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 we prove that the largest generation entirely visited behaves almost surely like log n up to a constant. Here we study how the walk visits the generations ℓ = (log n) 1+ζ , with 0 < ζ < 2. We obtain results in probability giving the asymptotic logarithmic behavior of the number of visited sites at a given generation. We prove that there is a phase transition at generation (log n) 2 for the mean of visited sites until n returns to the root. Also we show that the visited sites spread all over the tree until generation ℓ.

Introduction

We start giving an iterative construction of the environment. Let (A i , i ≥ 1) a positive random sequence and N an independent N-valued random variable following a distribution q, in other words P(N = i) = q i for i ∈ N. Let φ the root of the tree and (A(φ i ), i ≤ N φ )) an independent copy of (A i , i ≤ N ). Then, we draw N φ children to φ: these individuals are the first generation. Each child φ i is associated with the corresponding A(φ i ) and so on. At the n-th generation, for each individual x we pick (A(x i ), i ≤ N x ) an independent copy of (A i , i ≤ N ) where N x is the number of children of x and A(x i ) is the random variable attached to x i . The set T, consisting of the root and its descendants, forms a Galton-Watson tree (GW) of offspring distribution q and where each vertex x = φ is associated with a random variable A(x). We denote by |x| the generation of x, ← x the parent of x, and for convenience reasons we add ← φ, the parent of φ. The set of environments denoted by E is the set of all sequences ((A(x i ), i ≤ N x ), x ∈ T), with P and E respectively the associated probability measure and expectation.

We assume that the distribution of (A i , i ≤ N ) is non-degenerate and, to obtain a supercritical GW, that E[N ] > 1. Moreover we add uniform ellipticity conditions ∃ 0 < ε 0 < 1, Pa.s ∀i, ε 0 ≤ A i ≤ 1/ε 0 , (1.1) ∃ N 0 ∈ N, Pa.s N ≤ N 0 .

(1.2)

Given E ∈ E, we define a T-valued random walk (X n ) n∈N starting from φ by its transition probabilities,

p(x, x i ) = A(x i ) Nx j=1 A(x j ) + 1 , p(x, ← x) = 1 - Nx j=1 p(x, x j ), p( ← φ, φ) = 1.
Note that our construction implies that (p(x, .), x ∈ T) is an independent sequence. We denote by P E the probability measure associated to this walk, the whole system is described under the probability P, the semi-direct product of P and P E .

To study asymptotical behaviours associated to (X n ) n∈N , a quantity appears naturally: the potential process V associated to the environment which is actually a branching random walk. It is defined by V (φ) := 0 and

V (x) := - z∈ φ,x log A(z), x ∈ T\{φ},
where φ, x is the set of vertices on the shortest path connecting φ to x and φ, x = φ, x \{φ}. We put ourself in the non lattice case so log A i can not be written as b + cZ, and introduce the moment-generating function

ψ(t) := log E   |x|=1 e -tV (x)   ,
characterizing the environment. Note that the hypothesis we discuss above implies that ψ is defined on R, and ψ(0) > 0. In fact the hypothesis (1.1) and (1.2) are not always needed for our work and they could be replaced by the existence of ψ in (-δ, 1 + δ) with δ > 0 together with the existence of a moment larger than 1 for N . In Section 2 for example we could lighten the hypothesis this way, but it would be much more complicated in Section 4.

Thanks to the work of M.V. Menshikov and D. Petritis, see [START_REF] Menshikov | On random walks in random environment on trees and their relationship with multiplicative chaos[END_REF] and the first part of [START_REF] Faraud | A central limit theorem for random walk in a random environment on marked galton-watson trees[END_REF] by G. Faraud, if x) . In [START_REF] Faraud | Almost sure convergence for stochastically biased random walks on trees[END_REF] (see also [START_REF] Hu | Slow movement of recurrent random walk in random environment on a regular tree[END_REF]), G. Faraud, Y. Hu and Z. Shi study the asymptotic behavior of max 0≤i≤n |X i | = X * n , i.e. the largest generation visited by the walk. Assuming (1.3), they prove the existence of a positive constant a 0 (explicitely known) such that P a.s. on the set of non-extinction of the GW lim n→+∞ X * n (log n) 3 = a 0 .

ψ(1) = ψ ′ (1) = 0 (1.3) then X is null recurrent, with ψ ′ (1) = -E |x|=1 V (x)e -V ( 
(1.4)

In [START_REF] Andreoletti | The number of generations entirely visited for recurrent random walks on random environment[END_REF] we were interested in the largest generation entirely visited by the walk, that is to say the behavior of

R n := sup{k ≥ 1, ∀|z| = k, L(z, n) ≥ 1}, with L the local time of X defined by L(z, n) := n k=1 1 X k =z . More precisely, if (1.
3) is realized, P a.s. on the set of non-extinction

lim n→+∞ R n log n = 1 γ , (1.5) 
where γ := sup{a ∈ R, J(a) > 0} with J(a) := inf t≥0 {ψ(-t) -at}.

Although in [START_REF] Andreoletti | The number of generations entirely visited for recurrent random walks on random environment[END_REF] all recurrent cases are treated, here we focus only on the hypothesis (1.3). According to (1.4) and (1.5), until generation log n /γ all the points are visited but X does not visit generations further than a 0 (log n) 3 . The aim of this paper is to study the asymptotic of the number of visited sites at a given generation (log n) 1+ζ with 0 < ζ < 2. For this purpose we define the number of visited sites at generation m ∈ N until the instant n

M n (m) := #{|z| = m, L(z, n) ≥ 1},
and before n returns to the root K n (.) := M T n φ (.) where

T n x = inf{k > T n-1
x , X k = x} for n ≥ 1 and T 0 x = 0 for x ∈ T. Let Z m the number of descendants at generation m ∈ N, we have Z 1 = N . Our first results quantify the number of visited points at a given generation ℓ := (log n) 1+ζ . Thanks to the hypothesis of ellipticity, ψ can be written as a power series in particular, for any x small enough, ψ(1x) = +∞ j=1 u j x j , where u j = ψ (j) (1), these are called cumulants and here

u 1 := ψ ′ (1) = 0, u 2 := ψ ′′ (1) = σ 2 . Let us define the function f , for any x small enough f (x) := 1 - x 2σ 2 + x 2 λ(x).
λ is the Cramér's series depending on the cumulants of ψ(1x) (for more details on the Cramér's series see for example [START_REF] Petrov | Sums of Independent Random Variables[END_REF] p. 219-223).

Theorem 1.1 For all 0 < ζ < 2, ε > 0 independent of ζ there exists C 0 > 0 such that

lim n→+∞ P ψ(0) γ (1 -ε) ≤ log M n (ℓ) log n ≤ 1 -C 0 log log n log n ∨ 1 (log n) ζ = 1. (1.6)
Also for all n large enough, there exist two positive constants C 1 and C 2 such that

C 1 (log n) ε e (log n)•f [(log n) -ζ ] (log n) (1+ ζ)/2 ≤ E[K n (ℓ)] ≤ C 2 e (log n)•f [(log n) -ζ ] (log n) (1+ ζ)/2 , (1.7 
)

with ζ := 1 0<ζ<1 + ζ1 1≤ζ<2 .
(1.6) shows that, at each generation ℓ, the cardinal of visited sites is at least n ψ(0)(1-ε)/γ for any ζ, that is to say like the last generation entirely visited R n (ψ(0)/γ < 1, by convexity of ψ and the fact that ψ(1) = 0). Also the upper bound of M n (ℓ) is at most of the order of ne -C 3 (log n) 1-ζ /(log n) C 4 , with C 3 , C 4 > 0. This suggests that it may have a phase transition when ζ = 1. Although we are not able to show this for M n (ℓ) the existence of a phase transition is proved in (1.7) for the mean of K n (ℓ). Indeed by definition of f ,

(log n)f [(log n) -ζ ] = log n - (log n) 1-ζ 2σ 2 + (log n) 1-2ζ λ((log n) -ζ )
We can see that in the neighborhood of generation (log n) 2 that is to say when ζ = 1, the asymptotic behavior of N ζ := E[K n (ℓ)] changes. We easily check that for all 0

< ζ < ζ ′ ≤ 1, lim n→+∞ N ζ ′ /N ζ = +∞ whereas for all 1 ≤ ζ < ζ ′ < 2, lim n→+∞ N ζ ′ /N ζ = 0.
So the generations of order (log n) 2 are, in mean, the most visited generation (in term of distinct site visited) until n returns to the origin. Finally notice that when ζ > 1/2 we are in a Gaussian behavior as e

(log n)f [(log n) -ζ ] ∼ ne -(log n) 1-ζ 2σ 2
, and when

ζ ≥ 1, e (log n)f [(log n) -ζ ] ∼ n.
In order to establish our second result, recall Neveu's notation to introduce a partial order on our tree. In [START_REF] Neveu | Arbres et processus de galton-watson[END_REF], to each vertex x at generation m ∈ N, Neveu associates a sequence x 1 . . . x m where x i ∈ N, to simplify we write x = x 1 . . . x m . This sequence gives the complete "genealogy" of x: if y = x 1 . . . x i with |y| = i < m, y is the unique ancestor of x at generation i and we write y < x. For instance

← x = x 1 . . . x m-1 and 1 ≤ x m ≤ N← x , in other words x is the x m -th child of ← x.
To extend this partial order for |x| = |z|, we write x < z if there exists i < m such that x k = z k for k < i and x i < z i . Hence we can number individuals at a given generation "from the left to the right" and for A a subset of {z ∈ T, |z| = m}, inf A and sup A are respectively the minimum and maximum associated to this numbering. Our last result gives an idea of the way the visited points spread on the tree, for this purpose we introduce clusters: let z ∈ T and m ≥ |z|, we call cluster issued from z at generation m denoted C m (z), the set of descendants u of z such that |u| = m, in other words

C m (z) := {u > z, |u| = m}. (1.8) 
At some point we need to quantify the number of individuals between two disjoint clusters with common generations. For given initial and terminal generations, denote C a set of disjoint clusters. Let (D j , 1 ≤ j ≤ |C |), with |C | the cardinal of C , an ordered sequence of (disjoint) clusters belonging to C , that is to say for all j, sup D j < inf D j+1 . We define the minimal distance between clusters in the following way D(C 3), also define the following event for all m > 0 and q > 0

) := min 1≤j≤|C |-2 (inf D j+2 - sup D j ),
A i (m, q) := C i    {|C i | ≥ q, D(C i ) ≥ m} D∈C i {∀z ∈ D, L(z, n) ≥ 1}    .
There exist 0 < k < 1∧ζ, 0 < r < 1 with 0 < k+r ≤ 1 and for

k n = (log n) k , r n = (log n) r lim n→+∞ P kn i=2
A i (e ψ(0)hn /2 , e ψ(0)rn(i-1)/2 ) = 1.

(1.11)

(1.9) implies the existence of a cluster starting at a generation ℓlog n/γ completely visited (see Figure 1). As conditionnaly on the tree until generation |z|, |C ℓ (z)| is equal in law to Z ℓ-|z| = Z ψ(0) log n/γ , this cluster is large and, in particular, (1.9) implies the lower bound in (1.6).

(1.10) tells that we can find visited individuals at generation ℓ = (log n) 1+ζ , with a common ancestor to a generation close to the root, that is to say before generation εℓ 1/3 (see Figure 4). Thus, with a probability close to one, at least e ε(1-ε)ψ(0)ℓ 1/3 /2 individuals of generation ℓ separate by at least e ψ(0)ℓ/2 individuals of the same generation ℓ, are visited.

Finally (1.11) tells that if we make cuts regularly on the tree we can find many visited clusters (which number increases with the generation) well separated. In particular these visited clusters can not be in a same large visited clusters as they are separated by at least e ψ(0)hn/2 ∼ e ψ(0)(log n) 1+ζ-k /2 > n individuals (see also Figure 3).

To obtain these results we show that K n (ℓ) can be linked to a random variable depending only on the random environment and n. For all z ∈ T, all integer k and all real a, we define the random variable

R z a (k) := #{u > z, |u| = k, V (z) ≤ a},
where V (z) = max u∈ φ,z V (u). For notational simplicity, we write R a (k) for R φ a (k). We obtain the following Proposition 1.3 Let ε > 0 and Φ a sequence such that

(1 -ε) log n ≤ Φ(n) ≤ log n + o(log n).
(1.12)

Then, for all 0 < ζ < 2 there exists

C ′ 0 > 0 lim n→+∞ P ψ(0) γ (1 -ε) ≤ log R Φ(n) (ℓ) Φ(n) ≤ 1 -C ′ 0 log log n Φ(n) ∨ Φ(n) ℓ = 1, (1.13) 
E[R Φ(n) (ℓ)] ≍ (ℓ -1 1 0<ζ<1 + Φ(n)ℓ -3/2 1 1≤ζ<2 )e Φ(n)f (Φ(n)/ℓ) . (1.14)
We use the notation a n ≍ b n when there exists two positive constants c 1 and c 2 such that c 1 b n ≤ a n ≤ c 2 b n for all n large enough. The lack of precision for the first result shows no difference between R log n (ℓ) and M n (ℓ) (see (1.6)), unlike between the means of R log n (ℓ) and K n (ℓ).

The rest of the paper is organized as follow: in Section 2 we study R Φ(n) (ℓ) and prove Proposition 1.3. In Section 3 we link R Φ(n) (ℓ) and M n (ℓ), which leads to Theorem 1.1 and (1.9) of Theorem 1.2. In Section 4 we prove the end of Theorem 1.2. Also we add an appendix where we state known results on branching processes and local limit theorems for sums of i.i.d. random variables. Note that for typographical simplicity, we do not distinguish a real number and its integer part throughout the article.

Expectation and bounds of R Φ(n) (ℓ)

In this section we only work with the environment more especially with what we call number of accessible points R Φ(n) (ℓ).

Expectation of R

Φ(n) (ℓ) (proof of (1.14))
According to Biggins-Kyprianou identity (also called many-to-one formula, see part

A of appendix), E[R Φ(n) (ℓ)] = E e S ℓ 1 Sℓ ≤Φ(n)
where S j is a centered random walk, we only have to prove

Lemma 2.1 For all ε > 0, Φ satisfying (1.12), for all 0 < ζ < 2 E e S ℓ 1 Sℓ ≤Φ(n) ≍ e Φ(n)f (Φ(n)/ℓ) ℓ -1 1 0<ζ≤1 + Φ(n)ℓ -3/2 1 1≤ζ<2 .

Proof.

For ε > 0:

E e S ℓ 1 Sℓ ∈I Φ(n) ≤ E e S ℓ 1 Sℓ ≤Φ(n) ≤ E e S ℓ 1 Sℓ ∈I Φ(n) + e Φ(n)(1-ε) . with I Φ :=]Φ(n)(1 -ε), Φ(n)].
For every sequence (u n ) n∈N , we denote ūj := max 1≤i≤j u i and u j := min 1≤i≤j u i , also let

S j := { Sj-1 < S j = Sℓ }. First, as S 0 = 0 ℓ j=1 E e S ℓ 1 S j ∈I Φ(n) ,S j ≤ E e S ℓ 1 Sℓ ∈I Φ(n) ≤ ℓ j=1 E e S ℓ 1 S j ∈I Φ(n) ,S j + 1.
For 0 ≤ i ≤ j, let Si := S j -S j-i , with this notation { Sj-1 < S j } = { Sj-1 > 0} and Sj = S j . Writing S as a sum of i.i.d. random variables, we easily see that (S i ) 0≤i≤j and ( Si ) 0≤i≤j have the same law. Then, conditioning on σ{S k , k ≤ j}

E e S ℓ 1 S j ∈I Φ(n) ,S j = D j F ℓ-j (2.1)
with F m := E e Sm 1 Sm≤0 and D j := E e S j 1 S j ∈I Φ(n) ,S j-1 >0 .

By (B.1), ∀j ≤ ℓ, F ℓ-j ≍ (ℓj + 1) -3/2 then it remains to estimate D j . For any A > 0

D j = Φ(n) k=Φ(n)(1-ε)+1 E e S j 1 k-1<S j ≤k,S j >0 ≍ Φ(n) k=Φ(n)(1-ε)+1 e k P (k -1 < S j ≤ k, S j > 0)(1 k≤Aj 1/2 + 1 k>Aj 1/2 ) =: D 1 j + D 2 j .
We now need to distinguish the cases 0

< ζ < 1 and 1 ≤ ζ < 2. When 0 < ζ < 1, D 1 j = 0 as k > Aℓ 1/2
. Also using Lemma B.6 for A large enough

H 2 j := Φ(n) k=Φ(n)(1-ε)+1 e k P (k -1 < S j ≤ k, S j > 0)1 Aj 1/2 <k<εj ≍ εj∧Φ(n) k=Φ(n)(1-ε)+1 e k P (k -1 < S j ≤ k, S j > 0) ≍ εj∧Φ(n) k=Φ(n)(1-ε)+1 e kf (k/j) j , (2.2) 
recall that f (x) = 1 -x/(2σ 2 ) + x 2 λ(x)
where λ is the Cramér's serie associated to V .

(2.2) implies that H 2 j ≥ c -e (εj∧Φ(n))f ((εj∧Φ(n))/j) /j. For the upper bound, we can assume without loss of generality that ε is small enough to ensure that for |x| ≤ ε, λ(x) converges and f ′ (x) is negative. Therefore, the derivative of F defined by F (x) := e xf (x/j) /f (x/j) satisfies in the same interval

F ′ (x) ≥ e xf (x/j) -c + xe xf (x/j) /j ≥ e xf (x/j) (1 -c + ε), with c + > 0. Integrating this last inequality, for ε small enough εj∧Φ(n) Φ(n)(1-ε) e xf (x/j) ≤ [F (x)] εj∧Φ(n) Φ(n)(1-ε) /(1 -c + ε) ≤ C + e (εj∧Φ(n))f ((εj∧Φ(n))/j) , (2.3) 
and finally

H 2 j ≤ C + j Φ(n) Φ(n)(1-ε) e xf (x/j) dx ≤ C + j e (εj∧Φ(n))f ((εj∧Φ(n))/j) .
Note that for s > 0 small enough, ψ(1s) ≤ s/2. So the exponential Markov inequality applied to P (sS j > sk) and the identity E[e sS j ] = e jψ(1-s) yield

H2 j := Φ(n) k=Φ(n)(1-ε)+1 e k P (k -1 < S j ≤ k, S j > 0)1 k≥εj ≤ e Φ(n)(1-s/2) .
In particular H2 j = o(H 2 j ) for all j ≥ Φ(n) 1+u with u > 0. Finally, as for any ε small enough (εj

∧ Φ(n))f ((εj ∧ Φ(n))/j) is increasing in j, for any 0 < u < ζ ℓ j=1 D j F ℓ-j ≍ ℓ j=Φ(n) 1+u (ℓ -j + 1) -3/2 j -1 e (εj∧Φ(n))f ((εj∧Φ(n))/j) ≍ e Φ(n)f (Φ(n)/ℓ) /ℓ. (2.4) Indeed, writing ℓ j=Φ(n) 1+u (ℓ -j + 1) -3/2 j -1 e (εj∧Φ(n))f ((εj∧Φ(n))/j) := ℓ j=Φ(n) 1+u G j , ℓ j=Φ(n) 1+u G j ≥ G ℓ and as ℓ 2 j=Φ(n) 1+u G j ≤ C + e Φ(n)f (Φ(n)/ℓ) φ(n) 1+u ℓ 1 2 ≤ C + e Φ(n)f (Φ(n)/ℓ) ℓ , ℓ j= ℓ 2 +1 G j ≤ C + e Φ(n)f (Φ(n)/ℓ) ℓ ℓ j= ℓ 2 +1 (ℓ -j + 1) -3 2 ≤ C + e Φ(n)f (Φ(n)/ℓ) ℓ ,
(2.4) follows.

When 1 ≤ ζ < 2, we prove that the main contribution comes from D 1 j . As for any n large enough, Φ(n) ≤ Aℓ 1/2 for some A > 0, for any j ≥ (Φ(n)/A) 2 using Lemma B.6

D 1 j ≍ Φ(n) k=Φ(n)(1-ε) ke k j 3/2 e -k 2 /(2σ 2 j) ≍ Φ(n) j 3/2 e Φ(n)f (Φ(n)/ℓ) .
When j < (Φ(n)/A) 2 , similar computations than for H j and Hj give

ℓ j=1 D 2 j F ℓ-j ≤ (Φ(n)/A) 2 j=1 F ℓ-j (H 2 j + H2 j ) ≤ C + e Φ(n)(1-(A 2 /2σ 2 ∧s/2))
.

Finally ℓ j=1 D j F ℓ-j ≍ Φ(n)e Φ(n)f (Φ(n)/ℓ) ℓ -3/2
, this together with (2.4) finishes the proof.

Bounds for log

R Φ(n) (ℓ) (proof of (1.13))
The upper bound is a direct consequence of Markov inequality and (1.14).

For the lower bound, we first need an estimation on the deviation of min |z|=m V (m), this topic has been studied in details in [START_REF] Faraud | Almost sure convergence for stochastically biased random walks on trees[END_REF],

Proposition 2.2 Let a n a positive sequence such that a n ∼ n 1/3 , there exists b 0 > 0 such that for any 0 < b < b 0 lim n→+∞ 1 a n log P min |z|=n V (z) ≤ ba n = b -b 0 . (2.5)
A useful consequence of the above Proposition is the following Lemma 2.3 Assume that a n is a positive increasing sequence such that a n ∼ n 1/3 , there exists a constant µ > 0 such that for any n large enough

P min |z|=n V (z) > µa n ≤ λ n + o(λ n ), (2.6) 
where λ n = e -c 1 e c 1 an if q 0 + q 1 = 0, and λ n = e -c 1 an otherwise, also c 1 > 0 depends only on the distribution P .

Proof.

Clearly for

z 1 < z, V (z) ≤ V (z 1 ) + Ṽ (z 1 , z) where Ṽ (z 1 , z) = max z 1 <x≤z V (x) -V (z 1
). In the sequel, writing Ṽ (z 1 , z) implies that z 1 < z implicitly. For 0 < η < 1 and v n := ηb 0 an /α

P min |z|=n V (z) > 2ηb 0 a n ≤ P min |z 1 |=vn min |z|=n Ṽ (z 1 , z) > 2ηb 0 a n -max |z 1 |=vn V (z 1 ) .
Using that max |z 1 |=vn V (z 1 ) ≤ αv n by ellipticity and for A n := Z vn ≥ e ηψ(0)vn

P min |z|=n V (z) > 2ηb 0 a n ≤ P min |z 1 |=vn min |z|=n Ṽ (z 1 , z) > ηb 0 a n ≤ P min |z 1 |=vn min |z|=n Ṽ (z 1 , z) > ηb 0 a n , A n + P ( Ān ).
Theorem A.2 tells that if q 0 + q 1 > 0, there exists ν > 0 such that P ( Ān ) ≤ e -ν(1-η)ψ(0)vn , otherwise there exists β ′ > 0 such that log P ( Ān ) ∼ -e β ′ (1-η)ψ(0)vn . Stationarity gives that min |z|=n Ṽ (z 1 , z) and min |z|=n-vn V (z) have the same law, and independence of the sub-branching processes rooted at generation v n together with (2.5) imply P min 

n := Φ(n)(1-ε)/γ and such that ∀z ′ ∈ C ℓ (z), V (z ′ ) ≤ Φ(n).
In other words for |z| < ℓ, let Z z ℓ the number of descendants of z at generation ℓ, we prove

lim n→+∞ P   |z|=ℓ-wn #{z ′ ∈ C ℓ (z), V (z ′ ) ≤ Φ(n)} = Z z ℓ   = 1, (2.7) 
which implies according Theorem A.2 that

lim n→+∞ P R Φ(n) (ℓ) ≥ e ψ(0)wn(1-ε) = 1. Let B := |z|=ℓ-wn {V (z) ≤ y n , R z Φ(n)-yn (ℓ) = Z z ℓ } where y n := µℓ 1/3 P (B) ≥ P   {R yn (ℓ -w n ) ≥ 1} |z|=ℓ-wn,V (z)≤yn R z Φ(n)-yn (ℓ) = Z z ℓ   = k≥1 P (R yn (ℓ -w n ) = k) P   |z|=ℓ-wn,V (z)≤yn R z Φ(n)-yn (ℓ) = Z z ℓ R yn (ℓ -w n ) = k   .
Let us denote z 1 , . . . , z k , . . . the ordered points at generation ℓw n satisfying V (z i ) ≤ y n .

Conditionally on {R yn (ℓw n ) = k}, z 1 exists and

R z 1 Φ(n)-yn (ℓ) = Z z 1 ℓ ⊂ |z|=ℓ-wn,V (z)≤yn R z Φ(n)-yn (ℓ) = Z z ℓ .
Furthermore, by stationarity R z 1 Φ(n)-yn (ℓ) and R Φ(n)-yn (w n ) have the same law, so

P (B) ≥ P R Φ(n)-yn (w n ) = Z wn k≥1 P (R yn (ℓ -w n ) = k) ≥ P max |z|=wn V (z) ≤ Φ(n) -y n P min |z|=ℓ-wn V (z) ≤ y n As y n = o(Φ(n))
, the first probability tends to one thanks to a result of Mac-Diarmid [START_REF] Mcdiarmid | Minimal position in a branching random walk[END_REF] (see also [START_REF] Andreoletti | The number of generations entirely visited for recurrent random walks on random environment[END_REF] Lemma 2.1), so does the second one as a consequence of Lemma 2.3.

3 Expectation of K n (ℓ), bounds for log K n (ℓ) and log M n (ℓ)

3.1 Proof of (1.7)

We start with general upper and lower bounds for the annealed expectation of K n (ℓ).

Lemma 3.1 For n ∈ N:

C -(nA - n + B - n ) ≤ E[K n (ℓ)] ≤ C + (nA + n + B + n )
where

A + n := E e S ℓ -Sℓ 1 ℓ i=1 e S i >c -n , B + n := E e S ℓ 1 Sℓ ≤log(c + n) , A - n := E e S ℓ ℓ i=1 e S i 1 Sℓ >log(c + n) and B - n := E e S ℓ 1 ℓ i=1 e S i ≤c -n ,
C -and c -(respectively C + and c + ) are positive constants that may decrease (respectively increase) from line to line.

Proof.

Markov property gives E

E [K n (ℓ)] = |z|=ℓ (1 -e n log(1-pz) ), with p z := P E φ (T z < T φ ).
Obviously on

{np z ≥ 1}, 1 -e -1 ≤ 1 -e n log(1-pz) ≤ 1. As for x ∈ [0; 1[, -x(1 + x /2) ≤ log(1 -x) ≤ -x and x(1 -x /2) ≤ 1 -e -x ≤ x, on {np z < 1} -3p z /2 ≤ log(1 -p z ) ≤ -p z and np z 4 ≤ 1 -e n log(1-pz) ≤ 3np z 2 , then C -(np z 1 npz<1 + 1 npz≥1 ) ≤ 1 -e n log(1-pz) ≤ C + (np z 1 npz<1 + 1 npz≥1 ).
Using successively the fact that c -( x∈ φ,z e V (x) ) -1 ≤ p z ≤ c + e -V (z) and Biggins-Kyprianou identity (see Appendix A.1) F ℓ-j e (εj∧dn)g((εj∧dn)/j)

B - n ≤ E |z|=ℓ 1 npz≥1 ≤ B + n .

Similar arguments show C

-A - n ≤ E |z|=ℓ p z 1 npz<1 ≤ C + A + n .
d n ≍ 1 log n e (log n)g(log n/ℓ) , (3.2) 
where for any x, g(x) := f (x) -1. For d n > εj, a Markov inequality gives

ℓ j= dn /α L j F ℓ-j ≤ C + e -εdn/2 ℓ -3/2 ≤ C + e -ε log n/2 ℓ -3/2 , (3.3) 
so as ζ > 0, considering (3.2) 

ℓ j= dn /α L j F ℓ-j ≍ e (log n)g(log n/ℓ) log n . ( 3 
(1-ε)ℓ j= dn /α L j F ℓ-j ≤ C + (εℓ) -3/2 (1-ε)ℓ j= dn /α P (S j > 0) ≤ C + ℓ -3/2 (1-ε)ℓ j= dn /α j -1/2 ≤ C + ℓ -1 , also ℓ j=(1-ε)ℓ L j F ℓ-j ≤ C + ℓ j=(1-ε)ℓ F ℓ-j P (S j > 0) ≤ C + ℓ j=(1-ε)ℓ (ℓ -j + 1) -3/2 j -1/2 ≤ C + ℓ -1/2 . (3.5)
For any j ≥ (1ε)ℓ, d n ≤ Bj 1/2 for all B > 0, and let

A > B ℓ j=(1-ε)ℓ L j F ℓ-j ≥ ℓ j=(1-ε)ℓ F ℓ-j P (Bj 1/2 < S j ≤ Aj 1/2 , S j > 0) = ℓ j=(1-ε)ℓ F ℓ-j Aj 1/2 -1 k=Bj 1/2 P (S j ∈ (k, k + 1], S j > 0) (3.6)
then Lemma B.6 yields

Aj 1/2 -1 k=Bj 1/2 P (S j ∈ [k, k + 1), S j > 0) ≍ Aj 1/2 k=Bj 1/2 kj -3/2 e -k 2 /(2σ 2 j) ≥ C -j -1/2 . Inserting this in (3.6) give ℓ j=(1-ε)ℓ L j F ℓ-j ≥ C -ℓ -1/2
, this together with (3.5) and the above inequality implies

ℓ j= dn /α L j F ℓ-j 1 dn≤εj ≍ ℓ -1/2 ≍ ℓ -1/2 e (log n)g(log n/ℓ) . (3.7) 
Collecting (3.1), (3.4) and (3.7) yields

A + n ≤ E e S ℓ -Sℓ 1 Sℓ >dn ≍ e (log n)g(log n/ℓ) (log n) -1 1 0<ζ<1 + ℓ -1/2 1 1≤ζ<2 . • For A - n , with B ℓ := { ℓ i=1 e S i ≤ ℓ ε e Sℓ } and b n := log(c + n) ℓ ε A - n ≥ E e S ℓ -Sℓ 1 Sℓ >bn,B ℓ = E e S ℓ -Sℓ 1 Sℓ >bn -1 Sℓ >bn,B ℓ := Γ 1 -Γ 2 . (3.8) 
Γ 1 can be treated as E e S ℓ -Sℓ 1 Sℓ >dn so

Γ 1 ≍ e (log n)g(log n/ℓ) (log n) -1 1 0<ζ<1 + ℓ -1/2 1 1≤ζ<2 . (3.9) 
Recalling that S j = {S j = Sℓ , Sj-1 < S j }, Γ 2 = ℓ j=1 E e S ℓ -S j 1 S j >bn,B ℓ ,S j . Note that on S j , B ℓ = {Y 1 (j) + Y 2 (j) > ℓ ε } where Y 1 (j) := j i=1 e S i -S j and Y 2 (j) := ℓ i=j+1 e S i -S j . As for 0

< δ < 1/2, B ℓ ⊂ {Y 1 (j) > δℓ ε } ∪ {Y 2 (j) > δℓ ε } Γ 2 ≤ ℓ j=bn/α E e S ℓ -S j 1 S j >bn,S j 1 Y 1 (j)>δℓ ε + 1 Y 2 (j)>δℓ ε =: ℓ j=bn/α (Π j + Ω j ).
(3.10) For ℓ j=bn/α Ω j , conditioning by σ(S k , 0 ≤ k ≤ j)

Ω j = P (H j )E e S ℓ-j 1 Sℓ-j ≤0,Y + (ℓ-j)>δℓ ε
where Y ± (k) := k i=1 e ±S i and H m := {S m > b n , S m > 0}. Moreover, using (B.1) and the fact that, on { Sℓ-j ≤ 0}, {Y + (ℓj) > δℓ ε } = ∅ for j ≤ ℓδℓ ε E e S ℓ-j 1 Sℓ-j ≤0,Y + (ℓ-j)>δℓ ε ≤ C + (ℓj + 1) -3/2 1 ℓ-j≥δℓ ε , and P (H j ) can be treated like L j . Then, for n large enough

ℓ j=bn/α Ω j ≤ e (log n)g(log n/ℓ) δℓ ε (log n) -1 1 0<ζ<1 + ℓ -1/2 1 1≤ζ<2 . (3.11) For ℓ j=bn/α Π j , we have Π j = P (H j , Y -(j) > δℓ ε ) F ℓ-j . Let R := sup{0 < k ≤ j, S k ≤ γ log ℓ} with γ > 1, τ + x := inf{k > 0, S k ≥ x} for x ∈ R and t n = (log ℓ) 2 , then Π j = (P H j , Y -(j) > δℓ ε , R ≤ τ + tn + P H j , Y -(j) > δℓ ε , R > τ + tn )F ℓ-j =: Γ 3 + Γ 4 .
Upper bound for Γ 3 , let τ -

x := inf{k > 0, S k ≤ x} for x ∈ R. Notice that on {R ≤ τ + tn }, (a) First case (3) (b) Second case (4)
Figure 2: Two cases P z+tn (H j-k ) ≤ C + t n b n -1 e (εj∧bn)g((εj∧bn)/j) .

j k=τ + tn +1 e -S k ≤ ℓ 1-γ implying that {Y -(j) > δℓ ε } ⊂ {Y -(τ + tn ) > δℓ ε /2}. Thus, using strong Markov property P H j , Y -(j) > δℓ ε , R ≤ τ + tn ≤ P H j , Y -(τ + tn ) > δℓ ε /2, R ≤ τ + tn ≤ j k=tn/α P H j , Y -(τ + tn ) > δℓ ε /2, τ + tn = k ≤ j k=tn/α sup z∈[0,α] P z+tn (H j-k ) P (Y -(τ + tn ) > δℓ ε /2, τ - 0 > τ + tn = k). ( 3 
So Γ 3 ≤ C + t n b -1 n ℓ -ε (ℓ -j + 1) -3
/2 e (εj∧bn)g((εj∧bn)/j) . Case ζ ≥ 1, here the following upper bound for (3.12) is useful

P (Y -(τ + tn ) > δℓ ε /2, τ - 0 > τ + tn ) sup tn/α≤k≤j/2 sup z∈[0,α] P z+tn (H j-k ) + P (τ - 0 ∧ τ + tn ≥ j/2) ≤ P (Y -(τ + tn ) > δℓ ε /2, τ - 0 > τ + tn )P α+tn (S j/2 > 0) + 2E[τ - 0 ∧ τ + tn ]/j ≤ C + t n 1 ℓ ε j 1/2 + 1 j ,
with Lemmata B.1 and B.4. So

Γ 3 ≤ C + t n (ℓ -j + 1) 3/2 1 ℓ ε j 1/2 + 1 j .
Upper bound for Γ 4 , first note that on {R > τ + tn }, the following hitting times τ -

γ log ℓ := inf{k ∈ τ + tn , j , S k ≤ γ log ℓ} = τ + tn + θ τ + tn • τ - γ log ℓ , and τ + tn := inf{k ∈ τ - γ log ℓ , j , S k ≥ t n } = τ - γ log ℓ + θ τ - γ log ℓ • τ +
tn (where θ is the shift operator) exist. With these notations according to Lemma B.1

P (τ - 0 > τ + tn ) = P (τ + tn < τ + tn + θ τ + tn • τ - γ log ℓ < τ - γ log ℓ + θ τ - γ log ℓ • τ + tn < τ - 0 ) ≤ P (τ - 0 > τ + tn ) sup z∈[0,α] P γ log ℓ-z (τ - 0 > τ + tn ) ≤ C + γ log ℓ (t n ) 2 .
Again at this point we distinguish the cases ζ < 1 or ζ ≥ 1. When ζ < 1 the above inequality yields

P H j , R > τ + tn ≤ sup 2tn/α≤k≤j sup z∈[0,α] P z+tn (H j-k ) P (τ - 0 > τ + tn ) ≤ C + γ log ℓ (t n ) 2 sup 2tn/α≤k≤j sup z∈[0,α]
P z+tn (H j-k ) .

Finally using that

P H j , Y -(j) > δℓ ε , R > τ + tn ≤ P H j , R > τ + tn , Lemma B.

and (B.1)

Γ 4 ≤ C + e (εj∧bn)g((εj∧bn)/j) b n (ℓj + 1) 3/2 log ℓ .

When ζ ≥ 1, we have

P H j , Y -(j) > δℓ ε , R > τ + tn ≤ P H j , j/2 ≥ R > τ + tn + P H j , R > τ + tn ∨ j/2 .
Moreover P H j , j/2 ≥ R > τ + tn ≤ P τ + tn < τ - 0 sup -α≤x≤α P γ log ℓ+x (S j/2 > 0) and P H j , R > τ + tn ∨ j/2 ≤ P (S j/2 > 0) sup -α≤x≤α P γ log ℓ+x (τ - 0 > τ + bn ). So using Lemma B.1

Γ 4 ≤ C + j 1/2 (log ℓ)(ℓ -j + 1) 3/2 .
Collecting (3.11) and Γ 3 , Γ 4 with (3.10)

Γ 2 ≤ C + e bng(bn/ℓ) b n log ℓ ∼ C + e (log n)g(log n/ℓ) (log n) log ℓ , if ζ < 1 and Γ 2 ≤ C + ℓ 1/2 log ℓ ≤ C + e (log n)g(log n/ℓ) ℓ 1/2 log ℓ , if ζ ≥ 1. Γ 2 is therefore negligible compared to Γ 1 (see (3.9)) and (3.8) implies that A - n ≥ C + e (log n)g((log n) -ζ ) (log n) -1-ε 1 0<ζ<1 + ℓ -1/2-ε 1 1≤ζ<2
. This with Lemma 3.1 finish the proof of (1.7).

3.2 From R Φ(n) (ℓ) to K n (ℓ) and M n (ℓ) (proof of (1.6) and (1.9))

Let Φ 1 (n) := (1 -2ε) log n, we need the following Lemma 3.1 Let A := {|z| = ℓ, V (z) ≤ Φ 1 (n)}, lim n→+∞ P min z∈A L(z, T n 1-ε φ ) ≥ 1 = 1, which implies lim n→+∞ P(K n 1-ε (ℓ) ≥ R Φ 1 (n) (ℓ)) = 1.

Proof.

Applying Corollary C.1, n) and the proof is achieved. The above Lemma together with (2.7) (taking Φ(n) = Φ 1 (n)), give for n large enough

P E (∪ z∈A {L(z, T n 1-ε φ ) = 0}) ≤ |A|e -c -n ε ℓ -1 ≤ R Φ 1 (n) (ℓ)e -c -n ε/2 Using (1.13), E[R Φ 1 (n) (ℓ)] ≤ e Φ 1 (
lim n→+∞ P max |z|=ℓ-log n/γ min y∈C ℓ (z) L(y, T n 1-ε φ ) ≥ 1 = 1 (3.13)
To obtain the lower bound in (1.9) we finally use the following result that can be deduced from [START_REF] Faraud | Almost sure convergence for stochastically biased random walks on trees[END_REF] (see [START_REF] Andreoletti | The number of generations entirely visited for recurrent random walks on random environment[END_REF] Lemma 3.2 and what follows for details)

∀δ > 0, lim n→+∞ P(L(φ, n) ≥ n 1-δ ) = 1. (3.14) 
For the lower bound in (1.6), we use Lemma 3.1, (3.14) and finally the lower bound in (1.13).

For the upper bound in (1.6), denote u n := C log log n ∨ (log n) 1-ζ , where C > 0. As n ≤ T n φ , by Markov inequality and (1.7), P (log

M n (ℓ) ≥ log n -u n ) ≤ P(K n (ℓ) ≥ ne -un ) ≤ C + e un e -(log n) 1-ζ /2σ 2 ℓ -1/2
which gives the upper bound adjusting C properly.

Visited points along the GW

In this paragraph we study the manner the random walk visits the tree.

Visits of clusters at deterministic cuts (proof of (1.11))

Recall that a cluster initiated at z with end generation m is the set

C m (z) = {u > z, |u| = m}. Also take k n = Φ(n) k , r n = Φ(n) r , s n = Φ(n) s with s > 0 and h n sequences such that h n = ℓ -k n r n k n -1 , k n (αr n + s n ) -s n ≤ Φ(n)(1 -2ε), (4.1) 
where α := | log ε 0 | (see (A.1) for details).

We define recursively clusters at generations ir n + (i -1)h n for all 1 ≤ i ≤ k n in the following way (see also Figure 3): the iteration starts with ž0 = φ and

∀z i ∈ C irn+(i-1)hn (ž i-1 ), ži = inf {u > z i , |u| = i(r n + h n ), V (u) ≤ i(αr n + s n )}.
The individuals of these clusters form a subtree of the GW, moreover for all z of this subtree at generation ℓ, V (z) ≤ Φ(n)(1 -2ε). For a fixed i ∈ 1; k n , C i denotes, among the previously defined clusters, the ones rooted at generation (i -1)(r n + h n ) and with end points at generation ir n + (i -1)h n , in other words C irn+(i-1)hn (.). We first give an upper bound for the probability that for all i ≤ k n every clusters in C i are fully visited before

T n 1-ε φ P E   kn i=1 D∈C i z∈D L(z, T n 1-ε φ ) = 0   ≤ kn i=1 D∈C i z∈D P E L(z, T n 1-ε φ ) = 0 .
In the previous formula kn i=1 D∈C i is an abuse of notation as the sets of clusters are defined recursively. With a similar reasoning as the one for Corollary C.1 and the ellipticity condition for the number of descendants

P E   kn i=1 D∈C i z∈D L(z, T n 1-ε φ ) = 0   ≤ exp(k n r n log N 0 -c -n 1-ε e -Φ(n)(1-2ε) /ℓ). (4.2)
We now prove the existence of such clusters, this implies new constraints on k, r and s in addition to (4.1). First, ellipticity conditions imply that for any site z > y, V (z

) -V (y) ≤ α(|z| -|y|) a.s. Thus, for all a ∈ N and b > 0, {∃ž > z, |ž| = |z| + a, Ṽ (z, ž) ≤ b} is a.s. contained in {V (z) -V (y) ≤ α(|z| -|y|), ∃ž > z, |ž| = |z| + a, Ṽ (y, ž) ≤ α(|z| -|y|) + b} ( Ṽ is defined in the proof of (2.6)).
Then, with our slight abuse of notation, a.s. B := {the clusters C . (.) exist} contains 

kn i=1    z i ∈C irn+(i-1)hn (ž i-1 ) ∃ž i > z i , |ž i | = i(r n + h n ), Ṽ (z i , ži ) ≤ s n    .
P (B) ≥ P (∃|z| = h n , V (z) ≤ s n ) N knrn 0 = P min |z|=hn V (z) ≤ s n N knrn 0 . Assuming s ≥ (1+ζ -k)/3, Lemma 2.3 yields P (B) ≥ (1-λ hn ) N knrn 0 ∼ exp -N knrn 0
λ hn . To choose k, r and s, we have to take into account the last constraint in (4.1), s ≤ 1k and that if q 0 + q 1 = 0, k + r < s. We distinguish two cases 

• if 0 < ζ ≤ 1, let 0 < δ < ζ/2, take s = (1 + ζ)/2 -δ, k = δ/

Thus in both cases

P (B) ≥ 1 -C + e -c 1 sn N knrn 0 -→ n→+∞ 1. (4.3) 
When q 0 + q 1 = 0, the above choices give an even better rate of convergence for P (B). We now move back to (4.2), (4.3) together with the fact that Φ(n

) ≤ log n + o(log n) implies lim n→+∞ P   kn i=1 D∈C i z∈D L(z, T n 1-ε φ ) ≥ 1 , B   = 1.
According to (3.14), as P(n ≥ T n 1-ε φ

) tends to one we finally obtain

lim n→+∞ P   kn i=1 D∈C i z∈D {L(z, n) ≥ 1} , B   = 1.
So we can find set of clusters at regular cuts on the tree which are fully visited. To finish the proof of (1.11) we first show the existence of a lower bound for the number of visited clusters. Using successively that conditionally on B, |C i | is equal in law to Z (i-1)rn , Theorem A.2 and (4.3)

P ∃i ∈ 2, k n , |C i | ≤ e ψ(0)(i-1)rn /2 ≤ P ∃i ∈ 2, k n , |C i | ≤ e ψ(0)(i-1)rn /2 , B + P (B) ≤ kn i=2
P Z (i-1)rn ≤ e ψ(0)(i-1)rn /2 + P (B)

≤ e -ψ(0)νrn/4 + C + e -c 1 sn N knrn 0 .

Note that for the first term we have used the left tail of Z . with q 0 + q 1 > 0 as the other case provide an even better rate of convergence. Finally we prove that the previously defined visited clusters are very spaced out. Recalling the definition of D before Theorem 1.2, ≤ e rn log N 0 +2ψ(0)(i-1)rn P (Z hn ≤ e ψ(0)hn/2 ) + e -ψ(0)(i-1)rn ≤ e rn log N 0 +2ψ(0)(i-1)rn -νψ(0)hn/2 + e -ψ(0)(i-1)rn .

P ∃i ∈ 2, k n , D(C i ) ≤ e ψ(
Consequently P ∃i ∈ 2, k n , D(C i ) ≤ e ψ(0)hn/2 ≤ e 3ψ(0)knrn-νψ(0)hn/2 + 2e -ψ(0)rn + C + e -c 1 sn N knrn 0 , moreover as h n ∼ (log n) 1+ζ-k , k + r < s < 1 and k < ζ we obtain the result.

Proof of (1.10)

Let m = εℓ 1/3 , δ > 0, define B the set of points z ′ such that for all |z| = m, z

′ := inf {u > z, |u| = ℓ, V (u) ≤ Φ(n)(1 -δ)}. Corollary C.1 gives P E z ′ ∈B L(z ′ , T n 1-ε φ ) = 0 ≤ |B|e -c -n 1-ε e -Φ(n)(1-δ) /ℓ ≤ Z m e -c -n 1-ε e -Φ(n)(1-δ) /ℓ .
As Φ(n) ≤ log n + o(log n) and E[Z m ] = e ψ(0)m , taking δ = 2ε

P z ′ ∈B L(z ′ , T n 1-ε φ ) = 0 ≤ e -c -n ε/2 . (4.4)
We now prove that lim n→+∞ P (|B| = Z m ) = 1. From [START_REF] Mcdiarmid | Minimal position in a branching random walk[END_REF] (see also [START_REF] Andreoletti | The number of generations entirely visited for recurrent random walks on random environment[END_REF] Lemma 2.1), lim n→+∞ P (max |z|=m V (z) ≤ 2γm) = 1, so as for n large enough ℓ 1/3 /Φ(n) ≤ δ with the same arguments used in the proof of Lemma 2.3

P (|B| < Z m ) ≤ P   |z|=m ∀z ′ > z, |z ′ | = ℓ, V (z ′ ) > (1 -δ)Φ(n)   ≤ 1 -1 -P min |z|=ℓ-m V (z) > (1 -2δ)Φ(n) e 2ψ(0)m + e -ψ(0)m ≤ 2P min |z|=ℓ-m V (z) > (1 -4ε)Φ(n) e 2ψ(0)m + e -ψ(0)m .
To finish we put ourself in the case q 0 + q 1 > 0 (the other case is treated similarly), using Lemma 2.3

P min |z|=ℓ-m V (z) > (1 -4ε)Φ(n) ≤ e -c 1 ℓ 1/3 .
We can now choose ε small enough and obtain,

P (|B| = Z m ) ≥ 1 -e -c 1 ℓ 1/3 /2 . Moving back to (4.4) P(∀z ∈ B, L(z, T n 1-ε φ ) ≥ 1, |B| = Z m ) ≥ 1 -o(1)
. Finally to obtain (1.10) we apply (3.14). 

E   |x|=n e -V (x) F (V (x i ), 1 ≤ i ≤ n)   = E[F (S i , 1 ≤ i ≤ n)] (A.1)
where (S i -S i-1 ) i≥1 are i.i.d. random variables, and the law of S 1 is determined by

E[f (S 1 )] = E   |x|=1 e -V (x) f (V (x))   , (A.2)
for any measurable function f : R → [0, +∞). A proof can be found in [START_REF] Biggins | Senata-heyde norming in the branching random walk[END_REF], see also [START_REF] Shi | Random walks and trees[END_REF]. We have the following identities

ψ(t) = log E[e (1-t)S 1 ], ψ ′ (t) = - E[S 1 e (1-t)S 1 ] E[e (1-t)S 1 ] . In particular, E[N ] = e ψ(0) = E[e S 1 ] and the hypothesis ψ ′ (1) = 0 equates to E[S 1 ] = 0. Remark A.1 Let α := | log ε 0 |, we have P(|S 1 | ≤ α) = 1. Indeed taking f (x) = 1 |x|≤α and using Biggins-Kiprianou, P(|S 1 | ≤ α) = E[f (S 1 )] = e ψ(1) = 1.

A.2 Left tail of Z n

Recall that the positive martingale (W n ) n≥0 := ( Zn /e ψ(0)n ) n≥0 converges a.s. to a non degenerate limit W (see for instance [START_REF] Shi | Random walks and trees[END_REF]). Moreover W has a positive continuous density function denoted w. Bingham [START_REF] Bingham | On the limit of a supercritical branching process[END_REF] shows that for the Schröder case (q 0 + q 1 > 0), there exists 0 < ν < 1 such that for small x, w(x) ∼ x ν-1 and for the Böttcher case (q 0 + q 1 = 0) there exists β ∈ (0, 1) such that when x → 0, log w(x) ∼ -x -β 1-β . The results of [START_REF] Athreya | Branching processes[END_REF] and then [START_REF] Fleischmann | Lower deviation probabilities for supercritical galton-watson processes[END_REF] (Theorems 4 and 5) and [START_REF] Fleischmann | On the left tail asymptotics for the limit law of a supercritical galton-watson processes in the bötcher case[END_REF] (Theorem 7) lead to Theorem A.2 Let 0 < κ < 1 then P (Z n ≤ e κψ(0)n ) ∼ e -νψ(0)(1-κ)n in the Schröder case, and log P (Z n ≤ e κψ(0)n ) ∼ log w e ψ(0)(κ-1)n in the Böttcher case.

B Results for sums of i.i.d. random variables

In this section we recall basic facts for sum of i.i.d. random variables applied to (S n ) n≥0 of Section A. Recall that for all x ∈ R, τ + x = inf{n ≥ 1, S n ≥ x} and τ - x = inf{n ≥ 1, S n ≤ x}. The following results are standard and can be found in [START_REF] Aidékon | Tail asymptotics for the total progeny of the critical killed branching random walk[END_REF] and [START_REF] Spitzer | Principle of Random Walks[END_REF].

Lemma B.1 For all x ∈ [0, y] and m large enough

P x (τ + y < τ - 0 ) ≍ x + 1 y + 1 , E[τ + y ∧ τ - 0 ] ≍ y and P x (τ - 0 > m) ≍ x + 1 √ m .
Recalling that for all n ≥ 1, Y -(n) = n i=1 e -S i , we have Lemma B.2 There exists a constant C + > 1 such that for all a ≥ 0 and M > 0

P Y -(τ + a ) > M, τ + a < τ - 0 ≤ C +/M .
Proof.

According to [START_REF] Aidékon | The precise tail behavior of the total progeny of a killed branching random walk[END_REF] p.19, there exists C + > 1 such that for all 0 ≤ a ≤ L ≤ 1,

E Y -(τ - 0 ∧ τ + a ) ≤ C + a+1 /a. As P Y -(τ + a ) > M, τ + a < τ - 0 ≤ P Y -(τ - 0 ∧ τ + a )
> M , we conclude using the Markov inequality.

Lemma B.3 For any

m ≥ 1, E[e Sm 1 τ - 0 >m ] ≍ (m + 1) -3/2 . (B.1)
Proof.

The upper bound can be found in [START_REF] Hu | Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees[END_REF] p.44, the lower bound can be obtained as follows:

E[e Sm 1 τ - 0 >m ] ≤ αm k=0 e -k P (S m ∈ [-k, -k + 1], Sm < 0) = αm k=0 ke -k m -3/2 ≍ (m + 1) -3/2 .
Recalling that for all n ≥ 1, Y -(n) = n i=1 e -S i , we have Lemma B.4 There exists a constant C + > 1 such that for all a ≥ 0 and M > 0

P Y -(τ + a ) > M, τ + a < τ - 0 ≤ C +/M .
The following Lemma may be found in the literature, however as we can prove it easily for our case we present a short proof. Proof.

(B.4) is F. Caravenna [START_REF] Caravenna | A local limit theorem for random walks conditioned to stay positive[END_REF] result and (B.5) can be obtained with [START_REF] Petrov | Sums of Independent Random Variables[END_REF] Chapter VIII, Theorem 2 and 10 and similar arguments than in the proof of Lemma B.5.

C Probability of hitting time

Lemma C.1 For x ′ ∈ φ, x :

P E x ′ x (T x < T x ′ ) = e V (x ′ x )
z∈ x ′ ,x e V (z) , (C.1)

P E ← x (T x ′ < T x ) = e V (x)
z∈ x ′ ,x e V (z) .

(C.2)

where x ′ x is the only children of x ′ in x ′ , x .

The result is classical (see for instance [START_REF] Andreoletti | The number of generations entirely visited for recurrent random walks on random environment[END_REF]) and a useful direct consequence of this latter is the following Proof.

Obviously (C.4) is a consequence of (C.3). Thanks to formula (C.1), for z ∈ A, P E φ (T z < T φ ) ≥ C -e -V (z) /ℓ. Then using the strong Markov property and the recurrence of X, for n large enough P E φ T n κ φ < T z = (1 -P E φ (T z < T φ )) n κ ≤ exp e -c 7 n κ V (z) /ℓ .

  1 , z) > ηb 0 a n , A n ≤ P min |z|=n-vn V (z) > ηb 0 a n e ηψ(0)vn ≤ 1e -(b 0 (1-η)+o(1))an e ηψ(0)vn , we conclude choosing η sufficiently close to 1 to get (1η) < η 2 ψ(0)/α.

Figure 1 :

 1 Figure 1: One large cluster

. 4 )

 4 When 1 ≤ ζ < 2 , first Lemma B.1 and (B.1) give

Figure 3 :

 3 Figure 3: Clusters at regular cuts

2 ,

 2 and r = (1ζ)/2 + δ /2, • if 1 < ζ < 2, let 0 < δ < (2ζ)/3, take s = (1 + ζ)/3, k = δ and r = (1 + ζ -4δ)/3.

  0)hn/2 ≤ P (B) +kn i=2 P D(C i ) ≤ e ψ(0)hn/2 , B {|C i(rn+hn) (z)| ≤ e ψ(0)hn/2 } ∩ B   .As conditionally on B, |C i(rn+hn) (z)| and Z hn are equal in law, onD i := {|C i | ≤ e 2ψ(0)(i-1)rn }, |D| |C i | ≤ N rn 0 e 2ψ(0)(i-1)rn so Theorem A.2 yields P D(C i ) ≤ e ψ(0)hn /2 , B ≤ P   D∈C i-1 z∈D {|C i(rn+hn) (z)| ≤ e ψ(0)hn/2 } ∩ B ∩ D i   + P (D i )

Figure 4 :

 4 Figure 4: Distant visited sites

Lemma B. 5 √P. 4 )

 54 Let m > 1, assume that b = b(m) ≥ σ 2 √ m log m, with lim m→+∞ b/m = 0, and a = a(m) > 0 is such that lim m→+∞ a/ √ m = 0, then for all m large enough P a (S m > b, S m > 0) ≤ C + a b e b•g(b/m) , (B.2)with g(x) = f (x) -1 = -x 2σ 2 + x 2 λ(x). For all ε > 0 and r > εm.P a (S m ≥ r, S m > 0) ≤ C + a √ m e -sr+mψ(1-s) . (B.3) Proof.For (B.2), let ω a positive function of b and m, such that ω ≤ 2 √ m/b and that we choose later, write P a (S m > b, S m > 0) asP a S m > b, S m > 0, τ + √ m ≤ ωm + P a S m > b, S m > 0, τ + √ m > ωm =: P 3 + P 4 .Strong Markov property and homogeneity give:P a S m > b, S m > 0, τ + √ m = j ≤ P a τ - 0 > τ + √ m = j sup 0≤x≤α P √ m+x S m-j > b, S m-j > 0 ≤ P a τ - 0 > τ + √ m = j P S m-j > b -√ mα implying with Lemma B.1: m-j > b -√ mα ,A classical result of moderate deviations (see for instance[START_REF] Petrov | Sums of Independent Random Variables[END_REF], Chapter VIII, Theorem 1) impliesP S m(1-ω) > b -√ mα ≤ C + m(1ω) m)g((b-√ m)/(m(1-ω)))We now choose ω in such a way that (b-√ m)g((b -√ m)/(m(1ω)))bg(b/m) = O(1), ω is actually a sum which first two terms are ω = 2m 1/2 /bλ(b/m)/ √ m + .... So for any n large enoughP S m(1-ω) > b -√ mα ≤ C + √ m b e b•g(b/m) .With similar computations this upper bound is still true forP (S m-j > b -√ mα) for m(1ε) ≤ j ≤ m, so P 4 ≤ C + a b e bg(b/m) . In the same way a τ - 0 > τ + √ m = j sup 0≤x≤α P √ m+x S m-j > b, S m-j > 0 e -m/(2σ 2 j) (mj) 1/2 b -√ mα e (b- √ m-α)g((b-√ m-α)/(m-j)) ≤ C + (ωm) 1/2 b e -b/(2σ 2 m 1/2 ) e b•g(b/m) = o e b•g(b/m) . b .which finish the proof. (B.3) can be proved in a similar way with classical large deviation estimates.The following Lemma states the local behavior of sums of i.i.d. random variables, recall that S 1 is non-lattice. Lemma B.6 Let ε > 0 small and A > 0 large. For all m large enough, for all 1 ≤ r ≤ A √ m P (S m ∈ (r, r + 1], S m > 0) = r m 3/2 e -r 2 /(2σ 2 m) + o(m -3/2 ). (BFor all A √ m ≤ r ≤ εm P (S m ∈ (r, r + 1], S m > 0) ≍ 1 m e rg(r/m) . (B.5) see Lemma B.5 for the definition of g.

Corollary C. 1

 1 Let A ⊂ {z ∈ T, |z| = ℓ} and κ > 0, there exists a positive constant c 7 such thatP E φ (T n κ φ < T z ) ≤ exp -c 7 n κ e V (z) /ℓ , ∀z ∈ A, (C.3) P E z∈A {L(z, T n κ φ ) = 0} ≤ |A| exp -c 7 n κ e -max z∈A V (z) /ℓ (C.4)

  where, by definition, inf D j+2sup D j is the number of individuals between sup D j and inf D j+2 . Notice that we do not look at two successive clusters, but two successive separate by one. We now state a second result Let k n , h n and r n positive sequences of integers such that k n r n + (k n -1)h n = ℓ. For all 1 ≤ i ≤ k n , let us denote C i a set of clusters initiated at generation (i -1)(r n + h n ) and with end points at generation ir n + (i -1)h n (see Figure

	Theorem 1.2 For 0 < ζ < 2 and ε > 0 recalling that ℓ = (log n) 1+ζ
	lim n→+∞	P	max |z|=ℓ-log n/γ	min y∈C ℓ (z)	L(y, n) ≥ 1 = 1,	(1.9)
	lim n→+∞	P	min z∈C εℓ 1/3 (φ)	max y>z,|y|=ℓ	L(y, n) ≥ 1 = 1.	(1.10)

  We now give upper bounds for B + n and A + n , and a lower bound for A - n .

• For B + n , we use Lemma 2.1 taking Φ(n) = log n.

• For A + n , first note that { ℓ i=1 e S i > c -n} ⊂ Sℓ > d n , with d n = log(c -n/ℓ).

Recalling the arguments given in (2.1), A + n is bounded from above by

E e S ℓ -Sℓ 1 Sℓ >dn = ℓ j= dn /α P S j > d n , S j > 0 E e S ℓ-j 1 Sℓ-j ≤0 =: ℓ j= dn /α L j F ℓ-j . (3.1)

Like in the proof of Lemma 2.1, we distinguish cases 0

< ζ < 1 and 1 ≤ ζ < 2. When 0 < ζ < 1 then d n > A √ j

for any A > 0, so applying Lemma B.6 like for (2.2) we obtain for d n ≤ εj ℓ j= dn /α L j F ℓ-j ≍ ℓ j= dn /α