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Abstract 

Wind Energy is a very promising energy for the future. It is well known that the power delivered by wind turbines 
directly coupled to the grid is not constant as a result of the wind variability. In the absence of storage systems, a 
fluctuating power supply produced, can lead to voltage variations in the grid and flicker. Another disadvantage of 
most induction machines utilized in the wind turbines is that the required reactive power varies with wind speed and 
time. These problems can make the use of double fed induction generators attractive for wind turbine applications. 
Doubly-fed induction machines (DFIMs) are beginning to dominate the wind generation market, particularly for the 
larger sizes of turbine. This work is dedicated to the identification of the parametric double-fed induction machine. 
We propose a model of the DFIG based on the method of vector space. This model is used to validate the 
experimental results of identified parameters of the machine. After considering several methods of parameter 
identification of induction machines, provided with the results of the experiments, we are particularly interested in 
standardized testing. The proposed approach allows determining the electrical parameters of the machine using 
conventional methods static and dynamic, mechanical parameters are estimated using a digital channel, following the 
curve of smoothed experimental slowdown.  The identified model parameters are verified by comparing their 
simulated stator and rotor currents responses against the measured currents. It is again observed that the estimated 
model responses match the measured responses well. 
 
Keywords: wind generator; doubly fed Induction machine; Modeling; parameters Identification. 

1. Introduction  

Wind energy is being developed as a result of environmental problems posed by the conventional energy 
sources and the technological progress of wind turbines. This type of energy on the electrical network is 
increasingly importance in the windy areas. As a result, impact on the electricity grid, the quality of the 
power produced  by wind turbines increases [1].  Currently the  majority  of wind power projects based on 
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the use of double-fed induction machine. DFIG has the distinction of having two three-phase windings in 
stator and rotor. Using a power converter controlled by PWM to control the speed of rotation of the 
DFIG. This device allows the variable speed operation of DFIG and has the advantage of using a low 
power converter (30% of rated power supplies to the network) [2]. 

2. Double-fed induction generator (DFIG) 

The wound rotor of the DFIG machine is usually three phase and it is housed in slots, the end of 
each phase is connected to a ring which is fixed on the brush rubs. This allows access to the rotor to 
change specifications, to connect to an assembly of power electronics such [3].   

2.1. Wind systems using the DFIG 

Wind turbines with variable speed electronic coupling to the rotor in Figure 1 are connected to 
the network by a DFIG (wound rotor). The coupling between the generator and AeroTurbine is through a 
mechanical speed multiplier. The stator winding is connected directly to the network and transfer the 
bulk of power, a power converter controlled by PWM allows varying the rotor currents of the DFIG 
excitation. It is important to know the parameters of the DFIG accurately, so that the control is optimal, 
hence the importance of identifying parametric of DFIG [4]. 

 
 
 
 
 
 
 
 
 
 
Fig. 1.  Wind system based of DFIG with rotor electronic coupling. 

3. Modeling of double-fed induction machine 

3.1. Vector space Expression of the stator and rotor flux 

The windings of the stator and rotor are represented symbolically in Figure 2. [5] 
 
 
 
 
 
 
 
 
 
 
 
     
Fig.2. Definition of various inductances. 
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sa is the flux through the coil of “SA” phase. 

sa=Lsjsa+Msjsb+Msjsc+Msr cos ( r) jra+Msr cos ( r+
2
3

) jrb+Msr cos ( r+
4
3

) jrc                           (1) 
ra is the flux through the “RA” phase of the rotor. 

ra=Lrjra+Mrjrb+Mrjrc+Msr cos ( r) jsa+Msr cos ( r+
4
3

) jsb+Msr cos ( r+
2
3

) jsc                           (2) 
Is also an expression of flux for the other phases in the stator and rotor have asked first: 
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4
3
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This relationship is written in condensed form using the inductances matrixes: 
s(a,b,c)

r(a,b,c)
= Ls

Msr

Msr
Lr

×
js(a,b,c)
jr(a,b,c)

                                                                                                  (5) 

The voltage equations written using Laplace operators are summarized in matrix form, ordering the real 
and the imaginary parts.  
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Is still separating the currents and their derivatives: 
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3.1.1. Equations in a dq reference rotating at the speed x 

The magnetomotive forces of the stator and the rotor, and the resulting flux and various 
electrical quantities of the DFIG can be represented at every moment in complex vector spaces. 
Stator voltages and flux equations:   

vsd=Rsjsd+ d
dt

( sd)- s sq               

vsq=Rsjsq+ d
dt

( sq)+ s sd                                                                                                                 (8) 

sd=Lcsjsd+Mjrd 

sq=Lcsjsq+Mjrq 
 
Rotor voltages and flux equations:   

vrd=Rrjrd+
d
dt

( rd)-( s- r) rq 

vrq=Rrjrq+ d
dt

( rq)+( s- r) rd                                                                                                        (9) 

rd=Lcrjrd+Mjsd 

rq=Lcrjrq+Mjsq 
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When the SA axis turn at the synchronous speed is to say, when relations x= s and s= r = g s are 
verified, we write:   

vrd=Rrjrd+ d
dt

( rd)-g s rq                                                                                                              (10) 

vrq=Rrjrq+ d
dt

( rq)+g s rd                                                                                                             (11) 

The electromagnetic scheme is in Figure 3 below: 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Electromagnetic scheme in a reference rotating at the speed x. 

3.2. Electromagnetic torque Expressions 

The various expressions of the electromagnetic torque, written as: 
Cemg= 3

2
p0( sd×j
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- sq×jsd)                                                                                                            (12) 
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3.3. Rotor dynamics equation 

The sum of the torque exerted is the electromagnetic torque which is subtracted the mechanical torque 
resistant (Cr), dry and viscous friction torques (Cs and Cf) and eventually the ventilation torque (CV). 
These torques generally depend on the speed of the motor shaft. 

Jt
d r
dt

=Cemg-(Cr+Cs+Cf+Cv)                                                                                                         (16) 

3.4. Transformation of writing equations stator and rotor 

It is seeking a system of equations written in the form of state equations which the model will be like:  
                                                                                                                  (17) 

Y C X                                                                                                                                    (18) 
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Or after performing the calculations: 
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 Therefore, if the speed r is constant, on the one hand the equation of motion is not involved and 
the other hand the electrical equations become linear with constant coefficients therefore resolvable by 
simple methods. On the contrary, if the speed is not constant, the differential equations are not linear, and 
are practically unsolvable in most cases. For despite all the behavior of the machine during the transient, 
we use auxiliary calculation, which divide into two categories: 
- Analog models, physical systems composed of elements combined together so that their behavior 
according to the same differential equations that the system we wish to solve. 
- The digital computer which solves the differential equations by transforming them into finite difference 
equations may algebraic solution for a short time interval. 

4. Identification of the DFIG 

 The parameter identification process is based on the following three phases [6]:  
- Model selection process.  
- Choice of input output signals. 
- Choice of the criterion of similarity between the model and the process. 

To achieve our identification, we conducted a series of experimental tests on a three-phase 
asynchronous machine with wound rotor, the machine specifications are: 3.5 kW, 50 Hz, Us=380 V, Is=8 
A, Ur=240 V, Ir=9 A, 1410 tr/mn, cos = 0.8. 

4.1. Identification of electrical parameters of DFIG by the standard tests. 

The normalized electrical tests are presented in details in the standard IEC 60034 [7]. In what follows, 
some particular tests are presented 

4.2. Identification of the rotor time constant Tr 

 We study the registration of the stator voltage given in Figure 4. According to the equation is 

that of a damped sinusoid, the response will be like:  vsa(t)=Ae
-t
Tr cos ( r t+ ). 

 This response is a system of second order in  reduces damping coefficient less than unity fueled 

by a Dirac pulse.  if, F p = K

1+2
0
p+ 1

0
2p2

, So the impulse response is the type:   s(t)=Ae- 0t sin 0 1- 2t. 

 We selected two times t1 and t2 which correspond to passages through the points vsa(t1) and vsa(t2)  
common to the envelope and the exponential voltage vsa(t). 

vsa(t1)=Ae
-t1
Tr  ;  vsa(t2)=Ae

-t2
Tr Tr=

-(t1-t2)

log vsa(t1)
vsa(t2)

 ;  giving Tr s 
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Fig. 4. Shape of the voltage across a stator phase at the opening circuit time. 

4.3. Identification of mechanical parameters of the DFIG 

4.3.1. Slowdown test 
 
           Knowledge of mechanical losses and the slowdown curve (figure 5), to calculate the inertia J.  
The equation of motion is   J m

t
Cemg-Cr-CD To simplify, we obtain: 

 J m
t

-CD
pm

m
, The value of J will be calculated from the expression: 

J= -Pm( r0)

r0
d r
dt r= r0

 we obtain:  J=0.0259 kg.m2 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5. Slowdown speed of the motor coupled at vacuum (smoothed curve). 

4.3.2. Mathematical model of the mechanical damping torque 

We propose to approximate analytically the mathematical model (20) of CD, In its physical 
model (21), which is a rational polynomial approximation of first order in r. 

CD=J b2-4a(c- r)           (mathematical model)                                                       (20) 
CD=f  r+Cs                       (physical Model)                                                                  (21) 
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 Figure 6 displays the evolution curves of mechanical damping torque of the machine, depending 
on the speed of mathematical and physical models, which almost overlap, which justifies the validity of 
the choice of the analytical structure of physical model of CD. 

The results are: f m.N.s
Cs m.N

  

 
 
 
 
 

   
 
 
 
  
 

Fig. 6. Evolution of mechanical damping torque of the machine 

4.4. Identification by the model method  

In simple cases we can solve the problems of identification or optimization of intuitive methods. 
These methods become insufficient when the problem is complicated: increasing the number of 
parameters, introduction of constraints. It is then necessary in both cases using optimization techniques  

 Numerical methods are of two main types [8].: 
- Direct methods which are defined as recurrence equations and lead to the solution in a finite number of 
steps; 
- Iterative methods that assess the exact solution of the problem by successive approximations of it. It 
identifies three fundamental concepts of the numerical methods: that of recurrence relation, that of 
successive approximation and the discretization. 

We introduce the need for an objective test describing the approximation measures / model. After 
considering different types of criterion is particularly interested in the quadratic criterion and its variants. 

4.4.1. Quadratisation method 

The objective is to minimize a quadratic criterion corresponding to the sum of the square of the difference 
between the actual output of the process to identify and that of the model obtained at each sampling 
instant [8,9]. 

4.4.2. Approximation by a quadratic polynomial interpolation 
 

 We seek a polynomial P (X) the second degree in x1, x2,…, xn which interpolates f(x) on a 
interpolation support "simple" chosen for calculation. 
 The interpolation polynomial P '(X') is then: 
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 We write that P '(X-Xr) = f (X) when X takes successively the values of the chosen interpolation 
support. An elementary calculation gives the following results:  
            a=f(Xr)                                          
           bi=

1
2h

 [f Xr+hEi -f Xr-hEi ]  

ci=
1
h2  [f Xr+hEi -f(Xr)+f Xr-hEi ]                                         

dij=
1
h2  [f Xr+hEij -f Xr+hEi -f Xr+hEj +f(Xr)] 

4.4.3. Technical of partial quadratisation 

 The algorithm for partial quadratisation has four phases: 
a- Search for A, S well as R2. 
b- In R2, partial quadratisation and calculation of  X2

*, coordinates of the maximum of P2(X2). 
c- A calculation of Xr+1 where =1. 
d- Test of the condition f(Xr+1)>f(Xr). 
 If the relationship holds, we take Xr+1, value we have calculated, as the seed for the next iteration  
 If the relationship does not hold, we divide  by 2. Xr+1 is calculated and it returns on (d). 
The flowchart in Figure 7 summarizes the overall operations of the method applied.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. General flowchart of the method. 
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Table 1. Identified parameters of the machine 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

5. Validation of the results of identification of the DFIG 

5.1. Simulation results 

The simulation is performed in a Matlab environment. We represent below the results obtained 
using the linear model of the machine we have compared with those from the experiment. They relate to 
the direct starting of the machine at vacuum. 
 Figures 8 and 9 represent the curves of measured and simulated stator voltage, the stator current 
and machine speed. 
 A comparison of the shape of the simulated signals to that obtained experimentally shows a very 
good agreement between the different curves with a slight difference in current amplitude, and this is due 
to the assumptions used in developing the model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
                                      (a)                                                                                          (b) 

Figs. 8.  (a) Shape of the stator voltage of an experimental and simulated direct starting of DFIG. 
              (b) Shape of the stator current experimental and simulated direct starting of DFIG 

Parameters Values 
Rs [ ] 1,35796 
Rr [ ] 1,15243 
Lsf [H] 0,00956 
Lrf [H] 0,00448 
Mc [H] 0,2421 
Lcs [H] 0.30860 
M [H] 0,14507 
Ns [H] 0,09060 
Nr [H] 0,05445 
Lcr [H] 0,09680 
Ls [H] 0,15921 
Ms [H] 0,06399 
Lr [H] 0,06455 
Mr [H] 0,03225 
Msr [H] 0,09671 

 0,13196 
K 0,98852 

J [ kg.m2] 0,02590 
f [ m.N.s] 0,02700 
Cs [ m.N] 0,15000 

Tr [s] 0,07320 



186   Mourad Hasni et al.  /  Energy Procedia   18  ( 2012 )  177 – 186 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-20

0

20

40

60

80

100

120

140

160

t[s]

REEL
SIMULE

                                     
 
 
 
 
 
 
 
 
 

 
Fig. 10. Shape of the experimental and simulated speed (rd/s) of a direct starting of DFIG. 

6. conclusion 

The comparison of experimental results with those obtained by simulation, carried out under Matlab / 
Simulink, is a validation of the model of DFIG. We also addressed the issue of changes in machine 
parameters and poor identification and their impact on the control of DFIG. 

 Whatever methods of identifying the strategy that we adopt to achieve the determination of the 
parameters is as follows: 

   - Choice of parametric model,    
   - Finding the optimal vector,    
   - Checking the validity of the model. 
The identification of machine parameters is a complex problem (the measurement process of signals 

produced by a system and building a model to represent the control system for the design and identify the 
model parameters from measured data based on an error criterion). It is important to note that the vector 
of parameters we obtained, following several methods, is a mean vector of parameters. That is to say that 
it is the vector which is the best compromise to represent the machine in its various types of operation. 
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