effective overall moduli for the elastic problem

The final expression of the Hashin-Shtrikman estimate depends on the choice of the reference
medium (C0) and an appropriate average over mesh orientations (see Blal et al. (2011) for
details). Assuming that the orientations of inclusions have the equi-probability property, which
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corresponds to the case of isotropic meshes (e.g. Delaunay-type meshes), the expression (7) is
reduced to (Blal et al. (2011)):

CHS(C0) =

[
eZ
〈
Ccoh : T

〉
	

+ (1− eZ)CM

]
:
[
eZ〈T〉	 + (1− eZ)I

]−1
(8)

where 〈.〉	 indicates the average over all orientations. Following Gatt et al. (2005), this ori-
entational average is calculating as 〈D〉	 = (J :: D)J + (1/5)(K :: D)K for any fourth order

tensor D, and the overall stiffness tensor is obtained: Chom = lime→0 CHS(C0). According to the
choice of the reference medium C0, different bounds and estimates can be derived. Since, in a
quadratic sense, the tensor Ccoh is smaller than CM when e tends to 0, the lower bound of the
Hashin-Shtrikman estimate is obtained for the case C0 = Ccoh:

Chom = lim
e→0

CHS-
(
Ccoh

)
= lim

e→0

[
eZ
〈
Ccoh : T

〉
	

+ (1− eZ)CM

]
:
[
eZ〈T〉	 + (1− eZ)I

]−1
. (9)

Thus, after passage to limit e→ 0, the overall bulk and shear moduli are:

khom

kM
=

ξk

ξk + 1
with ξµ =

CN

ZkM
and

µhom

µM
=

ξµ

ξµ + 1
with ξµ =

15

4(1 + 3CN/CT)

CN

ZµM
,

(10)
more practically in terms of Young modulus and Poisson ratio:

Ehom

EM
=

ξE
1 + ξE

where ξE =
5

1 + (4/3)(CN/CT)
× CN

EMZ
, (11)

νhom

νM
=

EMZ(−1 + 2CN/CT) + 15CNν
M

EMZ(3 + 4CN/CT)νM + 15CNνM
. (12)

These lower bounds (10) give indication on the lost of global stiffnesses, e.g.:

{
khom/kM ≥ 0.95 is insured for ξk ≥ 20 ,

µhom/µM ≥ 0.95 is insured for ξµ ≥ 20 .
(13)

Using the software XPER Perales et al. (2008), the accuracy of these bounds is tested for the
particular case CN = CT in Figure 3. As shown in Figure 3, relations (10) are lower bounds for
isotropic meshes (Delaunay) and can be considered as convenient estimate for regular meshes.
Moreover, it is clearly shown that criteria ξk ≥ 20 and ξµ ≥ 20 (dashed lines) ensure that the
overall elasticity is disturbed by less than 5%.

4 Extension to the damage problem

4.1 Problem formulation

In this section, the overall behaviour for the damage part is studied (non linear damageable
cohesive zone models). The macroscopic associated stress Σ is obtained via the constitutive
law: Σ = Chom : E. The homogeneous stiffness tensor Chom is estimated using the modified
secant method Suquet (1995), which is equivalent to the Ponte Castañeda variational approach
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Figure 3: Normalized overall elastic modulus of a cohesive-volumetric formulation with intrinsic
CZMs (case CN = CT): lower bounds (10) (thick gray line), numerical results for Delaunay
meshes (closed symbols with variance) and for cross-triangle quadrilateral meshes (open sym-
bols); bulk modulus (left) and shear moduls (right).

Ponte Castañeda and Suquet (1998). Focusing on the case of isotropic local damage, the non
linear damageable cohesive law is defined introducing a surface damage parameter β in (3)
(β = 1 the cohesive zone is undamaged, 0 < β < 1 cohesive zone is partially damaged and β = 0
the cohesive zone is fully damaged), namely:

Rcoh = β ×
(
CNn⊗ n+ CT

uT ⊗ uT

uT · uT

)
[[u]]. (14)

We assume that the parameter β depends only on the norm of the displacement jump vector
[[u]] (β = β(‖[[u]]‖)). Hence, equation (14) leads to the non linear stiffness of the inclusions given
by the secant modulus:

Ccoh
sct = β(‖[[u]]‖)× Ccoh. (15)

The secant stiffness Ccoh
sct replaces the cohesive tensor Ccoh in Hashin-Shtrikman estimate (9).

Using the strain definition (5), the norm of the displacement jump ‖[[u]]‖ can be linked to the
fourth order tensor � = (1/2)ε⊗ ε as:

‖[[u]]‖2 = 2e2(−J + 2K) :: �. (16)

On the other hand, the second moment of the strain in the inclusion phase 〈�〉I can be linked
to the overall elastic energy by (see Kreher (1990)):

〈�〉I =
1

2eZ

∂(E : Chom : E)

∂Ccoh
sct

. (17)

Hence, substituting (17) into (16), the quadratic average of the displacement jump reads:

√〈
‖[[u]]‖2

〉
I

=

√
e

Z
(−J + 2K) ::

∂(E : Chom : E)

∂Ccoh
sct

(18)

which may be also written involving the hydrostatic part of the strain load Em = (1/3) tr(E)
and the equivalent part Eeq =

√
(2/3)Edev : Edev (with Edev being the deviatoric strain tensor:
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Edev = E− Emi):

√〈
‖[[u]]‖2

〉
I

=

[
E2
eq

(1 + ν)2(2 + ν)
+

20E2
m

23 + 17ν − 44ν2 − 164ν3

] 1
2

×F , (19)

where the scalar F depends on the damage parameter, the cohesive stiffnesses, the material
properties and the mesh size (its expression is too complicated to be given here in a closed-
form). Finally, the expression of the secant modulus is given by:





Ccoh
sct = β × (CNEl + CTKl),

β = β



[

E2
eq

(1 + ν)2(2 + ν)
+

20E2
m

23 + 17ν − 44ν2 − 164ν3

] 1
2

×F


 .

(20)

Given the expression of the damage function β, one can obtain the solution of the non linear
problem (20) using a numerical method, e.g. fixed point schemes. The obtained result defines
therefore a micromechanical damage model applicable whatever the triaxiality loading ratio.
The case of a bilinear cohesive law will be discussed in the next section.

4.2 Application: bilinear cohesive law

Focusing on the case of brittle fracture in elastic materials, a bilinear cohesive damageable law
is studied hereafter (see Figure 4). An elliptic damage model is thus derived (Figure 6 left). For

uN

RN (uN , 0)

Rmax
N

δa δc

βCNCN
uT

RT (0, uT )

Rmax
T

δa δc

βCT

CT

1





RN = βCNuN ; RT = βCT uT

β(u) = δa
δa−δc

�
1 − δc

�u�

�

Rcoh
max =

�
(Rmax

N )2 + (Rmax
T )2

�1/2

Rmax
N = CNδa; R

max
T = CT δa

1

Figure 4: Cohesive bilinear law

that specific case of cohesive law, the effective yielding surface at failure is given involving the
hydrostatic and equivalent strain by the equation:

Ψ(Em,Eeq) =
E2
eq

Eeq
2 + α

E2
m

Eeq
2 − 1 = 0 (21)

where Eeq =
√

10(1+νM )Zδc/3(
√

23 + 63νM + 82(νM )2 is the equivalent macroscopic strain at
failure under pure deviatoric load. The coefficient α is equal to the square of the ratio between
equivalent strain Eeq and hydrostatic one Em at failure, and depends only on the Poisson ratio
of the matrix νM (Figure 5 illustrates the effect of the Poisson ratio on the triaxilaty ratio at
the failure: the more incompressible the material is, the larger the coefficient α becomes). It
gives an idea about the triaxiality ratio effect associated to our model. For a material with
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EM (GPa) νM Rcoh
max(MPa) δc(mm) CN(= CT)(MPa/mm)

340 0.3 500 10−5 34.109

Table 1: Material and cohesive parameters

νM = 0.3, α is about 3.94, in other words, the equivalent strain which leads to total failure, in
the case of deviatoric load, is nearly twice the hydrostatic strain for a 3D traction: Eeq ' 2Em

(Figure 6). Obviously, the model depends on the Poisson ratio and deals with any type of
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Figure 5: Triaxialty dependence on the Poisson ratio.

triaxiality. Therefore, it extends to the brittle case Gurson-like model Gurson (1977) (where
no dependence to Poisson ratio can be predicted) and Li-Wang model Li and Wang (2004)
(restricted to hydrostatic loads). Moreover, equation (21) and Figure 5 show that the cohesive-
volumetric finite element method predicts that: 1) it is easier to break a material under purely
hydrostatic loadings than under purely deviatoric ones, when −0.27 ≤ νM < 0.5, 2) it is easier
to break a material under purely deviatoric loadings than under purely hydrostatic ones, when
−1 ≤ νM < 0.27.

Figure 6 (right) illustrates the evolution of the macroscopic behaviour associated to the
bilinear cohesive law. Results are given for the case of a pure deviatoric load and shows a
dependence on the mesh size Lmesh. This mesh sensitivity could be avoided according to rigorous
calibration of the cohesive parameters. This point is developed in details in section 5.2. The
material properties and cohesive parameters are given in Table 1.

5 Inverse identification and rigorous criteria on cohesive param-
eters

5.1 Lower bounds on cohesive stiffness

The inverse study of the results obtained in the elastic part allows to derive an a priori estimate
of the overall elastic reduction as function of the cohesive stiffnesses, and therefore to suitably
calibrate them. Practical criteria are proposed following Acary and Monerie (2006) from the
previous micromechanical model. Denoting by R = Ehom/EM the overall reduction of the Young
modulus (R = 1 corresponds to ’invisible’ intrinsic CZMs) and according to equation (11), an
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Figure 6: The elliptic damage model (21) (left) and the normalized overall behaviour for a
deviatoric applied loading given different values of the mesh size Lmesh (right). The material
and cohesive parameters are given in Table 1 and the overall stiffness reduction is tolerated at
5%, i.e. we admit that cohesive zone models disturb the overall Young modulus for less than
5%: Ehom/EM = 0.95.

implicit lower bound on CN/(E
MZ) is obtained involving the density Z and the ratio CN/CT:

CN

EMZ
≥ 1

5

R

1−R

(
1 +

4

3

CN

CT

)
. (22)

To complete the criterion (22), we suggest to ensure that the overall Poisson ratio stays equal
to the matrix one: νhom = νM . This condition leads to a restriction on the ratio CN/CT:

νhom = νM ⇒ CN

CT
=

1

2

1 + 3νM

1− 2νM
. (23)

Equations (22) and (23) give a lower bound on the normal cohesive stiffness as function of the
elastic reduction R: CN ≥ kMZR/(1−R). Since the density Z is inversely proportional to the
mesh size Lmesh, one obtains with (22) and (23):

CNLmesh

EM
≥ γ R

1−R
1

3− 6νM
, (24)

where γ depends on the spatial distribution of the considered isotropic mesh. For Delaunay
meshes, γ can be represented as a mean value and a variance Stoyan et al. (1995). For non-
isotropic meshes (as regular ones), we claim that the bound (24) can be considered as an accurate
estimate: interestingly, the two dimensional case of ’cross-triangle quadrilateral’ mesh (each
square element is subdivided into four isosceles triangles) corresponds to γ = 2(1 +

√
2) Acary

and Monerie (2006). The bound (10) and the condition (23) allow to define a ’5% criteria’
(R = 0.95) in terms of bulk and shear moduli for 2D regular meshes:

CNLmesh

kM
≥ 92 and

CTLmesh

µM

(
15− µM

kM
Lmesh

)
≥ 1104, (25)

and a ’practical 5% criterion’ (R = 0.95):

CNLmesh

EM
≥ 30

1− 2νM
with

CT

CN
= 2

1− 2νM

1 + 3νM
. (26)
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5.2 Criteria on damageable cohesive parameters

The identification of the other cohesive parameters follows from the damage part: critical open-
ing δc and cohesive peak value Rcoh

max. Without loss of generality, interest is made for the case of
overall deviatoric loads. The linearised constitutive law Σ = Chom : E gives the evolution of the
macroscopic equivalent stress as function of the macroscopic equivalent strain: Σeq(Eeq). The

macroscopic stress is maximum when the macroscopic strain reaches the strain Êeq corresponding
to:

∂Σeq

∂Eeq
|
Êeq

= 0, (27)

hence, one can obtain an explicit relationship between the maximum cohesive stress Rcoh
max and

the material tensile yielding stress Σ̂ = Σeq(Êeq):

Rcoh
max =

√
2
(
23 + 17νM + 71(νM )2 + 151(νM )3 + 410(νM )4

) 1
2

3 (1− 2νM ) |1 + 3νM | Σ̂. (28)

In order to guarantee that the proposed model does not predict complete failure before the initi-
ation of fissure opening, an additional condition concerning the choice of the critical separation
δc is needed. For the case of regular meshes, we have:

δc
Lmesh

=
3
(
−1 +

√
2
) (

23 + 63νM + 82(νM )2
) (

1− 2νM + 5(νM )2
) 1

2

√
10 (1 + νM ) (23 + 17νM + 71(νM )2 + 151(νM )3 + 410(νM )4)

1
2

× W

Σ̂
, (29)

where W denotes the material fracture energy. The results issue from equations (23), (24),
(28) and (29) give practical rules to suitably calibrate the cohesive parameters, namely the
cohesive stiffnesses CN and CT, the maximal cohesive stress Rcoh

max and the critical separation δc
(equivalently the cohesive energy) as function of the macroscopic material properties (EM , νM )
and the mesh size Lmesh given a user-defined stiffness reduction R. Even though these results
include a dependence of the cohesive parameters on the mesh size (except the case of Rcoh

max), this
way to calibrate the damageable cohesive law leads to a mesh-independent overall behaviour:
the macroscopic behaviour stays invariant regardless of the mesh size. Taking into account the
previous relationships, the homogenized secant moduli are given as function of the overall load
E, where it is clearly shown that the overall macroscopic behaviour has no dependence on the
mesh size: 




khomsct (E) = R
(EeqΣ̂−2W )

Eeq(Σ̂2−6RWµM)
kM Σ̂

µhomsct (E) = R
(EeqΣ̂−2W )

Eeq(Σ̂2−6RWµM)
µM Σ̂

(30)

Similar results can be obtained for the case of hydrostatic loads.

6 Concluding remarks

The overall constitutive behaviour of an elastic medium with embedded cohesive inclusions has
been studied. The equivalent ’matrix-inclusions’ composite is considered as a representation
of a cohesive-volumetric finite element modelling. As result of this micromechaical model, the
following points can be highlighted:
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• Rigorous lower bounds on normal, CN, and tangential, CT, cohesive stiffness have been
obtained for isotropic meshes as well as convenient criteria for regular meshes. The ac-
curacy of this result has been numerically checked for both Delaunay and cross-triangle
quadrilateral meshes.

• The specific case of a bilinear shape cohesive zone model leads to an overall elliptic damage
model for brittle materials. The approach is valid for any macroscopic triaxiality ratio and
thus extends previous partial results of the literature. The proposed model is able to
estimate the influence of Poisson ratio in material damage.

• All the local cohesive parameters can be linked to the overall fracture material properties
at any given mesh size. One merit of the cohesive parameters inverse identification is its
ability to derive an overall behaviour avoiding mesh dependency of mesh size. This result
gives rigorous explications of the previous empirical results proposed in the literature.
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