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Spread of visited sites of a random walk along the generations

of a branching process

P. Andreoletti, P. Debs ∗

March 13, 2013

Abstract

In this paper we consider a null recurrent random walk in random environment
on a super-critical Galton-Watson tree. We consider the case where the log-Laplace
transform ψ of the branching process satisfies ψ(1) = ψ′(1) = 0 wherein G. Faraud
Y. Hu and Z. Shi in [9] show that, with probability one, the largest generation visited
by the walk, until the instant n, is of the order of (logn)3. In [3] we prove that the
largest generation entirely visited behaves almost surely like logn up to a constant.
Here we study how the walk visits the generations ℓ = (log n)1+ζ , with 0 < ζ < 2. We
obtain results in probability giving the asymptotic logarithmic behavior of the number
of visited sites at a given generation. We prove that there is a phase transition at
generation (logn)2 for the mean of visited sites until n returns to the origin. Also we
show that the visited sites spread all over the tree until generation ℓ.

1 Introduction

We start giving an iterative construction of the environment. Let (Ai, i ≥ 1) a positive
random sequence and N an independent N-valued random variable following a distribution
q, in other words P(N = i) = qi for i ∈ N. Let φ the root of the tree and (A(φi), i ≤ Nφ))
an independent copy of (Ai, i ≤ N). Then, we draw Nφ children to φ: these individuals
are the first generation. Each child φi is associated with the corresponding A(φi) and so
on. At the n-th generation, for each individual x we pick (A(xi), i ≤ Nx) an independent
copy of (Ai, i ≤ N) where Nx is the number of child of x and A(xi) is the random variable
attached to xi. The set T, consisting of the root and its descendants, forms a Galton-
Watson tree (GW) of offspring distribution q and where each vertex x 6= φ is associated
with a random variable A(x).

We denote by |x| the generation of x,
←
x the parent of x, and for convenience reasons we

add
←
φ , the parent of φ. The set of environments denoted E is the set of all sequences

((A(xi), i ≤ Nx), x ∈ T), with P and E respectively the associated probability measure
and expectation.
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We assume that the distribution of (Ai, i ≤ N) is non-degenerate and, to obtain a super-
critical GW, that E[N ] > 1. Moreover we add uniform ellipticity conditions

P − a.s ∃ 0 < ε0 < 1, ∀i, ε0 ≤ Ai ≤ 1/ε0, (1.1)

∃ N0 ∈ R, P − a.s N ≤ N0. (1.2)

Given E ∈ E, we define a T-valued random walk (Xn, n ∈ N) starting from φ by its
transition probabilities,

p(x, xi) =
A(xi)

∑Nx
j=1A(x

j) + 1
, p(x,

←
x) = 1−

Nx
∑

j=1

p(x, xj), p(
←
φ, φ) = 1.

Note that our construction implies that (p(x, .), x ∈ T) is an independent sequence. For
all E ∈ E, we denote by P

E the probability measure associated to this walk, the whole
system is described under the probability P, the semi-direct product of P and P

E .
To study asymptotical behaviours associated to (Xn)n∈N, a quantity appears naturally: the
potential process V associated to the environment which is actually a branching random
walk. It is defined by V (φ) := 0 and

V (x) := −
∑

z∈Kφ,xK

logA(z), x ∈ T\{φ},

where Jφ, xK is the set of vertices on the shortest path connecting φ to x and Kφ, xK =
Jφ, xK\{φ}. We also introduce the moment-generating function

ψ(t) := logE





∑

|x|=1

e−tV (x)



 ,

characterizing the environment. Note that the hypothesis we discuss above implies that
ψ is defined on R, and ψ(0) > 0.
Thanks to the work of M.V. Menshikov and D. Petritis, see [15] and the first part of [8]
by G. Faraud, if

ψ(1) = ψ′(1) = 0. (1.3)

then X is null recurrent. In [9], G. Faraud, Y. Hu, and Z. Shi study the asymptotic
behavior of max0≤i≤n |Xi| = X∗n, i.e. the largest generation visited by the walk. Assuming
(1.3), they prove the existence of a constant (known explicitely) C0 > 0 such that P a.s.
on the set of non-extinction of the GW

lim
n→+ ∞

X∗n
(log n)3

= C0. (1.4)

In a previous paper [3] we were interested in the largest generation entirely visited by the
walk, that is to say the behavior of Rn := sup{k ≥ 1,∀|z| = k,L(z, n) ≥ 1}, with L the
local time of X defined by L(z, n) := ∑n

k=1 1Xk=z. More precisely, if (1.3) is realized, P
a.s. on the set of non-extinction

lim
n→+∞

Rn
log n

=
1

γ̃
, (1.5)
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where γ̃ := sup{a ∈ R, J̃(a) > 0} with J̃(a) := inft≥0{ψ(−t)− at}.
Although in [3] all recurrent cases are treated, here we focus only on the hypothesis (1.3).
According to (1.4) and (1.5), until generation logn/γ̃ all the points are visited but X do not
visit generation further than C0(log n)

3. The aim of this paper is to study the asymptotic
of the number of visited sites at a given generation (log n)1+ζ with 0 < ζ < 2. For this
purpose we define the number of visited sites at generation m ∈ N

Mn(m) := #{|z| = m,L(z, n) ≥ 1}.

We also introduce the number of visited sites before n returns to the root, more precisely,
Kn(.) :=MTnφ

(.) where T nx = inf{k > T n−1x ,Xk = x} for n ≥ 1 and T 0
x = 0 for x ∈ T.

Let Zm the number of descendants at generation m ∈ N, we have Z1 = N . An obvi-
ous consequence of (1.5) is that a.s. for n large enough Mn(Rn) ∼ Zlogn/γ̃ . Moreover

Zlogn/γ̃e
−ψ(0) logn/γ̃ converge a.s. to a positive random variable, so for all ε > 0 a.s. for

any n large enough Mn(Rn) ≥ nψ(0)(1−ε)/γ̃ .
Our first results quantify the number of visited points at a given generation ℓ = (log n)1+ζ ,

Theorem 1.1 For all 0 < ζ < 2, ε > 0 independent of ζ

lim
n→+∞

P

(

ψ(0)

γ̃
(1− ε) ≤ logMn(ℓ)

log n
≤ 1−O

(

log log n

log n
∨ 1

(log n)ζ

))

= 1. (1.6)

Also for all n large enough, there exist two positive constants C1 and C2 such that

C1n
e−(log n)

1−ζ/2σ2

(log n)1/2(1+ζ)+ε
≤ E[Kn(ℓ)] ≤ C2n

e−(logn)
1−ζ/2σ2

(log n)1/2(1+ζ)
, (1.7)

with σ2 := ψ′′(1).

(1.6) shows that, at each generation ℓ, the cardinal of visited sites is at least nψ(0)(1−ε)/γ̃

for any ζ, that is to say like the last generation entirely visited Rn. Also the upper bound
ofMn(ℓ) is at most of the order of ne−C3(log n)1−ζ/(log n)C4 , with C3, C4 > 0. This suggests
that it may have a phase transition when ζ = 1 i.e at generation (log n)2. We were not
able to show this for Mn(ℓ) but we do prove a phase transition for the mean of Kn(ℓ)
which is the second result of the Theorem.

(1.7) shows that in the neighborhood of generation (log n)2, the asymptotic behavior of
Nζ := E[Kn(ℓ)] changes. We easily check that for all 0 < ζ < ζ ′ < 1, limn→+∞Nζ′/Nζ =
+∞ and limn→+∞N1/Nζ′ = +∞, whereas for all 1 < ζ < ζ ′ < 2, limn→+∞Nζ′/Nζ = 0
and limn→+∞Nζ/N1 = 0. So the generations of order (log n)2 are, in mean, the most
visited generation until n returns to the origin.

Our second result gives an idea of the way the visited points spread on the tree, for
this purpose we introduce clusters: let z ∈ T and m ≥ |z|, we call cluster issued from z
at generation m denoted Cm(z), the set of descendants u of z such that |u| = m, in other
words

Cm(z) := {u > z, |u| = m}.
Also recall Neveu’s notation for the individuals of a given generation of the tree: if A is a
set of individuals we number them from the left to the right calling them u1, u2, · · · , u|A|
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and we denote inf{u, u ∈ A} := u1, and sup{u, u ∈ A} := u|A|.
At some point we need to quantify the number of individuals between two disjoint clusters
with common generations. For given initial and terminal generations, let us denote C be
a set of disjoint clusters. Let (Dj , 1 ≤ j ≤ |C |), with |C | the cardinal of C , an ordered
(disjoint) sequence of clusters belonging to C , that is to say for all j, inf{z, z ∈ Dj} ≤
inf{z, z ∈ Dj+1} we define the minimal distance between clusters in the following way
D(C ) := min1≤j≤|Ci|−2(inf{z, z ∈ Dj+2} − sup{z, z ∈ Dj}). Notice that we do not look
at two successive clusters, but two successive clusters separate by one. We now state a
second result

Theorem 1.2 For all 0 < ζ < 2, and ε > 0

lim
n→+∞

P

(

max
|z|=ℓ−ψ(0) logn/γ̃

min
y∈Cℓ(z)

L(y, n) ≥ 1

)

= 1, (1.8)

lim
n→+∞

P

(

min
z∈C

εℓ1/3
(φ)

max
y>z,|y|=ℓ

L(y, n) ≥ 1

)

= 1. (1.9)

Let kn, hn and rn positive sequences of integers such that knrn + (kn − 1)hn = ℓ. For all
1 ≤ i ≤ kn, let us denote Ci a set of clusters initiated at generation (i − 1)(rn + hn) and
with end points at generation irn+(i−1)hn (see Figure 3), also define the following event
for all m > 0 and q > 0

Ai(m, q) :=
⋃

Ci







{|Ci| ≥ q,D(Ci) ≥ m}
⋂

D∈Ci

{∀z ∈ D,L(z, n) ≥ 1}







.

There exist 0 < k < 1, and r with 0 < k + r ≤ 1 such that kn = (log n)k, rn = (log n)r

and

lim
n→+∞

P

(

kn
⋂

i=2

Ai(e
ψ(0)hn/2, eψ(0)rn(i−1)/2)

)

= 1. (1.10)

(1.8) tells that there exists a cluster of points starting at generation close to ℓ (ℓ −
ψ(0) log n/γ̃) entirely visited (see also Figure 1). As |Cℓ(z)| is equal in law to Zℓ−|z| =
Zψ(0) logn/γ̃ , we notice that this cluster is large and that in particular (1.8) implies the
lower bound in (1.6).
(1.9) tells that we can find visited individuals at generation ℓ = (log n)1+ζ , which have
a common ancestor to a generation close to the root, that is to say before generation
εℓ1/3 (see also Figure 4). This implies that (with a probability close to one) at least

eε(1−ε)ψ(0)ℓ
1/3/2 individuals of generation ℓ separate by at least eψ(0)ℓ/2 individuals of the

same generation ℓ, are visited.
Finally (1.10) tells that if we make cuts regularly on the tree we can find many visited
clusters (which number increases when descending on the tree) well separated. In partic-
ular these visited clusters can not be in a same large visited clusters as they are separated
by at least eψ(0)hn/2 ∼ eψ(0)(log n)

1+ζ−k

individuals (see also Figure 3). Moreover as k can

be taken smaller than ζ (see Section 4) eψ(0)(log n)
1+ζ−k ≥ eψ(0)(log n)

1+ε
> n.

To obtain these results we show that Kn(ℓ) can be linked to a random variable depending
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only on the random environment and n. For all integer k and real a, let us define the
random variable

Ra(k) := #{|z| = k, V̄ (z) ≤ a}.
When k = ℓ and a = Φ(n), such that for small ε > 0 (1−ε) log n ≤ Φ(n) ≤ log n+o(log n),
we call the quantity RΦ(n)(ℓ) number of accessible points of generation ℓ. We obtain the
following

Proposition 1.3 For all 0 < ζ < 2 and ε > 0,

lim
n→+∞

P

(

ψ(0)

γ̃
(1− ε) ≤

logRΦ(n)(ℓ)

Φ(n)
≤ 1−O

(

log log n

Φ(n)
∨ Φ(n)

(log n)1+ζ

))

= 1, (1.11)

E[RΦ(n)(ℓ)] ≍ Φ(n)
eΦ(n)(1−Φ(n)/2σ2ℓ)

ℓ3/2
. (1.12)

We use the notation an ≍ bn when there exists two positive constants c1 and c2 such that
c1bn ≤ an ≤ c2bn for all n large enough. The lack of precision for the first result shows no
difference between Rlogn(ℓ) and Mn(ℓ) (see (1.6)), whereas we see differences between the
means of Rlogn(ℓ) and of Kn(ℓ).

The rest of the paper is organized as follow: in Section 2 we study RΦ(n)(ℓ) and prove
Proposition 1.3. In Section 3 we link RΦ(n)(ℓ) and Mn(ℓ), which leads to Theorem 1.1
and (1.8) of Theorem 1.2. In Section 4 we prove the end of Theorem 1.2. Also we add an
appendix where we state known results on branching processes and local limit theorems
for sums of i.i.d. random variables.
Note that for typographical simplicity, we do not distinguish a real number and its integer
part throughout the article.

2 Expectation and bounds of RΦ(n)(ℓ)

In this section we only work with the environment more especially with the number of
accessible points RΦ(n)(ℓ).

2.1 Expectation of RΦ(n)(ℓ) (proof of (1.12))

According to Biggins-Kyprianou identity (see part A of appendix), as E[RΦ(n)(ℓ)] =

E
[

eSℓ1S̄ℓ≤Φ(n)

]

where Sj is a centered random walk, we only have to prove

Lemma 2.1 For all 0 < ζ < 2

E
[

eSℓ1S̄ℓ≤Φ(n)

]

≍ Φ(n)
eΦ(n)(1−Φ(n)/2σ2ℓ)

ℓ3/2

Proof.
For every sequence (un)n∈N, we denote ūj := max1≤i≤j ui and uj := min1≤i≤j ui, also let
Sj := {S̄j−1 < Sj = S̄ℓ}. First, as S0 = 0

ℓ
∑

j=1

E
[

eSℓ1Sj≤Φ(n),Sj

]

≤ E
[

eSℓ1S̄ℓ≤Φ(n)

]

≤
ℓ
∑

j=1

E
[

eSℓ1Sj≤Φ(n),Sj

]

+ 1.
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Let S̃i := Sj − Sj−i, with this notation {S̄j−1 < Sj} = {S̃j > 0} and S̃j = Sj. Writing

S as a sum of i.i.d. random variables, we easily see that S
L
= S̃. Then conditioning on

σ{Sk, k ≤ j}

E
[

eSℓ1Sj≤Φ(n),Sj

]

= DjFℓ−j (2.1)

with Fm := E
[

eSm1S̄m≤0

]

and Dj := E
[

eSj1Sj≤Φ(n),Sj>0

]

.

According to Remark A.1, there exists α := | log ε0| > 0 such that P (|S1| ≤ α) = 1. So

for j ≤
√

Φ(n), Sj ≤ α
√

Φ(n) a.s and
∑

√
Φ(n)

j=1 DjFℓ−j ≤
√

Φ(n)eα
√

Φ(n).

For the rest of the proof we assume that j >
√

Φ(n). In [11] p.44, we find that for all
j ≤ ℓ

Fℓ−j ≍ (ℓ− j + 1)−3/2, (2.2)

then it remains to estimate Dj , first

Dj = E
[

eSj10≤Sj≤(εj)∧Φ(n),Sj>0

]

+ E
[

eSj1(εj)∧Φ(n)<Sj≤(αj)∧Φ(n),Sj>0

]

=: Gj +Hj .

Thus using Lemma B.4, for all n large enough

Gj =

(εj)∧Φ(n)
∑

k=0

E
[

eSj1k≤Sj<k+1,Sj>0

]

≍
(εj)∧Φ(n)
∑

k=0

kek

j3/2
e−k

2/(2jσ2)

≍ (εj) ∧ Φ(n)e
(εj)∧Φ(n)

(

1− (εj)∧Φ(n)

2σ2j

)

/j3/2.

So, as Φ(n)/ℓ ≤ ε, for n large enough

ℓ
∑

j=
√

Φ(n)+1

GjFℓ−j ≤ C+Φ(n)e
Φ(n)

(

1−Φ(n)

2ℓσ2

) ℓ
∑

j=1

Fℓ−j/j
3/2 ≤ C+Φ(n)e

Φ(n)
(

1−Φ(n)

2ℓσ2

)

/ℓ3/2,

where C+ is a positive constant that may grow from line to line. The lower bound is an
easy task as

∑ℓ

j=
√

Φ(n)+1
GjFℓ−j ≥ GℓF0, finally

ℓ
∑

j=1

GjFℓ−j ≍ Φ(n)e
Φ(n)

(

1−Φ(n)

2ℓσ2

)

ℓ−3/2. (2.3)

To conclude, we show that
∑

HjFℓ−j is negligible compared to
∑

GjFℓ−j . We have

Hj ≤
(αj)∧Φ(n)
∑

k=(εj)∧Φ(n)+1

ekP
(

Sj ≥ k, Sj > 0
)

=: H̃j .

For j ≤ Φ(n)/α let s > 0, with exponential Markov inequality

H̃j ≤ C+e
jψ(1−s)

αj
∑

k=0

ek(1−s) ≤ C+e
j(ψ(1−s)+(1−s)α).
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Remark A.2 implies that we can choose s > 0 small enough, such that ψ(1 − s) ≤ αs/2.
As for j ≤ Φ(n)/α, Fℓ−j ≤ C+(ℓ− j + 1)−3/2 ≤ 2C+ℓ

−3/2

Φ(n)/α
∑

j=1

H̃jFℓ−j ≤ C+
e(1−s/2)Φ(n)

ℓ3/2
. (2.4)

For Φ(n)/α < j ≤ ℓ we do the same, for all t > 0 using again Lemma (B.4)

ℓ
∑

j=Φ(n)/α+1

H̃jFℓ−j =
Φ(n)/ε
∑

j=Φ(n)/α+1

H̃jFℓ−j ≤ C+

Φ(n)/ε
∑

j=Φ(n)/α+1

Fℓ−je
jψ(1−t)

Φ(n)
∑

k=(εj)∧Φ(n)

e(1−t)k

≤ C+

Φ(n)/ε
∑

j=Φ(n)/α+1

eΦ(n)(1−t)+jψ(1−t)

(ℓ− j + 1)3/2
≤ C+e

Φ(n)((1−t)+ψ(1−t)/ε)

ℓ3/2
.

Using again Remark A.2 with t = ε/σ2
∑ℓ

j=Φ(n)/α+1 H̃jFℓ−j ≤ C+e
Φ(n)(1−ε/(2σ2))ℓ−3/2.

Collecting the estimate from (2.3), the main contribution in (2.1) is given by (2.3). �

2.2 Bounds for logRΦ(n)(ℓ) (proof of (1.11))

The upper bound is a direct consequence of Markov inequality and (1.12).
For the lower bound, we first need an estimation on the deviation of min|z|=m V (m), this
point has been studied in details in [9], we recall their result below

Proposition 2.2 [9] Let an a positive sequence such that an ∼ n1/3, there exists b0 > 0
such that for any 0 < b ≤ b0

lim
n→+∞

1

an
logP

(

min
|z|=n

V (x) ≤ ban

)

= b− b0. (2.5)

We now give a short proof of the following Lemma, which is a useful corollary of the above
Proposition

Lemma 2.3 Assume that an is a positive sequence such that an ∼ n1/3, there exists a
constant µ > 0 such that for any n large enough

P

(

min
|z|=n

V (x) > µan

)

≤ λn, (2.6)

where λn = e−c1e
c1an if q0 + q1 = 0, and λn = e−c1an otherwise, also c1 > 0 depends only

on the distribution P .

Proof.
Clearly for z1 < z, V (z) ≤ V (z1)+ Ṽ (z1, z) where Ṽ (z1, z) = maxz1≤x≤z V (x)− V (z1). In
the sequel, writing Ṽ (z1, z) implies that z1 < z implicitly. For 0 < η < 1 and |z1| = vn :=
ηb0an/α

P

(

min
|z|=n

V (z) > 2ηb0an

)

≤ P

(

min
|z1|=vn

min
|z|=n

Ṽ (z1, z) > 2ηb0an − max
|z1|=vn

V (z1)

)

.
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Using that max|z1|=vn V (z1) ≤ αvn by ellipticity and for An :=
{

Zvn ≥ eηψ(0)vn
}

P

(

min
|z|=n

V (z) > 2ηb0an

)

≤ P

(

min
|z1|=vn

min
|z|=n

Ṽ (z1, z) > ηb0an

)

≤ P

(

min
|z1|=vn

min
|z|=n

Ṽ (z1, z) > ηb0an,An

)

+ P (Ān).

Theorem A.3 tells that if q0+ q1 > 0, there exists ν > 0 such that P (Ān) ≤ e−ν(1−η)ψ(0)vn ,
otherwise there exists β′ > 0 such that log P (Ān) ∼ −eβ′(1−η)ψ(0)vn . Stationarity gives

min|z|=n Ṽ (z1, z)
L
= min|z|=n−vn V (z) and independence of the sub-branching processes

rooted at generation vn together with (2.5)

P

(

min
|z1|=vn

min
|z|=n

Ṽ (z1, z) > ηb0an,An

)

≤ P

(

min
|z|=n−vn

V (z) > ηb0an

)eηψ(0)vn

≤
(

1− e−b0(1−η)an
)eηψ(0)vn

,

we conclude choosing η sufficiently close to 1 to get (1− η) < η2ψ(0)/α. �

Figure 1: One large cluster

To obtain the lower bound for logRΦ(n)(ℓ), we prove the existence of a cluster Cℓ(z)
with |z| = ℓ−wn where wn := Φ(n)(1− ε)/γ̃ and such that ∀z′ ∈ Cℓ(z), V (z′) ≤ Φ(n). In
other words for |z| < ℓ, Zzℓ the number of descendants of z at generation ℓ, we prove

lim
n→+∞

P





⋃

z=ℓ−wn

{

#{z′ ∈ Cℓ(z), V (z′) ≤ Φ(n)} = Zzℓ
}



 = 1,

which implies with the help of Theorem A.3 that

lim
n→+∞

P
(

RΦ(n)(ℓ) ≥ eψ(0)wn(1−ε)
)

= 1.

Let B :=
⋃

|z|=ℓ−wn{V (z) ≤ yn,Rz
Φ(n)−yn(ℓ) = Zzℓ } where Rz

A(ℓ) := #{z′ > z, |z′| = ℓ,
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Ṽ (z, z′) ≤ A} and yn := µℓ1/3

P (B) ≥ P



{Ryn(ℓ− wn) ≥ 1}
⋂ ⋃

|z|=ℓ−wn,V (z)≤yn

{

Rz
Φ(n)−yn(ℓ) = Zzℓ

}





=
∑

k≥1
P (Ryn(ℓ− wn) = k)P





⋃

|z|=ℓ−wn,V (z)≤yn

{

Rz
Φ(n)−yn(ℓ) = Zzℓ

}

∣

∣

∣

∣

∣

∣

Ryn(ℓ− wn) = k



 .

Let us denote z1, . . . , zk, . . . the ordered points at generation ℓ−wn satisfying V (zi) ≤ yn.
Conditionally on {Ryn(ℓ− wn) = k}, z1 exists and

{

Rz1
Φ(n)−yn(ℓ) = Zz1ℓ

}

⊂
⋃

|z|=ℓ−wn,V (z)≤yn

{

Rz
Φ(n)−yn(ℓ) = Zzℓ

}

.

Furthermore, by stationarity Rz1
Φ(n)−yn(ℓ)

L
= RΦ(n)−yn(wn), so

P (B) ≥ P
(

RΦ(n)−yn(wn) = Zwn
)

∑

k≥1
P (Ryn(ℓ− wn) = k)

≥ P

(

max
|z|=wn

V (z) ≤ Φ(n)− yn

)

P

(

min
|z|=ℓ−wn

V (z) ≤ yn

)

The first probability tends to one thanks to a result of Mac-Diarmid [14] (see also [3]
Lemma 2.1), the second one behaves in the same way as a consequence of Lemma 2.3. �

3 Expectation of Kn(ℓ), bounds for logKn(ℓ) and logMn(ℓ)

In this section we prove Theorem 1.1.

3.1 The expectation of Kn(ℓ) (proof of 1.7)

We start with general upper and lower bounds for the annealed expectation of Kn(ℓ).

Lemma 3.1 For n ∈ N:

C−(nA
−
n +B−n ) ≤ E[Kn(ℓ)] ≤ C+(nA

+
n +B+

n )

where

A+
n := E

(

eSℓ−S̄ℓ1∑ℓ
i=1 e

Si>c−n/c+

)

, B+
n := E

(

eSℓ1S̄ℓ≤log(n/c+)

)

,

A−n := E

(

eSℓ
∑ℓ

i=1 e
Si
1S̄ℓ>log(n/c+)

)

and B−n := E
(

eSℓ1∑ℓ
i=1 e

Si≤c−n/c+

)

,

C− and c− (respectively c+) are positive constants that may decrease (respectively increase)
from line to line.
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Proof.
Let pz := P

E
φ(Tz < Tφ), strong Markov property gives EE [Kn(ℓ)] =

∑

|z|=ℓ(1− en log(1−pz)),
so for n large enough

npz
4
1npz<3/4 + C−1npz≥3/4 ≤ 1− e−npz ≤ 2npz1npz<3/4 + 1npz≥3/4.

Using successively the fact that c−(
∑

x∈Kφ,zK e
V (x))−1 ≤ pz ≤ c+e

−V (z) and Biggins-
Kyprianou identity (see Appendix A.1)

B−n ≤ E
[

∑

|z|=ℓ 1npz≥3/4
]

≤ B+
n .

Similar arguments show C−A−n ≤ E
[

∑

|z|=ℓ pz1npz< 3
4

]

≤ C+A
+
n . �

We now give upper bounds for B+
n and A+

n , and a lower bound for A−n .

• For B+
n , Lemma 2.1 yields B+

n ≤ C+n log ne
− (logn)1−ζ

2σ2 ℓ−3/2.
• For A+

n , first note that {∑ℓ
i=1 e

Si > c−n/c+} ⊂
{

S̄ℓ > dn
}

, with dn = log(c−n/c+ℓ).
Recalling the arguments given in (2.1), A+

n is bounded from above by

E
[

eSℓ−S̄ℓ1S̄ℓ>dn

]

=

ℓ
∑

j=dn/α

P
(

Sj > dn, Sj > 0
)

E
[

eSℓ−j1S̄ℓ−j≤0
]

=:

ℓ
∑

j=dn/α

LjFℓ−j . (3.1)

We split Lj in two cases writing

Lj = P
(

dn < Sj ≤ j/ log log n, Sj > 0
)

+ P
(

Sj > j/ log log n, Sj > 0
)

:= P1 + P2.

and following the same lines as the ones to estimate Gj in the proof of Lemma 2.1

P1 ≍ e−d
2
n/(2σ

2j)j−1/2.

Also exponential Markov inequality with s = (σ2 log log n)−1 yields P2 ≤ P (sSj >

sj/ log log n) ≤ e−j/(2σ
2 log logn)j−1/2. Collecting P1, P2, (2.2) and (3.1)

A+
n ≤ E

(

eSℓ−S̄ℓ1S̄ℓ>dn

)

≍ ℓ−1/2e−d
2
n/(2σ

2ℓ) ∼ ℓ−1/2e−(log n)
1−ζ/2σ2 .

• For A−n , with Bℓ := {∑ℓ
i=1 e

Si ≤ ℓεeS̄ℓ}, and bn := log(n/c+)

ℓεA−n ≥ E
[

eSℓ−S̄ℓ1S̄ℓ>bn,Bℓ

]

= E
[

eSℓ−S̄ℓ
(

1S̄ℓ>bn
− 1S̄ℓ>bn,Bℓ

)]

:= Γ1 − Γ2. (3.2)

Γ1 can be treated as E
[

eSℓ−S̄ℓ1S̄ℓ>dn

]

so

Γ1 ≍ ℓ−1/2e−(log n)
1−ζ/2σ2 . (3.3)

Recalling that Sj = {Sj = S̄ℓ, S̄j−1 < Sj}, Γ2 =
∑ℓ

j=1E
[

eSℓ−Sj1Sj>bn,Bℓ,Sj

]

. Note that

on Sj, Bℓ = {Y1(j)+Y2(j) > ℓε} where Y1(j) :=
∑j

i=1 e
Si−Sj and Y2(j) :=

∑ℓ
i=j+1 e

Si−Sj .

As for 0 < δ < 1/2, Bℓ ⊂ {Y1(j) > δℓε} ∪ {Y2(j) > δℓε}

Γ2 ≤
ℓ
∑

j=bn/α

(Πj +Ωj) :=
ℓ
∑

j=bn/α

E
[

eSℓ−Sj1Sj>bn,Sj

(

1Y1(j)>δℓε + 1Y2(j)>δℓε
)]

(3.4)
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For Ωj, conditioning by σ(Sk, 0 ≤ k ≤ j)

Ωj = P (Hj)E
[

eSℓ−j1S̄ℓ−j≤0,Y +(ℓ−j)>δℓε
]

where Y ±(k) :=
∑k

i=1 e
±Si and Hm := {Sm > bn, Sm > 0}. Moreover, using (2.2) and the

fact that {Y +(ℓ− j) > δℓε} = ∅ for j ≤ ℓ− δℓε

E
[

eSℓ−j1S̄ℓ−j≤0,Y +(ℓ−j)>δℓε
]

≤ C+(ℓ− j + 1)−3/21ℓ−j≥δℓε,

and P (Hj) can be treated like Lj, we obtain for n large enough and j ≥ bn/α

Ωj ≤
C+

j1/2

(

e−b
2
n/(2σ

2j) + e−j/(2σ
2 log logn)

)

(ℓ− j + 1)−3/21ℓ−j≥δℓε. (3.5)

For Πj , we have Πj = P (Hj, Y
−(j) > δℓε)Fℓ−j . Let R := sup{0 < k ≤ j, Sk ≤ γ log ℓ}

with γ > 1, τ+x := inf{k > 0, Sk ≥ x} for x ∈ R and tn = (log ℓ)2, then

Πj = (P
(

Hj, Y
−(j) > δℓε, R ≤ τ+tn

)

+ P
(

Hj, Y
−(j) > δℓε, R > τ+tn

)

)Fℓ−j =: Γ3 + Γ4.

− Upper bound for Γ3, let τ
−
x := inf{k > 0, Sk ≤ x} for x ∈ R. Notice that on {R ≤ τ+tn},

(a) First case (3) (b) Second case (4)

Figure 2: Two cases

∑j

k=τ+tn+1
e−Sk ≤ ℓ1−γ implying that {Y −(j) > δℓε} ⊂ {Y −(τ+tn) > δℓε/2}. Thus, using

strong Markov property

P
(

Hj , Y
−(j) > δℓε, R ≤ τ+tn

)

≤ P
(

Hj, Y
−(τ+tn) > δℓε/2, R ≤ τ+tn

)

≤
j
∑

k=tn/α

P
(

Hj, Y
−(τ+tn) > δℓε/2, τ+tn = k

)

≤
j
∑

k=tn/α

sup
0≤z≤α

Pz+tn (Hj−k)P (Y
−(τ+tn) > δℓε/2, τ−0 > τ+tn = k). (3.6)
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From here we distinguish the cases ζ < 1 and ζ ≥ 1.
When ζ < 1, (3.6) is smaller than

P (Y −(τ+tn) > δℓε/2, τ−0 > τ+tn) sup
tn/α≤k≤j

sup
z∈[0,α]

Pz+tn (Hj−k) .

Lemma B.2 gives an upper bound for the first probability, moreover for all tn/α ≤ k ≤ j,
with the help of Lemma B.3

sup
z∈[0,α]

Pz+tn (Hj−k) ≤ C+
tn

j1/2
e−b

2
n/(2σ

2j).

So Γ3 ≤ C+tnj
−1/2ℓ−εe−b

2
n/(2σ

2j)(ℓ− j + 1)−3/2.
When ζ ≥ 1, (3.6) is now bounded from above by

P (Y −(τ+tn) > δℓε/2, τ−0 > τ+tn) sup
tn
α
≤k≤j/2

sup
z∈[0,α]

Pz+tn (Hj−k) + P (τ−0 ∧ τ+tn ≥ j/2)

≤ P (Y −(τ+tn) > δℓε/2, τ−0 > τ+tn)Ptn+α(Sj/2 > 0) + 2E[τ−0 ∧ τ+tn ]/j ≤
C+tn

ℓεj1/2
+
C+tn
j

,

using Lemmata B.1 and B.2. So

Γ3 ≤
C+tn

(ℓ− j + 1)3/2

(

1

ℓεj1/2
+

1

j

)

.

− Upper bound for Γ4, first note that on {R > τ+tn}, the following hitting times τ̃−γ log ℓ :=

inf{k ∈Kτ+tn , jK, Sk ≤ γ log ℓ} = τ+tn + θτ+tn
◦ τ−γ log ℓ, and τ̃+tn := inf{k ∈Kτ̃−γ log ℓ, jK, Sk ≥ tn} =

τ̃−γ log ℓ + θτ−γ log ℓ
◦ τ+tn (where θ is the shift operator) exist. With these notations according

to Lemma B.1

P (τ−0 > τ̃+tn) = P (τ+tn < τ+tn + θτ+tn
◦ τ−γ log ℓ < τ̃−γ log ℓ + θτ̃−γ log ℓ

◦ τ+tn < τ−0 )

≤ P (τ+tn < τ−0 ) sup
z∈[0,α]

Pγ log ℓ−z(τ
+
tn < τ−0 ) ≤ C+

γ log ℓ

(tn)2
.

Again at this point we distinguish the cases ζ < 1 or ζ ≥ 1.
When ζ < 1 the above inequality yields

P
(

Hj, R > τ+tn
)

≤ sup
3tn
α
≤k≤j

sup
z∈[0,α]

Pz+tn (Hj−k)P (τ
−
0 > τ̃+tn)

≤ C+
γ log ℓ

(tn)2
max

3tn
α
≤k≤j

max
z∈[0,α]

Pz+tn (Hj−k) .

Finally using that P
(

Hj, Y
−(j) > δℓε, R > τ+tn

)

≤ P
(

Hj, R > τ+tn
)

, Lemma B.3 and (2.2)

Γ4 ≤ C+
e−b

2
n/(2σ

2j)

(log ℓ)3j1/2(ℓ− j + 1)3/2
.

When ζ ≥ 1, we use similar arguments than for Γ3, we have P
(

Hj, Y
−(j) > δℓε, R > τ+tn

)

≤
P
(

Hj, j/2 ≥ R > τ+tn
)

+P
(

Hj , R > τ+tn ∨ j/2
)

. Moreover P
(

Hj , j/2 ≥ R > τ+tn
)

≤ P
(

τ+tn < τ−0
)

·
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sup0≤x≤α Pγ log ℓ+x(Sj/2 > 0) and P
(

Hj , R > τ+tn ∨ j/2
)

≤ P (Sj/2 > 0) sup0≤x≤α Pγ log ℓ+x(τ
−
0 >

τ+bn). So using Lemma B.1 we obtain

Γ4 ≤
C+

(log ℓ)j1/2(ℓ− j + 1)3/2
.

Collecting Γ3 and Γ4 and (3.5), we obtain an upper bound for Πj +Ωj, with (3.4) it leads
to

Γ2 ≤ C+
e−b

2
n/(2σ

2ℓ)

(log ℓ)3ℓ1/2
∼ C+

e−(logn)
1−ζ/2σ2

(log ℓ)3ℓ1/2
,

if ζ < 1 and

Γ2 ≤
C+

(log ℓ)ℓ1/2
≤ 2C+

e−(logn)
1−ζ/2σ2

(log ℓ)ℓ1/2
,

if ζ ≥ 1. Γ2 is therefore negligible compared to Γ1 (see (3.3)) and (3.2) implies that

A−n ≥ C+
e−(logn)1−ζ/2σ2

ℓε+1/2 . This finish the proof of (1.7).

3.2 From RΦ(n)(ℓ) to Kn(ℓ) and Mn(ℓ) (proof of (1.6))

To obtain a lower bound for Mn(ℓ), let Φ1(n) := log n(1−2ε). First we need the following

Lemma 3.1
lim

n→+∞
P(Kn1−ε(ℓ) ≥ RΦ1(n)(ℓ)) = 1.

Proof.
Applying Corollary C.1 with A := {|z| = ℓ, V̄ (z) ≤ Φ1(n)},

P
E(∪z∈A{L(z, T n

1−ε

φ ) = 0}) ≤ |A|e−c−nεℓ−1 ≤ RΦ1(n)(ℓ)e
−c−nε/2

As (1.11) implies that limn→+∞ P
(

RΦ1(n)(ℓ) ≤ eΦ1(n)
)

= 1, the proof is achieved. �

(1.11) together with the above Lemma give for n large enough

P(Kn1−ε(ℓ) ≥ eψ(0) logn(1−2ε)/γ̃) = 1− o(1). (3.7)

To obtain the lower bound for Mn(ℓ) we use the following result that can be deduced from
[9] (see [3] Lemma 3.2 and what follows for details)

∀δ > 0, lim
n→+∞

P(L(φ, n) ≥ n1−δ) = 1. (3.8)

So limn→+∞ P(Mn(ℓ) ≥ Kn1−δ (ℓ)) = 1, which together with (3.7) implies the lower bound
for Mn(ℓ).
Denote un := C

(

log log n ∨ (log n)1−ζ
)

, where C > 0. As n ≤ T nφ , by Markov inequality

and (1.7), P
(

logMΦ(n)(ℓ) ≥ log n− un
)

≤ P(Kn(ℓ) ≥ ne−un) ≤ C+e
une−(log n)

1−ζ/2σ2/ℓ1/2

which gives the upper bound adjusting C properly.
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4 Visited points along the GW

In this paragraph we study the way the random walk visits the tree.

4.1 Visits of clusters at deterministic cut (proof of (1.10))

Recall that a cluster initiated at z with end points at generation m is the set Cm(z) =
{u > z, |u| = m}. Also take kn = (Φ(n))k and rn = (Φ(n))r (more general than in the
Theorem for the moment) and let sn = (Φ(n))s with s > 0 and hn sequences such that

hn =
ℓ− knrn
kn − 1

, kn(αrn + sn)− sn ≤ Φ(n)(1− 2ε). (4.1)

We define recursively clusters at generations irn + (i − 1)hn for all 1 ≤ i ≤ kn in the
following way (see also Figure 3): we start the iteration with ž0 = φ and

∀zi ∈ Cirn+(i−1)hn(ži−1), ži = inf{u > zi, |u| = i(rn + hn), V (u) ≤ i(αrn + sn)}.

The individuals of these clusters form a subtree of the GW, moreover for all z of this
subtree at generation ℓ, V (z) ≤ Φ(n)(1 − 2ε). For all 1 ≤ i ≤ kn, let Ci be the set of
clusters Cirn+(i−1)hn(.) previously defined. We first give an upper bound for the probability

that for all i ≤ kn every clusters in Ci are fully visited before T n
1−ε

φ

P
E





kn
⋃

i=1

⋃

D∈Ci

⋃

z∈D

{

L(z, T n1−ε

φ ) = 0
}



 ≤
kn
∑

i=1

∑

D∈Ci

∑

z∈D
P
E
(

L(z, T n1−ε

φ ) = 0
)

.

In the previous formula
⋃kn
i=1

⋃

D∈Ci
is an abuse of notation as the sets of clusters are

defined recursively. We keep this notation in the following. With a similar reasoning as
the one for Corollary C.1 and the ellipticity condition for the number of descendants

P
E





kn
⋃

i=1

⋃

D∈Ci

⋃

z∈D

{

L(z, T n1−ε

φ ) = 0
}



 ≤ exp (N0knrn) exp(−c−n1−εe−Φ(n)(1−2ε)/ℓ).

(4.2)

We now prove the existence of such clusters, this implies new constraints on k, r and s in
addition to (4.1). First the event B := {the clusters C.(.) exist} contains

kn
⋂

i=1

⋂

zi∈Cirn+(i−1)hn
(ži−1)

{

V (zi) ≤ α|zi|,∃ži > zi, |ži| = i(hn + rn), V (ži) ≤ i(αrn + sn)
}

.

Note that the ellipticity condition imply that for any site z, {V (z) ≤ α|z|} a.s. and
consequently {V (z) ≤ α|z|,∃ž > z, |ž| = |z| + a, V (ž) ≤ α|z| + b} contains a.s. {∃ž >
z, |ž| = |z|+ a, Ṽ (z, ž) ≤ b}. Then a.s. B contains

kn
⋂

i=1







⋂

zi∈Cirn+(i−1)hn (ži−1)

{

∃ži > zi, |ži| = i(hn + rn), Ṽ (zi, ži) ≤ sn

}







.
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Figure 3: Clusters at regular cuts

The independence of the increments of V and the ellipticity assumptions on the number
of descendants (|C.(.)| ≤ eN0rn) implies

P (B) ≥ P (∃|z| = hn, V (z) ≤ sn)
eN0knrn

= P

(

min
|z|=hn

V (z) ≤ sn

)eN0knrn

.

Assuming that s ≥ (1 + ζ − k)/3, then Lemma 2.3 yields P (B) ≥ (1 − λhn)
eN0knrn ∼

exp
(

−eN0knrnλhn
)

. We now choose k, r and s, for that we have to take into account the
last constraint in (4.1) s ≤ 1 − k and that if q0 + q1 6= 0 we need that k + r < s. We
distinguish two cases

• if 0 < ζ ≤ 1, let 0 < δ < ζ/2, take s = (1+ζ)/2−δ, k = δ/2, and r = (1− ζ)/2+ δ/2,

• if 1 < ζ < 2, let 0 < δ < (2− ζ)/3, take s = (1+ ζ)/3, k = δ and r = (1+ ζ − 4δ)/3.

Thus in both cases

P (B) ≥ 1−C+e
−c2sneN0knrn −→

n→+∞
1. (4.3)

When q0 + q1 = 0, the above choices give an even better rate of convergence for P (B).
We now move back to (4.2), first note that knrn < Φ(n), so as Φ(n) ≤ log n + o(log n)
(4.3) implies

lim
n→+∞

P





kn
⋂

i=1

⋂

D∈Ci

⋂

z∈D

{

L(z, T n1−ε

φ ) ≥ 1
}

,B



 = 1.

According to (3.8), as P(n ≥ T n
1−ε

φ ) tends to one we finally obtain

lim
n→+∞

P





kn
⋂

i=1

⋂

D∈Ci

⋂

z∈D
{L(z, n) ≥ 1} ,B



 = 1.
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So with probability one we can find set of clusters at regular cuts on the tree which are
fully visited. To finish the proof of (1.10) we first show the existence of a lower bound for
the number of visited clusters. Using successively that conditionally on B, |Ci| is equal in
law to Z(i−1)rn , Theorem A.3 and (4.3)

P
(

∃i ∈ J2, knK, |Ci| ≤ eψ(0)(i−1)rn/2
)

≤ P
(

∃i ∈ J2, knK, |Ci| ≤ eψ(0)(i−1)rn/2,B
)

+ P (B̄)

≤
kn
∑

i=2

P
(

Z(i−1)rn ≤ eψ(0)(i−1)rn/2
)

+ P (B̄)

≤ e−ψ(0)νrn/4 + C+e
−c2sneN0knrn .

Finally we prove that the previously defined visited clusters are very spaced out. Recalling
the definition of D before Theorem 1.2,

P
(

∃i ∈ J2, knK,D(Ci) ≤ eψ(0)hn/2
)

≤ P (B̄) +

kn
∑

i=2

P
(

D(Ci) ≤ eψ(0)hn/2,B
)

≤ P (B̄) +

kn
∑

i=2

P





⋃

D∈Ci−1

⋃

z∈D
{|Ci(rn+hn)(z)| ≤ eψ(0)hn/2} ∩ B



 .

We now use the facts that conditionally on B, |Ci(rn+hn)(z)| and Zhn are equal in law, on

Di := {|Ci| ≤ e2ψ(0)(i−1)rn}, |D| |Ci| ≤ eN0rne2ψ(0)(i−1)rn and Theorem A.3

P
(

D(Ci) ≤ eψ(0)hn/2,B
)

≤ P





⋃

D∈Ci−1

⋃

z∈D
{|Ci(rn+hn)(z)| ≤ eψ(0)hn/2} ∩ B ∩ Di



+ P (D̄i)

≤ eN0rn+2ψ(0)(i−1)rnP (Zhn ≤ eψ(0)hn/2) + e−ψ(0)(i−1)rn

≤ eN0rn+2ψ(0)(i−1)rn−νψ(0)hn/2 + e−ψ(0)(i−1)rn .

Consequently

P
(

∃i ∈ J2, knK,D(Ci) ≤ eψ(0)hn/2
)

≤ e3ψ(0)knrn−νψ(0)hn/2 + e−ψ(0)knrn +C+e
−c2sneN0knrn ,

moreover as hn ∼ (log n)1+ζ−k, k+ r < s < 1 and k < ζ we obtain the result.

4.2 Proof of (1.9)

We assume 1 < ζ < 2, (the case 0 < ζ ≤ 1 can be treated similarly). Let m = εℓ1/3, δ > 0,
define B the set of points z′ such that for all z, |z| = m, z′ := inf{u > z, |u| = ℓ, V (u) ≤
Φ(n)(1− δ)}. Corollary C.1 gives

P
E
(

⋃

z′∈B

{

L(z′, T n1−ε

φ ) = 0
}

)

≤ |B|e−c−n1−εe−Φ(n)(1−δ)/ℓ. (4.4)

Note that |B| ≤ Zm, also as P (Zm ≤ e2mψ(0)) ≥ 1 − e−mψ(0) and Φ(n) ≤ log n+ o(log n),
taking δ = 2ε the above probability is smaller than e−c−n

ε/2.
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We now prove that limn→+∞ P (|B| = Zm) = 1. From [14] (see also [3] Lemma 2.1),
limn→+∞ P (max|z|=m V (z) ≤ 2γ̃m) = 1, so as for n large enough ℓ1/3/Φ(n) ≤ δ with the
same arguments used in the proof of Lemma 2.3

P (|B| < Zm) ≤ P





⋃

|z|=m

{

∀z′ > z, |z′| = ℓ, V (z′) > (1− δ)Φ(n)
}





≤ 1−
(

1− P

(

min
|z|=ℓ−m

V (z) > (1− 2δ)Φ(n)

))e2ψ(0)m

+ o(1)

≤ 2P

(

min
|z|=ℓ−m

V (z) > (1− 4ε)Φ(n)

)

e2ψ(0)m + o(1).

To finish we put ourself in the case q0 + q1 > 0 (the other case is treated similarly), as
Φ(n) is way larger than ℓ1/3, using Lemma 2.3

P

(

min
|z|=ℓ−m

V (z) > (1− 4ε)Φ(n)

)

≤ e−c1ℓ
1/3
.

We can now choose ε small enough and obtain, P (|B| = Zm) ≥ 1 − e−c1ℓ
1/3/2 − o(1).

Moving back to (4.4) P(∀z ∈ B,L(z, T n1−ε

φ ) ≥ 1, |B| = Zm) ≥ 1 − o(1). Finally to obtain
(1.9) we apply (3.8).

Figure 4: Distant visited sites
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A Basic facts for branching processes and Galton-Watson

trees

A.1 Biggins-Kypriaou identities and properties of ψ

For any n ≥ 1 any mesurable function F : Rn×R
n → [0,+∞), Biggins-Kyprianou identity

is given by

E





∑

|x|=n
e−V (x)F (V (xi), 1 ≤ i ≤ n)



 = E[F (Si, 1 ≤ i ≤ n)] (A.1)

where (Si − Si−1)i≥1 are i.i.d. random variables, and the law of S1 is determined by

E[f(S1)] = E





∑

|x|=1

e−V (x)f(V (x))



 , (A.2)

for any measurable function f : R → [0,+∞). A proof can be found in [5], see also [17].
We have the following identities

ψ(t) = logE[e(1−t)S1 ], ψ′(t) = −E[S1e
(1−t)S1 ]

E[e(1−t)S1 ]
.

In particular, E[N ] = eψ(0) = E[eS1 ], ψ′(0) = −E[S1eS1 ]

E[eS1 ]
< 0, and the hypothesis ψ′(1) = 0,

is equivalent to E[S1] = 0.

Remark A.1 Let α := | log ε0|, we have P(|S1| ≤ α) = 1. Indeed taking f(x) = 1|x|≤α
and using Biggins-Kiprianou, we have P(|S1| < α) = E[f(S1)] = eψ(1) = 1.

Remark A.2 With the hypothesis of ellipticity ψ is smooth, in particular for all s in the
neighborhood of 0, ψ(1 − s) = s2ψ′′(1)/2 +O(s3).

A.2 Left tail of Zn

Recall that the positive martingale (Wn)n≥0 := (Zn/eψ(0)n)n≥0 converges a.s. to a non
degenerate limit W (see for instance [17]). Moreover W has a positive continuous density
function denoted w. Bingham [6] shows that for the Schröder case (q0 + q1 > 0), there
exists 0 < ν < 1 such that for small x, w(x) ≍ xν−1 and for the Böttcher case (q0+q1 = 0)

there exists β ∈ (0, 1) such that when x → 0, logw(x) ≍ −x−
β

1−β . The results of [4] and
then [12] (Theorems 4 and 5) and [13] (Theorem 7) leads to

Theorem A.3 Let 0 < κ < 1 then P (Zn ≤ eκψ(0)n) ∼ e−νψ(0)(1−κ)n in the Schröder case,
and logP (Zn ≤ eκψ(0)n) ∼ logw

(

eψ(0)(κ−1)n
)

in the Böttcher case.
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B Results for sums of i.i.d. random variables

In this section we recall basic facts for sum of i.i.d. random variables applied to (Sn)n≥0 of
Section A. Recall that for all x ∈ R, τ+x = inf{n ≥ 1, Sn ≥ x} and τ−x = inf{n ≥ 1, Sn ≤ x}.
The following result can be found in [1] and [10].

Lemma B.1 For all real x ∈ [0, y]

Px(τ
+
y < τ−0 ) ≍ x+ 1

y + 1
, E(τ+y ∧ τ−0 ) ≍ y.

Let 0 ≤ a < m for m large enough Pa(τ
−
0 > m) ≍ a√

m
.

Lemma B.2 There exists a constant C+ > 1 such that for all a ≥ 0 and M > 0

P





τ+a
∑

i=0

e−Si > M, τ+a < τ−0



 ≤ C+

M
.

Proof.
According to [2] p.19, there exists C+ > 1 such that for all L ≥ 1 and 0 ≤ a ≤ L,

E

[

∑τ−0 ∧τ
+
a

i=0 e−Si
]

≤ C+
a+1
a . To conclude, we just have to note that

P
(

∑τ+a
i=0 e

−Si > M, τ+a < τ−0

)

≤ P

(

∑τ+a ∧τ−0
i=0 e−Si > M

)

and use Markov inequality. �

The following Lemma may be found in the literature, however as we can prove it easily
for our case we present a short proof.

Lemma B.3 Let m > 1, assume that b = b(m) ≥ σ2
√
m logm, with limm→+∞ b/m = 0,

and a = a(m) > 0 is such that limm→+∞ a/
√
m = 0, then for all m large enough

Pa (Sm > b, Sm > 0) ≤ C+
a√
m
e−b

2/2σ2m, (B.1)

For all ε > 0 and r > εm

Pa (Sm ≥ r, Sm > 0) ≤ C+
a√
m
e−sr+mψ(1−s). (B.2)

Proof.
For (B.1), let ω = 2m1/2/b

Pa (Sm > b, Sm > 0) = Pa

(

Sm > b, Sm > 0, τ+√
m

≤ ωm
)

+ Pa

(

Sm > b, Sm > 0, τ+√
m
> ωm

)

=: P3 + P4.

Strong Markov property and homogeneity give:

Pa

(

Sm > b, Sm > 0, τ+√
m

= j
)

≤ Pa

(

τ−0 > τ+√
m

= j
)

sup
0≤x≤α

P√m+x

(

Sm−j > b, Sm−j > 0
)

≤ Pa

(

τ−0 > τ+√
m

= j
)

P
(

Sm−j > b−√
m− α

)
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implying with Lemma B.1:

P4 ≤
m
∑

j=ωm+1

Pa

(

τ−0 > τ+√
m

= j
)

P
(

Sm−j > b−√
m− α

)

≤ Pa

(

τ−0 > τ+√
m

)

sup
ωm≤j≤m

P
(

Sm−j > b−√
m− α

)

≤ C+
a√
m

sup
ωm≤j≤m

P
(

Sm−j > b−√
m− α

)

,

A classical result of moderate deviations (see for instance [16], Chapter VIII) implies

P
(

Sm(1−ω) > b−√
m− α

)

≤ C+e
−(b−√m−α)2/(2σ2m(1−ω)) ≤ C+e

−(b−√m−α)2(1+ω)/(2σ2m)

≤ C+e
−b2/2σ2m.

With similar computations this upper bound is still true for P (Sm−j > b−√
m− α) for

m(1− ε) ≤ j ≤ m. So P4 ≤ C+
a√
m
e−b

2/2σ2m. In the same way

P3 ≤
ωm
∑

j=
√
m/α

Pa

(

τ−0 > τ+√
m

= j
)

sup
0≤x≤α

P√m+x

(

Sm−j > b, Sm−j > 0
)

≤
ωm
∑

j=
√
m/α

P
(

Sj ≥
√
m− a

)

P
(

Sm−j > b−√
m− α

)

,

Let 1 > t > s > 0, using Markov inequality for both probabilities and the decreasing of ψ
in the interval [0, 1], we get

P3 ≤ C+e
−t(√m−a)e−s(b−

√
m−a)emψ(1−s)+ωm(ψ(1−t)−ψ(1−s))/(eψ(1−t)−ψ(1−s) − 1)

Choosing s = (b − √
m − a)/(σ2(m − √

m/α)), t = 2b/(σ2m) and applying Remark A.2
we obtain

P3 ≤ C+
m2

b2
e−b

2/2σ2me−2b/σ
2√m ≤ C+e

−b2/2σ2m/
√
m,

which finish the proof.
(B.2) can be proved in a similar way. �

The following Lemma states the local behavior of sums of i.i.d. random variables.

Lemma B.4 Let ε > 0 small and A > 0 large. For all m large enough, for all 1 ≤ r ≤
A
√
m, we have

P (Sm ∈ [r, r + a], Sm > 0) =
C5r

m3/2
e−r

2/σ2(2m) + o(m−3/2). (B.3)

with C5 > 0. For all A
√
m ≤ r ≤ εm,

P (Sm ∈ [r, r + a], Sm > 0) =
C6r

m3/2
e−r

2/σ2(2m)(1 + o(1)), (B.4)

with C6 > 0.

Proof.
(B.3) is F. Caravenna [7] result and (B.4) can be obtained with both [7] and similar
arguments than in the proof of Lemma B.3. �
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C Probability of hitting time

Lemma C.1 For x′ ∈ Jφ, xK:

P
E
x′x
(Tx < Tx′) =

eV (x′x)

∑

z∈Kx′,xK e
V (z)

, (C.1)

P
E
←
x
(Tx′ < Tx) =

eV (x)

∑

z∈Kx′,xK e
V (z)

. (C.2)

where x′x is the only children of x′ in Jx′, xK.

The proof is classical (see for instance [3]) and an useful direct consequence of this
Lemma is the following

Corollary C.1 Let A ⊂ {z ∈ T, |z| = ℓ}, and κ > 0, there exists a positive constant c7
such that:

P
E
φ(T

nκ

φ < Tz) ≤ exp
(

−c7nκe−V (z)/ℓ
)

, ∀z ∈ A, (C.3)

P
E
(

⋃

z∈A
{L(z, T nκφ ) = 0}

)

≤ |A| exp
(

−c7nκe−maxz∈A V (z)/ℓ
)

(C.4)

Proof.
Note that the second formula is an obvious consequence of the first one. Thanks to formula
(C.1), for z ∈ A, PEφ (Tz < Tφ) ≥ C−e−V (z)/ℓ. Then using the strong Markov property and

the recurrence of X (limn→∞ P
E
φ (Tz < Tφ) = 0), for n large enough P

E
φ

(

T n
κ

φ < Tz

)

=

(1− P
E
φ (Tz < Tφ))

nκ ≤ exp
(

e−c7n
κV (z)/ℓ

)

. �
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