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Spread of visited sites of a random walk along the generations

of a branching process

P. Andreoletti, P. Debs ∗

February 13, 2014

Abstract

In this paper we consider a null recurrent random walk in random environment
on a super-critical Galton-Watson tree. We consider the case where the log-Laplace
transform ψ of the branching process satisfies ψ(1) = ψ′(1) = 0 for which G. Faraud,
Y. Hu and Z. Shi in [9] show that, with probability one, the largest generation visited
by the walk, until the instant n, is of the order of (logn)3. In [3] we prove that the
largest generation entirely visited behaves almost surely like logn up to a constant.
Here we study how the walk visits the generations ℓ = (log n)1+ζ , with 0 < ζ < 2. We
obtain results in probability giving the asymptotic logarithmic behavior of the number
of visited sites at a given generation. We prove that there is a phase transition at
generation (logn)2 for the mean of visited sites until n returns to the root. Also we
show that the visited sites spread all over the tree until generation ℓ.

1 Introduction

We start giving an iterative construction of the environment. Let (Ai, i ≥ 1) a positive
random sequence and N an independent N-valued random variable following a distribution
q, in other words P(N = i) = qi for i ∈ N. Let φ the root of the tree and (A(φi), i ≤ Nφ))
an independent copy of (Ai, i ≤ N). Then, we draw Nφ children to φ: these individuals
are the first generation. Each child φi is associated with the corresponding A(φi) and so
on. At the n-th generation, for each individual x we pick (A(xi), i ≤ Nx) an independent
copy of (Ai, i ≤ N) where Nx is the number of children of x and A(xi) is the random
variable attached to xi. The set T, consisting of the root and its descendants, forms a
Galton-Watson tree (GW) of offspring distribution q and where each vertex x 6= φ is as-
sociated with a random variable A(x).

We denote by |x| the generation of x,
←
x the parent of x, and for convenience reasons we

add
←
φ , the parent of φ. The set of environments denoted by E is the set of all sequences

((A(xi), i ≤ Nx), x ∈ T), with P and E respectively the associated probability measure
and expectation.

∗Laboratoire MAPMO - C.N.R.S. UMR 7349 - Fédération Denis-Poisson, Université d’Orléans (France).
MSC 2000 60J55 ; 60J80 ; 60G50 ; 60K37.
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We assume that the distribution of (Ai, i ≤ N) is non-degenerate and, to obtain a super-
critical GW, that E[N ] > 1. Moreover we add uniform ellipticity conditions

∃ 0 < ε0 < 1, P − a.s ∀i, ε0 ≤ Ai ≤ 1/ε0, (1.1)

∃ N0 ∈ N, P − a.s N ≤ N0. (1.2)

Given E ∈ E, we define a T-valued random walk (Xn)n∈N starting from φ by its transition
probabilities,

p(x, xi) =
A(xi)

∑Nx
j=1A(x

j) + 1
, p(x,

←
x) = 1−

Nx
∑

j=1

p(x, xj), p(
←
φ, φ) = 1.

Note that our construction implies that (p(x, .), x ∈ T) is an independent sequence. We
denote by P

E the probability measure associated to this walk, the whole system is described
under the probability P, the semi-direct product of P and P

E .
To study asymptotical behaviours associated to (Xn)n∈N, a quantity appears naturally: the
potential process V associated to the environment which is actually a branching random
walk. It is defined by V (φ) := 0 and

V (x) := −
∑

z∈Kφ,xK

logA(z), x ∈ T\{φ},

where Jφ, xK is the set of vertices on the shortest path connecting φ to x and Kφ, xK =
Jφ, xK\{φ}. We put ourself in the non lattice case so logAi can not be written as b+ cZ,
and introduce the moment-generating function

ψ(t) := logE





∑

|x|=1

e−tV (x)



 ,

characterizing the environment. Note that the hypothesis we discuss above implies that ψ
is defined on R, and ψ(0) > 0. In fact the hypothesis (1.1) and (1.2) are not always needed
for our work and they could be replaced by the existence of ψ in (−δ, 1 + δ) with δ > 0
together with the existence of a moment larger than 1 for N . In Section 2 for example we
could lighten the hypothesis this way, but it would be much more complicated in Section
4.
Thanks to the work of M.V. Menshikov and D. Petritis, see [15] and the first part of [8]
by G. Faraud, if

ψ(1) = ψ′(1) = 0 (1.3)

then X is null recurrent, with ψ′(1) = −E
[

∑

|x|=1 V (x)e−V (x)
]

. In [9] (see also [12]),

G. Faraud, Y. Hu and Z. Shi study the asymptotic behavior of max0≤i≤n |Xi| = X∗n, i.e.
the largest generation visited by the walk. Assuming (1.3), they prove the existence of a
positive constant a0 (explicitely known) such that P a.s. on the set of non-extinction of
the GW

lim
n→+∞

X∗n
(log n)3

= a0. (1.4)
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In [3] we were interested in the largest generation entirely visited by the walk, that is to
say the behavior of Rn := sup{k ≥ 1,∀|z| = k,L(z, n) ≥ 1}, with L the local time of X
defined by L(z, n) :=∑n

k=1 1Xk=z. More precisely, if (1.3) is realized, P a.s. on the set of
non-extinction

lim
n→+∞

Rn
log n

=
1

γ̃
, (1.5)

where γ̃ := sup{a ∈ R, J̃(a) > 0} with J̃(a) := inft≥0{ψ(−t)− at}.
Although in [3] all recurrent cases are treated, here we focus only on the hypothesis (1.3).
According to (1.4) and (1.5), until generation logn/γ̃ all the points are visited butX does not
visit generations further than a0(log n)

3. The aim of this paper is to study the asymptotic
of the number of visited sites at a given generation (log n)1+ζ with 0 < ζ < 2. For this
purpose we define the number of visited sites at generation m ∈ N until the instant n

Mn(m) := #{|z| = m,L(z, n) ≥ 1},

and before n returns to the root Kn(.) := MTnφ
(.) where T nx = inf{k > T n−1x ,Xk = x} for

n ≥ 1 and T 0
x = 0 for x ∈ T.

Let Zm the number of descendants at generation m ∈ N, we have Z1 = N . Our first results
quantify the number of visited points at a given generation ℓ := (log n)1+ζ . Thanks to the
hypothesis of ellipticity, ψ can be written as a power series in particular, for any x small
enough, ψ(1 − x) =

∑+∞
j=1 ujx

j, where uj = ψ(j)(1), these are called cumulants and here

u1 := ψ′(1) = 0, u2 := ψ′′(1) = σ2. Let us define the function f , for any x small enough

f(x) := 1− x

2σ2
+ x2λ(x).

λ is the Cramér’s series depending on the cumulants of ψ(1 − x) (for more details on the
Cramér’s series see for example [17] p. 219-223).

Theorem 1.1 For all 0 < ζ < 2, ε > 0 independent of ζ there exists C0 > 0 such that

lim
n→+∞

P

(

ψ(0)

γ̃
(1− ε) ≤ logMn(ℓ)

log n
≤ 1− C0

(

log log n

log n
∨ 1

(log n)ζ

))

= 1. (1.6)

Also for all n large enough, there exist two positive constants C1 and C2 such that

C1

(log n)ε
e(logn)·f [(logn)

−ζ ]

(log n)(1+ζ̃)/2
≤ E[Kn(ℓ)] ≤ C2

e(logn)·f [(logn)
−ζ ]

(log n)(1+ζ̃)/2
, (1.7)

with ζ̃ := 10<ζ<1 + ζ11≤ζ<2.

(1.6) shows that, at each generation ℓ, the cardinal of visited sites is at least nψ(0)(1−ε)/γ̃

for any ζ, that is to say like the last generation entirely visited Rn (ψ(0)/γ̃ < 1, by
convexity of ψ and the fact that ψ(1) = 0). Also the upper bound of Mn(ℓ) is at most of

the order of ne−C3(log n)1−ζ/(log n)C4 , with C3, C4 > 0. This suggests that it may have a
phase transition when ζ = 1. Although we are not able to show this forMn(ℓ) the existence
of a phase transition is proved in (1.7) for the mean of Kn(ℓ). Indeed by definition of f ,

(log n)f [(log n)−ζ ] = log n− (log n)1−ζ

2σ2
+ (log n)1−2ζλ((log n)−ζ)
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We can see that in the neighborhood of generation (log n)2 that is to say when ζ = 1, the
asymptotic behavior of Nζ := E[Kn(ℓ)] changes. We easily check that for all 0 < ζ < ζ ′ ≤
1, limn→+∞Nζ′/Nζ = +∞ whereas for all 1 ≤ ζ < ζ ′ < 2, limn→+∞Nζ′/Nζ = 0. So the
generations of order (log n)2 are, in mean, the most visited generation (in term of distinct
site visited) until n returns to the origin. Finally notice that when ζ > 1/2 we are in a

Gaussian behavior as e(log n)f [(logn)
−ζ ] ∼ ne−

(log n)1−ζ

2σ2 , and when ζ ≥ 1, e(log n)f [(logn)
−ζ ] ∼

n.
In order to establish our second result, recall Neveu’s notation to introduce a partial

order on our tree. In [16], to each vertex x at generation m ∈ N, Neveu associates a
sequence x1 . . . xm where xi ∈ N, to simplify we write x = x1 . . . xm.
This sequence gives the complete “genealogy” of x: if y = x1 . . . xi with |y| = i < m, y is
the unique ancestor of x at generation i and we write y < x.
For instance

←
x = x1 . . . xm−1 and 1 ≤ xm ≤ N←

x
, in other words x is the xm-th child of

←
x .

To extend this partial order for |x| = |z|, we write x < z if there exists i < m such that
xk = zk for k < i and xi < zi. Hence we can number individuals at a given generation
“from the left to the right” and for A a subset of {z ∈ T, |z| = m}, inf A and supA are
respectively the minimum and maximum associated to this numbering.
Our last result gives an idea of the way the visited points spread on the tree, for this
purpose we introduce clusters: let z ∈ T and m ≥ |z|, we call cluster issued from z at
generation m denoted Cm(z), the set of descendants u of z such that |u| = m, in other
words

Cm(z) := {u > z, |u| = m}. (1.8)

At some point we need to quantify the number of individuals between two disjoint clusters
with common generations. For given initial and terminal generations, denote C a set of
disjoint clusters. Let (Dj , 1 ≤ j ≤ |C |), with |C | the cardinal of C , an ordered sequence of
(disjoint) clusters belonging to C , that is to say for all j, supDj < inf Dj+1. We define the
minimal distance between clusters in the following way D(C ) := min1≤j≤|C |−2(inf Dj+2−
supDj), where, by definition, inf Dj+2 − sup Dj is the number of individuals between
supDj and inf Dj+2. Notice that we do not look at two successive clusters, but two
successive separate by one. We now state a second result

Theorem 1.2 For 0 < ζ < 2 and ε > 0 recalling that ℓ = (log n)1+ζ

lim
n→+∞

P

(

max
|z|=ℓ−logn/γ̃

min
y∈Cℓ(z)

L(y, n) ≥ 1

)

= 1, (1.9)

lim
n→+∞

P

(

min
z∈C

εℓ1/3
(φ)

max
y>z,|y|=ℓ

L(y, n) ≥ 1

)

= 1. (1.10)

Let kn, hn and rn positive sequences of integers such that knrn + (kn − 1)hn = ℓ. For all
1 ≤ i ≤ kn, let us denote Ci a set of clusters initiated at generation (i − 1)(rn + hn) and
with end points at generation irn+(i−1)hn (see Figure 3), also define the following event
for all m > 0 and q > 0

Ai(m, q) :=
⋃

Ci







{|Ci| ≥ q,D(Ci) ≥ m}
⋂

D∈Ci

{∀z ∈ D,L(z, n) ≥ 1}







.
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There exist 0 < k < 1∧ζ, 0 < r < 1 with 0 < k+r ≤ 1 and for kn = (log n)k, rn = (log n)r

lim
n→+∞

P

(

kn
⋂

i=2

Ai(e
ψ(0)hn/2, eψ(0)rn(i−1)/2)

)

= 1. (1.11)

(1.9) implies the existence of a cluster starting at a generation ℓ − log n/γ̃ completely
visited (see Figure 1). As conditionnaly on the tree until generation |z|, |Cℓ(z)| is equal in
law to Zℓ−|z| = Zψ(0) logn/γ̃ , this cluster is large and, in particular, (1.9) implies the lower
bound in (1.6).
(1.10) tells that we can find visited individuals at generation ℓ = (log n)1+ζ , with a common
ancestor to a generation close to the root, that is to say before generation εℓ1/3 (see Figure

4). Thus, with a probability close to one, at least eε(1−ε)ψ(0)ℓ
1/3/2 individuals of generation

ℓ separate by at least eψ(0)ℓ/2 individuals of the same generation ℓ, are visited.
Finally (1.11) tells that if we make cuts regularly on the tree we can find many visited
clusters (which number increases with the generation) well separated. In particular these
visited clusters can not be in a same large visited clusters as they are separated by at least
eψ(0)hn/2 ∼ eψ(0)(log n)

1+ζ−k/2 > n individuals (see also Figure 3).

To obtain these results we show that Kn(ℓ) can be linked to a random variable depending
only on the random environment and n. For all z ∈ T, all integer k and all real a, we
define the random variable

Rz
a(k) := #{u > z, |u| = k, V (z) ≤ a},

where V (z) = maxu∈Kφ,zK V (u). For notational simplicity, we write Ra(k) for Rφ
a(k). We

obtain the following

Proposition 1.3 Let ε > 0 and Φ a sequence such that

(1− ε) log n ≤ Φ(n) ≤ log n+ o(log n). (1.12)

Then, for all 0 < ζ < 2 there exists C ′0 > 0

lim
n→+∞

P

(

ψ(0)

γ̃
(1− ε) ≤ logRΦ(n)(ℓ)

Φ(n)
≤ 1− C ′0

(

log log n

Φ(n)
∨ Φ(n)

ℓ

))

= 1, (1.13)

E[RΦ(n)(ℓ)] ≍ (ℓ−110<ζ<1 +Φ(n)ℓ−3/211≤ζ<2)e
Φ(n)f(Φ(n)/ℓ). (1.14)

We use the notation an ≍ bn when there exists two positive constants c1 and c2 such
that c1bn ≤ an ≤ c2bn for all n large enough. The lack of precision for the first result
shows no difference between Rlogn(ℓ) and Mn(ℓ) (see (1.6)), unlike between the means of
Rlogn(ℓ) and Kn(ℓ).

The rest of the paper is organized as follow: in Section 2 we study RΦ(n)(ℓ) and prove
Proposition 1.3. In Section 3 we link RΦ(n)(ℓ) and Mn(ℓ), which leads to Theorem 1.1
and (1.9) of Theorem 1.2. In Section 4 we prove the end of Theorem 1.2. Also we add an
appendix where we state known results on branching processes and local limit theorems
for sums of i.i.d. random variables.
Note that for typographical simplicity, we do not distinguish a real number and its integer
part throughout the article.
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2 Expectation and bounds of RΦ(n)(ℓ)

In this section we only work with the environment more especially with what we call
number of accessible points RΦ(n)(ℓ).

2.1 Expectation of RΦ(n)(ℓ) (proof of (1.14))

According to Biggins-Kyprianou identity (also called many-to-one formula, see part A of

appendix), E[RΦ(n)(ℓ)] = E
[

eSℓ1S̄ℓ≤Φ(n)

]

where Sj is a centered random walk, we only

have to prove

Lemma 2.1 For all ε > 0, Φ satisfying (1.12), for all 0 < ζ < 2

E
[

eSℓ1S̄ℓ≤Φ(n)

]

≍ eΦ(n)f(Φ(n)/ℓ)
[

ℓ−110<ζ≤1 +Φ(n)ℓ−3/211≤ζ<2

]

.

Proof.
For ε > 0:

E
[

eSℓ1S̄ℓ∈IΦ(n)

]

≤ E
[

eSℓ1S̄ℓ≤Φ(n)

]

≤ E
[

eSℓ1S̄ℓ∈IΦ(n)

]

+ eΦ(n)(1−ε).

with IΦ :=]Φ(n)(1 − ε),Φ(n)]. For every sequence (un)n∈N, we denote ūj := max1≤i≤j ui
and uj := min1≤i≤j ui, also let Sj := {S̄j−1 < Sj = S̄ℓ}. First, as S0 = 0

ℓ
∑

j=1

E
[

eSℓ1Sj∈IΦ(n),Sj

]

≤ E
[

eSℓ1S̄ℓ∈IΦ(n)

]

≤
ℓ
∑

j=1

E
[

eSℓ1Sj∈IΦ(n),Sj

]

+ 1.

For 0 ≤ i ≤ j, let S̃i := Sj − Sj−i, with this notation {S̄j−1 < Sj} = {S̃j−1 > 0} and

S̃j = Sj. Writing S as a sum of i.i.d. random variables, we easily see that (Si)0≤i≤j and
(S̃i)0≤i≤j have the same law. Then, conditioning on σ{Sk, k ≤ j}

E
[

eSℓ1Sj∈IΦ(n) ,Sj

]

= DjFℓ−j (2.1)

with Fm := E
[

eSm1S̄m≤0

]

and Dj := E
[

eSj1Sj∈IΦ(n),Sj−1>0

]

.

By (B.1), ∀j ≤ ℓ, Fℓ−j ≍ (ℓ− j + 1)−3/2 then it remains to estimate Dj. For any A > 0

Dj =

Φ(n)
∑

k=Φ(n)(1−ε)+1

E
[

eSj1k−1<Sj≤k,Sj>0

]

≍
Φ(n)
∑

k=Φ(n)(1−ε)+1

ekP (k − 1 < Sj ≤ k, Sj > 0)(1k≤Aj1/2 + 1k>Aj1/2)

=: D1
j +D2

j .
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We now need to distinguish the cases 0 < ζ < 1 and 1 ≤ ζ < 2.
When 0 < ζ < 1, D1

j = 0 as k > Aℓ1/2. Also using Lemma B.6 for A large enough

H2
j :=

Φ(n)
∑

k=Φ(n)(1−ε)+1

ekP (k − 1 < Sj ≤ k, Sj > 0)1Aj1/2<k<εj

≍
εj∧Φ(n)
∑

k=Φ(n)(1−ε)+1

ekP (k − 1 < Sj ≤ k, Sj > 0) ≍
εj∧Φ(n)
∑

k=Φ(n)(1−ε)+1

ekf(k/j)

j
, (2.2)

recall that f(x) = 1 − x/(2σ2) + x2λ(x) where λ is the Cramér’s serie associated to V .
(2.2) implies that H2

j ≥ c−e(εj∧Φ(n))f((εj∧Φ(n))/j)/j. For the upper bound, we can assume
without loss of generality that ε is small enough to ensure that for |x| ≤ ε, λ(x) converges
and f ′(x) is negative. Therefore, the derivative of F defined by F (x) := exf(x/j)/f(x/j)
satisfies in the same interval F ′(x) ≥ exf(x/j) − c+xe

xf(x/j)/j ≥ exf(x/j)(1 − c+ε), with
c+ > 0. Integrating this last inequality, for ε small enough

∫ εj∧Φ(n)

Φ(n)(1−ε)
exf(x/j) ≤ [F (x)]

εj∧Φ(n)
Φ(n)(1−ε) /(1 − c+ε) ≤ C+e

(εj∧Φ(n))f((εj∧Φ(n))/j), (2.3)

and finally

H2
j ≤ C+

j

∫ Φ(n)

Φ(n)(1−ε)
exf(x/j)dx ≤ C+

j
e(εj∧Φ(n))f((εj∧Φ(n))/j).

Note that for s > 0 small enough, ψ(1 − s) ≤ s/2. So the exponential Markov inequality
applied to P (sSj > sk) and the identity E[esSj ] = ejψ(1−s) yield

H̃2
j :=

Φ(n)
∑

k=Φ(n)(1−ε)+1

ekP (k − 1 < Sj ≤ k, Sj > 0)1k≥εj ≤ eΦ(n)(1−s/2).

In particular H̃2
j = o(H2

j ) for all j ≥ Φ(n)1+u with u > 0. Finally, as for any ε small
enough (εj ∧Φ(n))f((εj ∧ Φ(n))/j) is increasing in j, for any 0 < u < ζ

ℓ
∑

j=1

DjFℓ−j ≍
ℓ
∑

j=Φ(n)1+u

(ℓ− j + 1)−3/2j−1e(εj∧Φ(n))f((εj∧Φ(n))/j) ≍ eΦ(n)f(Φ(n)/ℓ)/ℓ. (2.4)

Indeed, writing
∑ℓ

j=Φ(n)1+u(ℓ − j + 1)−3/2j−1e(εj∧Φ(n))f((εj∧Φ(n))/j) :=
∑ℓ

j=Φ(n)1+u Gj ,
∑ℓ

j=Φ(n)1+u Gj ≥ Gℓ and as

ℓ
2
∑

j=Φ(n)1+u

Gj ≤ C+e
Φ(n)f(Φ(n)/ℓ)

φ(n)1+uℓ
1
2

≤ C+e
Φ(n)f(Φ(n)/ℓ)

ℓ
,

ℓ
∑

j= ℓ
2
+1

Gj ≤ C+e
Φ(n)f(Φ(n)/ℓ)

ℓ

ℓ
∑

j= ℓ
2
+1

(ℓ− j + 1)−
3
2 ≤ C+e

Φ(n)f(Φ(n)/ℓ)

ℓ
,
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(2.4) follows.
When 1 ≤ ζ < 2, we prove that the main contribution comes from D1

j . As for any n large

enough, Φ(n) ≤ Aℓ1/2 for some A > 0, for any j ≥ (Φ(n)/A)2 using Lemma B.6

D1
j ≍

Φ(n)
∑

k=Φ(n)(1−ε)

kek

j3/2
e−k

2/(2σ2j) ≍ Φ(n)

j3/2
eΦ(n)f(Φ(n)/ℓ).

When j < (Φ(n)/A)2, similar computations than for Hj and H̃j give

ℓ
∑

j=1

D2
jFℓ−j ≤

(Φ(n)/A)2
∑

j=1

Fℓ−j(H
2
j + H̃2

j ) ≤ C+e
Φ(n)(1−(A2/2σ2∧s/2)).

Finally
∑ℓ

j=1DjFℓ−j ≍ Φ(n)eΦ(n)f(Φ(n)/ℓ)ℓ−3/2, this together with (2.4) finishes the proof.
�

2.2 Bounds for logRΦ(n)(ℓ) (proof of (1.13))

The upper bound is a direct consequence of Markov inequality and (1.14).
For the lower bound, we first need an estimation on the deviation of min|z|=m V (m), this
topic has been studied in details in [9],

Proposition 2.2 Let an a positive sequence such that an ∼ n1/3, there exists b0 > 0 such
that for any 0 < b < b0

lim
n→+∞

1

an
log P

(

min
|z|=n

V (z) ≤ ban

)

= b− b0. (2.5)

A useful consequence of the above Proposition is the following

Lemma 2.3 Assume that an is a positive increasing sequence such that an ∼ n1/3, there
exists a constant µ > 0 such that for any n large enough

P

(

min
|z|=n

V (z) > µan

)

≤ λn + o(λn), (2.6)

where λn = e−c1e
c1an if q0 + q1 = 0, and λn = e−c1an otherwise, also c1 > 0 depends only

on the distribution P .

Proof.
Clearly for z1 < z, V (z) ≤ V (z1)+ Ṽ (z1, z) where Ṽ (z1, z) = maxz1<x≤z V (x)− V (z1). In
the sequel, writing Ṽ (z1, z) implies that z1 < z implicitly. For 0 < η < 1 and vn := ηb0an/α

P

(

min
|z|=n

V (z) > 2ηb0an

)

≤ P

(

min
|z1|=vn

min
|z|=n

Ṽ (z1, z) > 2ηb0an − max
|z1|=vn

V (z1)

)

.
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Using that max|z1|=vn V (z1) ≤ αvn by ellipticity and for An :=
{

Zvn ≥ eηψ(0)vn
}

P

(

min
|z|=n

V (z) > 2ηb0an

)

≤ P

(

min
|z1|=vn

min
|z|=n

Ṽ (z1, z) > ηb0an

)

≤ P

(

min
|z1|=vn

min
|z|=n

Ṽ (z1, z) > ηb0an,An

)

+ P (Ān).

Theorem A.2 tells that if q0+ q1 > 0, there exists ν > 0 such that P (Ān) ≤ e−ν(1−η)ψ(0)vn ,
otherwise there exists β′ > 0 such that log P (Ān) ∼ −eβ′(1−η)ψ(0)vn . Stationarity gives
that min|z|=n Ṽ (z1, z) and min|z|=n−vn V (z) have the same law, and independence of the
sub-branching processes rooted at generation vn together with (2.5) imply

P

(

min
|z1|=vn

min
|z|=n

Ṽ (z1, z) > ηb0an,An

)

≤ P

(

min
|z|=n−vn

V (z) > ηb0an

)eηψ(0)vn

≤
(

1− e−(b0(1−η)+o(1))an
)eηψ(0)vn

,

we conclude choosing η sufficiently close to 1 to get (1− η) < η2ψ(0)/α. �

Figure 1: One large cluster

To obtain the lower bound for logRΦ(n)(ℓ), we prove the existence of a cluster Cℓ(z) (see
(1.8)) with |z| = ℓ−wn where wn := Φ(n)(1−ε)/γ̃ and such that ∀z′ ∈ Cℓ(z), V (z′) ≤ Φ(n).
In other words for |z| < ℓ, let Zzℓ the number of descendants of z at generation ℓ, we prove

lim
n→+∞

P





⋃

|z|=ℓ−wn

{

#{z′ ∈ Cℓ(z), V (z′) ≤ Φ(n)} = Zzℓ
}



 = 1, (2.7)

which implies according Theorem A.2 that

lim
n→+∞

P
(

RΦ(n)(ℓ) ≥ eψ(0)wn(1−ε)
)

= 1.
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Let B :=
⋃

|z|=ℓ−wn{V (z) ≤ yn,Rz
Φ(n)−yn(ℓ) = Zzℓ } where yn := µℓ1/3

P (B) ≥ P



{Ryn(ℓ− wn) ≥ 1}
⋂ ⋃

|z|=ℓ−wn,V (z)≤yn

{

Rz
Φ(n)−yn(ℓ) = Zzℓ

}





=
∑

k≥1
P (Ryn(ℓ− wn) = k)P





⋃

|z|=ℓ−wn,V (z)≤yn

{

Rz
Φ(n)−yn(ℓ) = Zzℓ

}

∣

∣

∣

∣

∣

∣

Ryn(ℓ− wn) = k



 .

Let us denote z1, . . . , zk, . . . the ordered points at generation ℓ−wn satisfying V (zi) ≤ yn.
Conditionally on {Ryn(ℓ− wn) = k}, z1 exists and

{

Rz1
Φ(n)−yn(ℓ) = Zz1ℓ

}

⊂
⋃

|z|=ℓ−wn,V (z)≤yn

{

Rz
Φ(n)−yn(ℓ) = Zzℓ

}

.

Furthermore, by stationarity Rz1
Φ(n)−yn(ℓ) and RΦ(n)−yn(wn) have the same law, so

P (B) ≥ P
(

RΦ(n)−yn(wn) = Zwn
)

∑

k≥1
P (Ryn(ℓ− wn) = k)

≥ P

(

max
|z|=wn

V (z) ≤ Φ(n)− yn

)

P

(

min
|z|=ℓ−wn

V (z) ≤ yn

)

As yn = o(Φ(n)), the first probability tends to one thanks to a result of Mac-Diarmid [14]
(see also [3] Lemma 2.1), so does the second one as a consequence of Lemma 2.3. �

3 Expectation of Kn(ℓ), bounds for logKn(ℓ) and logMn(ℓ)

3.1 Proof of (1.7)

We start with general upper and lower bounds for the annealed expectation of Kn(ℓ).

Lemma 3.1 For n ∈ N:

C−(nA
−
n +B−n ) ≤ E[Kn(ℓ)] ≤ C+(nA

+
n +B+

n )

where

A+
n := E

[

eSℓ−S̄ℓ1∑ℓ
i=1 e

Si>c−n

]

, B+
n := E

[

eSℓ1S̄ℓ≤log(c+n)
]

,

A−n := E

[

eSℓ
∑ℓ

i=1 e
Si
1S̄ℓ>log(c+n)

]

and B−n := E
[

eSℓ1∑ℓ
i=1 e

Si≤c−n

]

,

C− and c− (respectively C+ and c+) are positive constants that may decrease (respectively
increase) from line to line.

Proof.
Markov property gives E

E [Kn(ℓ)] =
∑

|z|=ℓ(1 − en log(1−pz)), with pz := P
E
φ(Tz < Tφ).

10



Obviously on {npz ≥ 1}, 1 − e−1 ≤ 1 − en log(1−pz) ≤ 1. As for x ∈ [0; 1[, −x(1 + x/2) ≤
log(1− x) ≤ −x and x(1− x/2) ≤ 1− e−x ≤ x, on {npz < 1}

−3pz/2 ≤ log(1− pz) ≤ −pz and
npz
4

≤ 1− en log(1−pz) ≤ 3npz
2

,

then

C−(npz1npz<1 + 1npz≥1) ≤ 1− en log(1−pz) ≤ C+(npz1npz<1 + 1npz≥1).

Using successively the fact that c−(
∑

x∈Kφ,zK e
V (x))−1 ≤ pz ≤ c+e

−V (z) and Biggins-
Kyprianou identity (see Appendix A.1)

B−n ≤ E
[

∑

|z|=ℓ 1npz≥1
]

≤ B+
n .

Similar arguments show C−A−n ≤ E
[

∑

|z|=ℓ pz1npz<1

]

≤ C+A
+
n . �

We now give upper bounds for B+
n and A+

n , and a lower bound for A−n .
• For B+

n , we use Lemma 2.1 taking Φ(n) = log n.
• For A+

n , first note that {
∑ℓ

i=1 e
Si > c−n} ⊂

{

S̄ℓ > dn
}

, with dn = log(c−n/ℓ). Recalling
the arguments given in (2.1), A+

n is bounded from above by

E
[

eSℓ−S̄ℓ1S̄ℓ>dn

]

=
ℓ
∑

j=dn/α

P
(

Sj > dn, Sj > 0
)

E
[

eSℓ−j1S̄ℓ−j≤0

]

=:
ℓ
∑

j=dn/α

LjFℓ−j . (3.1)

Like in the proof of Lemma 2.1, we distinguish cases 0 < ζ < 1 and 1 ≤ ζ < 2.
When 0 < ζ < 1 then dn > A

√
j for any A > 0, so applying Lemma B.6 like for (2.2) we

obtain for dn ≤ εj

ℓ
∑

j=dn/α

LjFℓ−j ≍
ℓ
∑

j=dn/α

Fℓ−j
e(εj∧dn)g((εj∧dn)/j)

dn
≍ 1

log n
e(logn)g(log n/ℓ), (3.2)

where for any x, g(x) := f(x)− 1. For dn > εj, a Markov inequality gives

ℓ
∑

j=dn/α

LjFℓ−j ≤ C+e
−εdn/2ℓ−3/2 ≤ C+e

−ε logn/2ℓ−3/2, (3.3)

so as ζ > 0, considering (3.2)

ℓ
∑

j=dn/α

LjFℓ−j ≍
e(logn)g(log n/ℓ)

log n
. (3.4)

When 1 ≤ ζ < 2 , first Lemma B.1 and (B.1) give

(1−ε)ℓ
∑

j=dn/α

LjFℓ−j ≤ C+(εℓ)
−3/2

(1−ε)ℓ
∑

j=dn/α

P (Sj > 0) ≤ C+ℓ
−3/2

(1−ε)ℓ
∑

j=dn/α

j−1/2 ≤ C+ℓ
−1,
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also

ℓ
∑

j=(1−ε)ℓ
LjFℓ−j ≤ C+

ℓ
∑

j=(1−ε)ℓ
Fℓ−jP (Sj > 0) ≤ C+

ℓ
∑

j=(1−ε)ℓ
(ℓ− j + 1)−3/2j−1/2 ≤ C+ℓ

−1/2.

(3.5)

For any j ≥ (1− ε)ℓ, dn ≤ Bj1/2 for all B > 0, and let A > B

ℓ
∑

j=(1−ε)ℓ
LjFℓ−j ≥

ℓ
∑

j=(1−ε)ℓ
Fℓ−jP (Bj

1/2 < Sj ≤ Aj1/2, Sj > 0)

=

ℓ
∑

j=(1−ε)ℓ
Fℓ−j

Aj1/2−1
∑

k=Bj1/2

P (Sj ∈ (k, k + 1], Sj > 0) (3.6)

then Lemma B.6 yields

Aj1/2−1
∑

k=Bj1/2

P (Sj ∈ [k, k + 1), Sj > 0) ≍
Aj1/2
∑

k=Bj1/2

kj−3/2e−k
2/(2σ2j) ≥ C−j

−1/2.

Inserting this in (3.6) give
∑ℓ

j=(1−ε)ℓ LjFℓ−j ≥ C−ℓ−1/2, this together with (3.5) and the
above inequality implies

ℓ
∑

j=dn/α

LjFℓ−j1dn≤εj ≍ ℓ−1/2 ≍ ℓ−1/2e(log n)g(logn/ℓ). (3.7)

Collecting (3.1), (3.4) and (3.7) yields

A+
n ≤ E

[

eSℓ−S̄ℓ1S̄ℓ>dn

]

≍ e(log n)g(log n/ℓ)
(

(log n)−110<ζ<1 + ℓ−1/211≤ζ<2

)

.

• For A−n , with Bℓ := {∑ℓ
i=1 e

Si ≤ ℓεeS̄ℓ} and bn := log(c+n)

ℓεA−n ≥ E
[

eSℓ−S̄ℓ1S̄ℓ>bn,Bℓ

]

= E
[

eSℓ−S̄ℓ
(

1S̄ℓ>bn
− 1S̄ℓ>bn,Bℓ

)]

:= Γ1 − Γ2. (3.8)

Γ1 can be treated as E
[

eSℓ−S̄ℓ1S̄ℓ>dn

]

so

Γ1 ≍ e(log n)g(logn/ℓ)
(

(log n)−110<ζ<1 + ℓ−1/211≤ζ<2

)

. (3.9)

Recalling that Sj = {Sj = S̄ℓ, S̄j−1 < Sj}, Γ2 =
∑ℓ

j=1E
[

eSℓ−Sj1Sj>bn,Bℓ,Sj

]

. Note that

on Sj, Bℓ = {Y1(j)+Y2(j) > ℓε} where Y1(j) :=
∑j

i=1 e
Si−Sj and Y2(j) :=

∑ℓ
i=j+1 e

Si−Sj .

As for 0 < δ < 1/2, Bℓ ⊂ {Y1(j) > δℓε} ∪ {Y2(j) > δℓε}

Γ2 ≤
ℓ
∑

j=bn/α

E
[

eSℓ−Sj1Sj>bn,Sj

(

1Y1(j)>δℓε + 1Y2(j)>δℓε
)]

=:
ℓ
∑

j=bn/α

(Πj +Ωj). (3.10)
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For
∑ℓ

j=bn/α
Ωj, conditioning by σ(Sk, 0 ≤ k ≤ j)

Ωj = P (Hj)E
[

eSℓ−j1S̄ℓ−j≤0,Y +(ℓ−j)>δℓε
]

where Y ±(k) :=
∑k

i=1 e
±Si and Hm := {Sm > bn, Sm > 0}. Moreover, using (B.1) and

the fact that, on {S̄ℓ−j ≤ 0}, {Y +(ℓ− j) > δℓε} = ∅ for j ≤ ℓ− δℓε

E
[

eSℓ−j1S̄ℓ−j≤0,Y +(ℓ−j)>δℓε
]

≤ C+(ℓ− j + 1)−3/21ℓ−j≥δℓε,

and P (Hj) can be treated like Lj. Then, for n large enough

ℓ
∑

j=bn/α

Ωj ≤
e(logn)g(log n/ℓ)

δℓε

(

(log n)−110<ζ<1 + ℓ−1/211≤ζ<2

)

. (3.11)

For
∑ℓ

j=bn/α
Πj , we have Πj = P (Hj, Y

−(j) > δℓε)Fℓ−j . Let R := sup{0 < k ≤ j, Sk ≤
γ log ℓ} with γ > 1, τ+x := inf{k > 0, Sk ≥ x} for x ∈ R and tn = (log ℓ)2, then

Πj = (P
(

Hj, Y
−(j) > δℓε, R ≤ τ+tn

)

+ P
(

Hj, Y
−(j) > δℓε, R > τ+tn

)

)Fℓ−j =: Γ3 + Γ4.

Upper bound for Γ3, let τ
−
x := inf{k > 0, Sk ≤ x} for x ∈ R. Notice that on {R ≤ τ+tn},

(a) First case (3) (b) Second case (4)

Figure 2: Two cases

∑j

k=τ+tn+1
e−Sk ≤ ℓ1−γ implying that {Y −(j) > δℓε} ⊂ {Y −(τ+tn) > δℓε/2}. Thus, using

strong Markov property

P
(

Hj , Y
−(j) > δℓε, R ≤ τ+tn

)

≤ P
(

Hj, Y
−(τ+tn) > δℓε/2, R ≤ τ+tn

)

≤
j
∑

k=tn/α

P
(

Hj, Y
−(τ+tn) > δℓε/2, τ+tn = k

)

≤
j
∑

k=tn/α

sup
z∈[0,α]

Pz+tn (Hj−k)P (Y
−(τ+tn) > δℓε/2, τ−0 > τ+tn = k). (3.12)
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Case ζ < 1, we use the following upper bound for (3.12)

P (Y −(τ+tn) > δℓε/2, τ−0 > τ+tn) sup
tn/α≤k≤j

sup
z∈[0,α]

Pz+tn (Hj−k) .

Lemma B.4 gives an upper bound for the first probability. Moreover with the help of
Lemma B.5 and a similar reasoning as for (3.2) and (3.3), for all tn/α ≤ k ≤ j

sup
z∈[0,α]

Pz+tn (Hj−k) ≤ C+tnbn
−1e(εj∧bn)g((εj∧bn)/j).

So Γ3 ≤ C+tnb
−1
n ℓ−ε(ℓ− j + 1)−3/2e(εj∧bn)g((εj∧bn)/j).

Case ζ ≥ 1, here the following upper bound for (3.12) is useful

P (Y −(τ+tn) > δℓε/2, τ−0 > τ+tn) sup
tn/α≤k≤j/2

sup
z∈[0,α]

Pz+tn (Hj−k) + P (τ−0 ∧ τ+tn ≥ j/2)

≤ P (Y −(τ+tn) > δℓε/2, τ−0 > τ+tn)Pα+tn(Sj/2 > 0) + 2E[τ−0 ∧ τ+tn ]/j ≤ C+tn

(

1

ℓεj1/2
+

1

j

)

,

with Lemmata B.1 and B.4. So

Γ3 ≤
C+tn

(ℓ− j + 1)3/2

(

1

ℓεj1/2
+

1

j

)

.

Upper bound for Γ4, first note that on {R > τ+tn}, the following hitting times τ̃−γ log ℓ :=

inf{k ∈Kτ+tn , jK, Sk ≤ γ log ℓ} = τ+tn + θτ+tn
◦ τ−γ log ℓ, and τ̃+tn := inf{k ∈Kτ̃−γ log ℓ, jK, Sk ≥ tn} =

τ̃−γ log ℓ + θτ−γ log ℓ
◦ τ+tn (where θ is the shift operator) exist. With these notations according

to Lemma B.1

P (τ−0 > τ̃+tn) = P (τ+tn < τ+tn + θτ+tn
◦ τ−γ log ℓ < τ̃−γ log ℓ + θτ̃−γ log ℓ

◦ τ+tn < τ−0 )

≤ P (τ−0 > τ+tn) sup
z∈[0,α]

Pγ log ℓ−z(τ
−
0 > τ+tn) ≤ C+

γ log ℓ

(tn)2
.

Again at this point we distinguish the cases ζ < 1 or ζ ≥ 1.
When ζ < 1 the above inequality yields

P
(

Hj , R > τ+tn
)

≤ sup
2tn/α≤k≤j

sup
z∈[0,α]

Pz+tn (Hj−k)P (τ
−
0 > τ̃+tn)

≤ C+
γ log ℓ

(tn)2
sup

2tn/α≤k≤j
sup
z∈[0,α]

Pz+tn (Hj−k) .

Finally using that P
(

Hj, Y
−(j) > δℓε, R > τ+tn

)

≤ P
(

Hj , R > τ+tn
)

, Lemma B.5 and (B.1)

Γ4 ≤ C+
e(εj∧bn)g((εj∧bn)/j)

bn(ℓ− j + 1)3/2 log ℓ
.

When ζ ≥ 1, we have

P
(

Hj, Y
−(j) > δℓε, R > τ+tn

)

≤ P
(

Hj , j/2 ≥ R > τ+tn
)

+ P
(

Hj , R > τ+tn ∨ j/2
)

.
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Moreover P
(

Hj, j/2 ≥ R > τ+tn
)

≤ P
(

τ+tn < τ−0
)

sup−α≤x≤α Pγ log ℓ+x(Sj/2 > 0)

and P
(

Hj , R > τ+tn ∨ j/2
)

≤ P (Sj/2 > 0) sup−α≤x≤α Pγ log ℓ+x(τ
−
0 > τ+bn). So using

Lemma B.1

Γ4 ≤
C+

j1/2(log ℓ)(ℓ− j + 1)3/2
.

Collecting (3.11) and Γ3, Γ4 with (3.10)

Γ2 ≤ C+
ebng(bn/ℓ)

bn log ℓ
∼ C+

e(log n)g(logn/ℓ)

(log n) log ℓ
,

if ζ < 1 and

Γ2 ≤
C+

ℓ1/2 log ℓ
≤ C+

e(log n)g(log n/ℓ)

ℓ1/2 log ℓ
,

if ζ ≥ 1. Γ2 is therefore negligible compared to Γ1 (see (3.9)) and (3.8) implies that

A−n ≥ C+e
(log n)g((log n)−ζ)

(

(log n)−1−ε10<ζ<1 + ℓ−1/2−ε11≤ζ<2

)

. This with Lemma 3.1
finish the proof of (1.7).

3.2 From RΦ(n)(ℓ) to Kn(ℓ) and Mn(ℓ) (proof of (1.6) and (1.9))

Let Φ1(n) := (1− 2ε) log n, we need the following

Lemma 3.1 Let A := {|z| = ℓ, V (z) ≤ Φ1(n)},

lim
n→+∞

P

(

min
z∈A

L(z, T n1−ε

φ ) ≥ 1

)

= 1,

which implies limn→+∞ P(Kn1−ε(ℓ) ≥ RΦ1(n)(ℓ)) = 1.

Proof.
Applying Corollary C.1,

P
E(∪z∈A{L(z, T n

1−ε

φ ) = 0}) ≤ |A|e−c−nεℓ−1 ≤ RΦ1(n)(ℓ)e
−c−nε/2

Using (1.13), E[RΦ1(n)(ℓ)] ≤ eΦ1(n) and the proof is achieved. �

The above Lemma together with (2.7) (taking Φ(n) = Φ1(n)), give for n large enough

lim
n→+∞

P

(

max
|z|=ℓ−logn/γ̃

min
y∈Cℓ(z)

L(y, T n1−ε

φ ) ≥ 1

)

= 1 (3.13)

To obtain the lower bound in (1.9) we finally use the following result that can be deduced
from [9] (see [3] Lemma 3.2 and what follows for details)

∀δ > 0, lim
n→+∞

P(L(φ, n) ≥ n1−δ) = 1. (3.14)

For the lower bound in (1.6), we use Lemma 3.1, (3.14) and finally the lower bound in
(1.13).

For the upper bound in (1.6), denote un := C
(

log log n ∨ (log n)1−ζ
)

, where C > 0.
As n ≤ T nφ , by Markov inequality and (1.7), P (logMn(ℓ) ≥ log n− un) ≤ P(Kn(ℓ) ≥
ne−un) ≤ C+e

une−(logn)
1−ζ/2σ2ℓ−1/2 which gives the upper bound adjusting C properly.
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4 Visited points along the GW

In this paragraph we study the manner the random walk visits the tree.

4.1 Visits of clusters at deterministic cuts (proof of (1.11))

Recall that a cluster initiated at z with end generation m is the set Cm(z) = {u > z, |u| =
m}. Also take kn = Φ(n)k, rn = Φ(n)r, sn = Φ(n)s with s > 0 and hn sequences such
that

hn =
ℓ− knrn
kn − 1

, kn(αrn + sn)− sn ≤ Φ(n)(1− 2ε), (4.1)

where α := | log ε0| (see (A.1) for details).
We define recursively clusters at generations irn + (i − 1)hn for all 1 ≤ i ≤ kn in the
following way (see also Figure 3): the iteration starts with ž0 = φ and

∀zi ∈ Cirn+(i−1)hn(ži−1), ži = inf{u > zi, |u| = i(rn + hn), V (u) ≤ i(αrn + sn)}.

The individuals of these clusters form a subtree of the GW, moreover for all z of this
subtree at generation ℓ, V (z) ≤ Φ(n)(1 − 2ε). For a fixed i ∈ J1; knK, Ci denotes, among
the previously defined clusters, the ones rooted at generation (i − 1)(rn + hn) and with
end points at generation irn + (i − 1)hn, in other words Cirn+(i−1)hn(.). We first give an
upper bound for the probability that for all i ≤ kn every clusters in Ci are fully visited
before T n

1−ε

φ

P
E





kn
⋃

i=1

⋃

D∈Ci

⋃

z∈D

{

L(z, T n1−ε

φ ) = 0
}



 ≤
kn
∑

i=1

∑

D∈Ci

∑

z∈D
P
E
(

L(z, T n1−ε

φ ) = 0
)

.

In the previous formula
⋃kn
i=1

⋃

D∈Ci
is an abuse of notation as the sets of clusters are

defined recursively. With a similar reasoning as the one for Corollary C.1 and the ellipticity
condition for the number of descendants

P
E





kn
⋃

i=1

⋃

D∈Ci

⋃

z∈D

{

L(z, T n1−ε

φ ) = 0
}



 ≤ exp(knrn logN0 − c−n
1−εe−Φ(n)(1−2ε)/ℓ). (4.2)

We now prove the existence of such clusters, this implies new constraints on k, r and s in
addition to (4.1).
First, ellipticity conditions imply that for any site z > y, V (z) − V (y) ≤ α(|z| − |y|) a.s.
Thus, for all a ∈ N and b > 0, {∃ž > z, |ž| = |z| + a, Ṽ (z, ž) ≤ b} is a.s. contained in
{V (z)− V (y) ≤ α(|z| − |y|),∃ž > z, |ž| = |z|+ a, Ṽ (y, ž) ≤ α(|z| − |y|) + b} (Ṽ is defined
in the proof of (2.6)).
Then, with our slight abuse of notation, a.s. B := {the clusters C.(.) exist} contains

kn
⋂

i=1







⋂

zi∈Cirn+(i−1)hn (ži−1)

{

∃ži > zi, |ži| = i(rn + hn), Ṽ (zi, ži) ≤ sn

}







.
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Figure 3: Clusters at regular cuts

The independence of the increments of V and the ellipticity assumptions on the number
of descendants (|C.(.)| ≤ N rn

0 ) imply

P (B) ≥
[

P (∃|z| = hn, V (z) ≤ sn)
]Nknrn

0 =

[

P

(

min
|z|=hn

V (z) ≤ sn

)]Nknrn
0

.

Assuming s ≥ (1+ζ−k)/3, Lemma 2.3 yields P (B) ≥ (1−λhn)N
knrn
0 ∼ exp

(

−Nknrn
0 λhn

)

.

To choose k, r and s, we have to take into account the last constraint in (4.1), s ≤ 1− k
and that if q0 + q1 6= 0, k+ r < s. We distinguish two cases

• if 0 < ζ ≤ 1, let 0 < δ < ζ/2, take s = (1+ζ)/2−δ, k = δ/2, and r = (1− ζ)/2+ δ/2,

• if 1 < ζ < 2, let 0 < δ < (2− ζ)/3, take s = (1+ ζ)/3, k = δ and r = (1+ ζ − 4δ)/3.

Thus in both cases

P (B) ≥ 1−C+e
−c1snNknrn

0 −→
n→+∞

1. (4.3)

When q0 + q1 = 0, the above choices give an even better rate of convergence for P (B).
We now move back to (4.2), (4.3) together with the fact that Φ(n) ≤ log n + o(log n)
implies

lim
n→+∞

P





kn
⋂

i=1

⋂

D∈Ci

⋂

z∈D

{

L(z, T n1−ε

φ ) ≥ 1
}

,B



 = 1.

According to (3.14), as P(n ≥ T n
1−ε

φ ) tends to one we finally obtain

lim
n→+∞

P





kn
⋂

i=1

⋂

D∈Ci

⋂

z∈D
{L(z, n) ≥ 1} ,B



 = 1.
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So we can find set of clusters at regular cuts on the tree which are fully visited. To
finish the proof of (1.11) we first show the existence of a lower bound for the number of
visited clusters. Using successively that conditionally on B, |Ci| is equal in law to Z(i−1)rn ,
Theorem A.2 and (4.3)

P
(

∃i ∈ J2, knK, |Ci| ≤ eψ(0)(i−1)rn/2
)

≤ P
(

∃i ∈ J2, knK, |Ci| ≤ eψ(0)(i−1)rn/2,B
)

+ P (B)

≤
kn
∑

i=2

P
(

Z(i−1)rn ≤ eψ(0)(i−1)rn/2
)

+ P (B)

≤ e−ψ(0)νrn/4 + C+e
−c1snNknrn

0 .

Note that for the first term we have used the left tail of Z. with q0 + q1 > 0 as the other
case provide an even better rate of convergence. Finally we prove that the previously
defined visited clusters are very spaced out. Recalling the definition of D before Theorem
1.2,

P
(

∃i ∈ J2, knK,D(Ci) ≤ eψ(0)hn/2
)

≤ P (B) +

kn
∑

i=2

P
(

D(Ci) ≤ eψ(0)hn/2,B
)

≤ P (B) +

kn
∑

i=2

P





⋃

D∈Ci−1

⋃

z∈D
{|Ci(rn+hn)(z)| ≤ eψ(0)hn/2} ∩ B



 .

As conditionally on B, |Ci(rn+hn)(z)| and Zhn are equal in law, on Di := {|Ci| ≤ e2ψ(0)(i−1)rn},
|D| |Ci| ≤ N rn

0 e2ψ(0)(i−1)rn so Theorem A.2 yields

P
(

D(Ci) ≤ eψ(0)hn/2,B
)

≤ P





⋃

D∈Ci−1

⋃

z∈D
{|Ci(rn+hn)(z)| ≤ eψ(0)hn/2} ∩ B ∩ Di



+ P (D i)

≤ ern logN0+2ψ(0)(i−1)rnP (Zhn ≤ eψ(0)hn/2) + e−ψ(0)(i−1)rn

≤ ern logN0+2ψ(0)(i−1)rn−νψ(0)hn/2 + e−ψ(0)(i−1)rn .

Consequently

P
(

∃i ∈ J2, knK,D(Ci) ≤ eψ(0)hn/2
)

≤ e3ψ(0)knrn−νψ(0)hn/2 + 2e−ψ(0)rn + C+e
−c1snNknrn

0 ,

moreover as hn ∼ (log n)1+ζ−k, k+ r < s < 1 and k < ζ we obtain the result.

4.2 Proof of (1.10)

Let m = εℓ1/3, δ > 0, define B the set of points z′ such that for all |z| = m, z′ := inf{u >
z, |u| = ℓ, V (u) ≤ Φ(n)(1− δ)}. Corollary C.1 gives

P
E
(

⋃

z′∈B

{

L(z′, T n1−ε

φ ) = 0
}

)

≤ |B|e−c−n1−εe−Φ(n)(1−δ)/ℓ ≤ Zme
−c−n1−εe−Φ(n)(1−δ)/ℓ.
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As Φ(n) ≤ log n+ o(log n) and E[Zm] = eψ(0)m, taking δ = 2ε

P

(

⋃

z′∈B

{

L(z′, T n1−ε

φ ) = 0
}

)

≤ e−c−n
ε/2
. (4.4)

We now prove that limn→+∞ P (|B| = Zm) = 1. From [14] (see also [3] Lemma 2.1),
limn→+∞ P (max|z|=m V (z) ≤ 2γ̃m) = 1, so as for n large enough ℓ1/3/Φ(n) ≤ δ with the
same arguments used in the proof of Lemma 2.3

P (|B| < Zm) ≤ P





⋃

|z|=m

{

∀z′ > z, |z′| = ℓ, V (z′) > (1− δ)Φ(n)
}





≤ 1−
(

1− P

(

min
|z|=ℓ−m

V (z) > (1− 2δ)Φ(n)

))e2ψ(0)m

+ e−ψ(0)m

≤ 2P

(

min
|z|=ℓ−m

V (z) > (1− 4ε)Φ(n)

)

e2ψ(0)m + e−ψ(0)m.

To finish we put ourself in the case q0 + q1 > 0 (the other case is treated similarly), using
Lemma 2.3

P

(

min
|z|=ℓ−m

V (z) > (1− 4ε)Φ(n)

)

≤ e−c1ℓ
1/3
.

We can now choose ε small enough and obtain, P (|B| = Zm) ≥ 1 − e−c1ℓ
1/3/2. Moving

back to (4.4) P(∀z ∈ B,L(z, T n1−ε

φ ) ≥ 1, |B| = Zm) ≥ 1− o(1). Finally to obtain (1.10) we
apply (3.14).

Figure 4: Distant visited sites
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A Basic facts for branching processes and Galton-Watson

trees

A.1 Biggins-Kypriaou identities and properties of ψ

For any n ≥ 1 and any mesurable function F : Rn → [0,+∞), Biggins-Kyprianou identity
is given by

E





∑

|x|=n
e−V (x)F (V (xi), 1 ≤ i ≤ n)



 = E[F (Si, 1 ≤ i ≤ n)] (A.1)

where (Si − Si−1)i≥1 are i.i.d. random variables, and the law of S1 is determined by

E[f(S1)] = E





∑

|x|=1

e−V (x)f(V (x))



 , (A.2)

for any measurable function f : R → [0,+∞). A proof can be found in [5], see also [18].
We have the following identities

ψ(t) = logE[e(1−t)S1 ], ψ′(t) = −E[S1e
(1−t)S1 ]

E[e(1−t)S1 ]
.

In particular, E[N ] = eψ(0) = E[eS1 ] and the hypothesis ψ′(1) = 0 equates to E[S1] = 0.

Remark A.1 Let α := | log ε0|, we have P(|S1| ≤ α) = 1. Indeed taking f(x) = 1|x|≤α
and using Biggins-Kiprianou, P(|S1| ≤ α) = E[f(S1)] = eψ(1) = 1.

A.2 Left tail of Zn

Recall that the positive martingale (Wn)n≥0 := (Zn/eψ(0)n)n≥0 converges a.s. to a non
degenerate limit W (see for instance [18]). Moreover W has a positive continuous density
function denoted w. Bingham [6] shows that for the Schröder case (q0 + q1 > 0), there
exists 0 < ν < 1 such that for small x, w(x) ∼ xν−1 and for the Böttcher case (q0+q1 = 0)

there exists β ∈ (0, 1) such that when x → 0, logw(x) ∼ −x−
β

1−β . The results of [4] and
then [10] (Theorems 4 and 5) and [11] (Theorem 7) lead to

Theorem A.2 Let 0 < κ < 1 then P (Zn ≤ eκψ(0)n) ∼ e−νψ(0)(1−κ)n in the Schröder case,
and logP (Zn ≤ eκψ(0)n) ∼ logw

(

eψ(0)(κ−1)n
)

in the Böttcher case.

B Results for sums of i.i.d. random variables

In this section we recall basic facts for sum of i.i.d. random variables applied to (Sn)n≥0 of
Section A. Recall that for all x ∈ R, τ+x = inf{n ≥ 1, Sn ≥ x} and τ−x = inf{n ≥ 1, Sn ≤ x}.
The following results are standard and can be found in [1] and [19].

Lemma B.1 For all x ∈ [0, y] and m large enough

Px(τ
+
y < τ−0 ) ≍ x+ 1

y + 1
, E[τ+y ∧ τ−0 ] ≍ y and Px(τ

−
0 > m) ≍ x+ 1√

m
.
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Recalling that for all n ≥ 1, Y −(n) =
∑n

i=1 e
−Si , we have

Lemma B.2 There exists a constant C+ > 1 such that for all a ≥ 0 and M > 0

P
(

Y −(τ+a ) > M, τ+a < τ−0
)

≤ C+/M .

Proof.
According to [2] p.19, there exists C+ > 1 such that for all 0 ≤ a ≤ L ≤ 1,

E
[

Y −(τ−0 ∧ τ+a )
]

≤ C+a+1/a.

As P
(

Y −(τ+a ) > M, τ+a < τ−0
)

≤ P
(

Y −(τ−0 ∧ τ+a ) > M
)

, we conclude using the Markov
inequality. �

Lemma B.3 For any m ≥ 1,

E[eSm1τ−0 >m
] ≍ (m+ 1)−3/2. (B.1)

Proof.
The upper bound can be found in [13] p.44, the lower bound can be obtained as fol-
lows: E[eSm1τ−0 >m

] ≤ ∑αm
k=0 e

−kP (Sm ∈ [−k,−k + 1], S̄m < 0) =
∑αm

k=0 ke
−km−3/2 ≍

(m+ 1)−3/2. �

Recalling that for all n ≥ 1, Y −(n) =
∑n

i=1 e
−Si , we have

Lemma B.4 There exists a constant C+ > 1 such that for all a ≥ 0 and M > 0

P
(

Y −(τ+a ) > M, τ+a < τ−0
)

≤ C+/M .

The following Lemma may be found in the literature, however as we can prove it easily
for our case we present a short proof.

Lemma B.5 Let m > 1, assume that b = b(m) ≥ σ2
√
m logm, with limm→+∞ b/m = 0,

and a = a(m) > 0 is such that limm→+∞ a/
√
m = 0, then for all m large enough

Pa (Sm > b, Sm > 0) ≤ C+
a

b
eb·g(b/m), (B.2)

with g(x) = f(x)− 1 = − x
2σ2 + x2λ(x). For all ε > 0 and r > εm.

Pa (Sm ≥ r, Sm > 0) ≤ C+
a√
m
e−sr+mψ(1−s). (B.3)

Proof.
For (B.2), let ω a positive function of b and m, such that ω ≤ 2

√
m/b and that we choose

later, write Pa (Sm > b, Sm > 0) as

Pa

(

Sm > b, Sm > 0, τ+√
m

≤ ωm
)

+ Pa

(

Sm > b, Sm > 0, τ+√
m
> ωm

)

=: P3 + P4.

Strong Markov property and homogeneity give:

Pa

(

Sm > b, Sm > 0, τ+√
m

= j
)

≤ Pa

(

τ−0 > τ+√
m

= j
)

sup
0≤x≤α

P√m+x

(

Sm−j > b, Sm−j > 0
)

≤ Pa

(

τ−0 > τ+√
m

= j
)

P
(

Sm−j > b−√
m− α

)
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implying with Lemma B.1:

P4 ≤
m
∑

j=ωm+1

Pa

(

τ−0 > τ+√
m

= j
)

P
(

Sm−j > b−√
m− α

)

≤ Pa

(

τ−0 > τ+√
m

)

sup
ωm≤j≤m

P
(

Sm−j > b−√
m− α

)

≤ C+
a√
m

sup
ωm≤j≤m

P
(

Sm−j > b−√
m− α

)

,

A classical result of moderate deviations (see for instance [17], Chapter VIII, Theorem 1)
implies

P
(

Sm(1−ω) > b−√
m− α

)

≤ C+

√

m(1− ω)

(b−√
m− α)

e(b−
√
m−α)g((b−√m−α)/(m(1−ω)))

∼ C+
√
m

b
e(b−

√
m)g((b−√m)/(m(1−ω)))

We now choose ω in such a way that (b−√
m)g((b−√

m)/(m(1−ω)))− bg(b/m) = O(1),
ω is actually a sum which first two terms are ω = 2m1/2/b− λ(b/m)/

√
m+ .... So for any

n large enough

P
(

Sm(1−ω) > b−√
m− α

)

≤ C+
√
m

b
eb·g(b/m).

With similar computations this upper bound is still true for P (Sm−j > b−√
m− α) for

m(1− ε) ≤ j ≤ m, so P4 ≤ C+
a
b e
bg(b/m). In the same way

P3 ≤
ωm
∑

j=
√
m/α

Pa

(

τ−0 > τ+√
m

= j
)

sup
0≤x≤α

P√m+x

(

Sm−j > b, Sm−j > 0
)

≤
ωm
∑

j=
√
m/α

P
(

Sj ≥
√
m− a

)

P
(

Sm−j > b−√
m− α

)

,

Using again [17],

P3 ≤ C+

ωm
∑

j=
√
m/α

j1/2√
m− a

e−m/(2σ
2j) (m− j)1/2

b−√
m− α

e(b−
√
m−α)g((b−√m−α)/(m−j))

≤ C+
(ωm)1/2

b
e−b/(2σ

2m1/2)eb·g(b/m) = o

(

eb·g(b/m).

b

)

.

which finish the proof. (B.3) can be proved in a similar way with classical large deviation
estimates. �

The following Lemma states the local behavior of sums of i.i.d. random variables, recall
that S1 is non-lattice.
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Lemma B.6 Let ε > 0 small and A > 0 large. For all m large enough, for all 1 ≤ r ≤
A
√
m

P (Sm ∈ (r, r + 1], Sm > 0) =
r

m3/2
e−r

2/(2σ2m) + o(m−3/2). (B.4)

For all A
√
m ≤ r ≤ εm

P (Sm ∈ (r, r + 1], Sm > 0) ≍ 1

m
erg(r/m). (B.5)

see Lemma B.5 for the definition of g.

Proof.
(B.4) is F. Caravenna [7] result and (B.5) can be obtained with [17] Chapter VIII, Theorem
2 and 10 and similar arguments than in the proof of Lemma B.5. �

C Probability of hitting time

Lemma C.1 For x′ ∈ Jφ, xK:

P
E
x′x
(Tx < Tx′) =

eV (x′x)

∑

z∈Kx′,xK e
V (z)

, (C.1)

P
E
←
x
(Tx′ < Tx) =

eV (x)

∑

z∈Kx′,xK e
V (z)

. (C.2)

where x′x is the only children of x′ in Jx′, xK.

The result is classical (see for instance [3]) and a useful direct consequence of this latter
is the following

Corollary C.1 Let A ⊂ {z ∈ T, |z| = ℓ} and κ > 0, there exists a positive constant c7
such that

P
E
φ(T

nκ

φ < Tz) ≤ exp
(

−c7nκeV (z)/ℓ
)

, ∀z ∈ A, (C.3)

P
E
(

⋃

z∈A
{L(z, T nκφ ) = 0}

)

≤ |A| exp
(

−c7nκe−maxz∈A V (z)/ℓ
)

(C.4)

Proof.
Obviously (C.4) is a consequence of (C.3). Thanks to formula (C.1), for z ∈ A, PEφ (Tz < Tφ)

≥ C−e−V (z)/ℓ. Then using the strong Markov property and the recurrence of X, for n

large enough P
E
φ

(

T n
κ

φ < Tz

)

= (1− P
E
φ (Tz < Tφ))

nκ ≤ exp
(

e−c7n
κV (z)/ℓ

)

. �
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