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Abstract In the present paper we investigate the problem of the existence of a value for differential games

without Isaacs condition. For this we introduce a suitable concept of mixed strategies along a partition of

the time interval, which are associated with classical nonanticipative strategies (with delay). Imposing on

the underlying controls for both players a conditional independence property, we obtain the existence of the

value in mixed strategies as the limit of the lower as well as of the upper value functions along a sequence of

partitions which mesh tends to zero. Moreover, we characterize this value in mixed strategies as the unique

viscosity solution of the corresponding Hamilton-Jacobi-Isaacs equation.

1 Introduction

In the present work we consider 2-person zero-sum differential games which dynamics is defined through the

doubly controlled differential equation

d

ds
Xs = f(s,Xs, us, vs), s ∈ [t, T ], (1.1)

and which pay-off functional is described by
J := g(XT ). (1.2)

The initial data (t, x) are in [0, T ]×Rd. Given two compact metric control state spaces U and V , the both

players use control processes u = (us) and v = (vs) with values in U and V , respectively. They control the

state space process X = (Xs) which takes its values in Rd; its dynamics is driven by a bounded, continuous

function f = (f(t, x, u, v)) : [0, T ] × Rd × U × V → Rd which is Lipschitz in x, uniformly with respect

to (u, v), and the terminal pay-off function g : Rd → R is supposed to be bounded and Lipschitz. Under

these assumptions on f the above equation has a unique solution X = (Xs)s∈[t,T ], denoted by Xt,xu,v in

order to indicate the dependence on the initial data (t, x) and the control processes u = (us) and v = (vs)

chosen by player 1 and 2, respectively; and for the associated pay-off functional we write J(t, x;u, v). While

the objective of the first player consists in maximizing the pay-off at terminal time T , the second player’s

objective is to minimize it.

One important issue in the theory of 2-person zero-sum differential games is the study of conditions

under which the value of the game exists, i.e., under which the lower and the upper value functions of the

game coincide. Indeed, with an appropriate concept of strategies, which will be introduced in Section 2, two

∗Juan Li is the corresponding author.
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value functions can be introduced, the lower and the upper one. For the case of a deterministic differential

game with dynamics (1.1) and pay-off (1.2) the lower value function V : [0, T ] × Rd and the upper one

U : [0, T ]×Rd are defined as follows:

V (t, x) = supαinfβJ(t, x, α, β), U(t, x) = infβsupαJ(t, x, α, β), (t, x) ∈ [0, T ]×Rd, (1.3)

where α runs the set of admissible strategies for the first player, and β those for the second one. Given such

a couple of admissible strategies (α, β), we define the associated pay-off functional J(t, x, α, β) through the

unique couple of controls (u, v) such that α(v) = u and β(u) = v : J(t, x, α, β) := J(t, x, u, v).

In the literature, since the pioneering works of Isaacs, there have been many works showing the

existence of the value of the game, this means the equality between the lower and the upper value functions,

under the so-called Isaacs condition saying that, for all (t, x, p) ∈ [0, T ]×Rd ×Rd,

supu∈U infv∈V f(t, x, u, v)p = infv∈V supu∈Uf(t, x, u, v)p. (1.4)

Moreover, under this condition (1.4) the value function V (= U) solves a partial differential equation, the

so-called Hamilton-Jacobi-Isaacs equation. Such an existence result for the value was obtained in [13] in the

context of nonanticipative Varaiya-Roxin-Elliot-Kalton strategies, see [12], [19] and [21], and also in [2], [7]

and [18], but here for differential games with constraints. As concerns the context of positional strategies,

we refer to [16] for similar results.

For 2-person zero-sum stochastic differential games the existence of a value was obtained in [14] and

later revisited and generalized in [6]. We also refer the reader to [5] and the references therein for an overview

and a more complete description of these approaches.

Our main goal in the present paper is to investigate the problem of the existence of a value without

Isaacs condition. Having other approaches in the classical theory of differential games in mind, it is not

surprising that we need a proper, suitable notion of mixed strategies. This proper notion of mixed strategies

related with a suitable randomization allows to show that the lower and the upper value functions defined

in mixed strategies coincide. Moreover, we prove that the value in mixed strategies V = (V (t, x) = U(t, x))

solves in viscosity sense the Hamilton-Jacobi-Isaacs equation

∂

∂t
V (t, x) +H(t, V (t, x),∇xV (t, x)) = 0, (t, x) ∈ [0, T ]×Rd,

V (T, x) = g(x), x ∈ Rd,
(1.5)

which Hamiltonian is given by

H(t, x, p) := infν∈∆V supµ∈∆V

∫

V

∫

U

f(t, x, u, v)µ(du)ν(dv)p, (t, x, p) ∈ [0, T ]×Rd ×Rd. (1.6)

Here ∆U and ∆V denote the set of probability measures on the set U and V (equipped with the Borel

σ-field), respectively. It is worth pointing out that the supremum and the infimum in (1.6) commute due

to the classical minmax theorem. This commutation between the supremum and the infimum in (1.6)

constitutes also the key in the proof of the existence of the value in mixed strategies; it can be regarded

as an automatically satisfied Isaacs condition concerning ∆U and ∆V interpreted as control state spaces.

Having this in mind one could immediately define mixed strategies as nonanticipative strategies with delay

for controls taking their values in ∆U and ∆V , respectively. This would lead to the same value of the game,

given by (1.5).

But proceeding like that would mean to use relaxed controls. However, being interested in strong

controls, i.e., controls taking their values in the given control state space U and V , respectively, we define

controls and strategies, where the randomness–necessary for defining the concept of mixed strategies–appears

in the choices of the players and not in the values of the controls. In this sense our work can be considered

as an extension of the famous Kuhn Theorem for repeated games ( cf [17] and also [1]) to the context of

deterministic differential games.
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To the best of our knowledge, the existence of the value for differential games without Isaacs condition

was only investigated in the case of positional strategies in [16], but with different techniques. Moreover, the

nonanticipative strategies used in [2, 7, 18] do not allow to write the game in a normal form (i.e., to play a

strategy of one player against a strategy of the other one) and, consequently, they are not appropriate for

the definition of mixed strategies. Here in our work we use the concept of nonanticipativity with delays (see

[4, 5] and [8]) and we define a corresponding notion of mixed strategies.

Let us explain the organization of the paper and link it with some explanation concerning our approach:

Section 2 is devoted to some preliminaries. We introduce there, in particular, the underlying filtered probabil-

ity space (Ω,F ,F = (Fj)j≥1, P ) which we use for the randomization of the controls and the strategies. Given

an arbitrary partition Π of the interval [0, T ], we introduce the admissible controls for both players along

this partition Π and the corresponding nonanticipative strategies with delay (for short NAD-strategies). The

specificity of the choice of our admissible controls along the partition Π = {0 = t0 < · · · < tn = T } consists

in the fact that, given the available information Fi at time ti, the admissible control processes for player 1

restricted to the time interval [ti, ti+1) are independent of those for player 2. This conditional independence

of the control processes on subintervals defined by the partition Π turns out to be the crucial element in

our approach. We show that, along the partition Π, for every couple of NAD strategies α, β, there exists a

unique couple of admissible controls u, v of player 1 and 2, respectively, such that α(v) = u and β(u) = v.

This allows to give a sense to the pay-off functional J(t, x;α, β). Since the admissible controls are random,

also the pay-off functionals are random, and so are, a priori, V Π and UΠ, the lower and the upper value

functions along the partition Π. In Section 3 we show that V Π and UΠ satisfy along the partition Π the

dynamic programming principle. This principle allows to prove with the help of a backward iteration that

V Π and UΠ are deterministic. For this a key result is that V Π and UΠ are invariant with respect to a

certain class of bijective transformations τ : Ω → Ω which law is equivalent to the underlying probability

measure P , combined with a statement saying that any random variable with such an invariance property

has to coincide P -almost surely with a constant. The proof extends an idea coming from [6], where it was

developed for a Brownian framework. Furthermore, the fact that V Π and UΠ are deterministic, allows to

prove that

V Π(t, x) = supαinfβE[J(t, x, α, β)], UΠ(t, x) = infβsupαE[J(t, x, α, β)], (t, x) ∈ [0, T ]×Rd, (1.7)

where α runs the set of NAD-strategies along Π for the first player, and β those for the second player. This

combined with standard estimates yields that V Π and UΠ are jointly Lipschitz in (t, x), with a Lipschitz

constant which does not depend on the partition Π. From there we deduce in Section 4 that the lower

and the upper value functions V Π and UΠ converge uniformly on compacts to the unique solution of the

Hamilton-Jacobi-Isaacs equation (1.5), as the maximal distance |Π| between two neighbouring points of the

partition Π tends to zero. Consequently, the limits of V Π and UΠ, V := lim|Π|→0 V
Π and U := lim|Π|→0 U

Π

exist and coincide: V = U is the value in mixed strategies of the game.

2 Preliminaries

Let λ2(dx) = dx denote the two-dimensional Borel measure defined on the quadrate [0, 1]2 ⊂ R2 endowed

with the Borel field B([0, 1]2). Denoting by N the set of all positive integers we introduce our underlying

probability space (Ω,F , P ) as product space

(Ω,F , P ) :=
(
([0, 1]2)N,B([0, 1]2)⊗N, λ⊗N

2

)
,

i.e., Ω = {ω = (ωj)j≥1 |ωj ∈ [0, 1]2, j ≥ 1} is the space of all [0, 1]2-valued sequences, endowed with the

product Borel-field F = B([0, 1]2)⊗N and the product probability measure P = λ⊗N

2 . Moreover, letting

ζj = (ζj,1, ζj,2) : Ω −→ [0, 1]2 denote the coordinate mapping on Ω :

ζj(ω) = (ζj,1(ω), ζj,2(ω)) = (ωj,1, ωj,2), ω = ((ωj,1, ωj,2))j≥1 ∈ Ω,

we have that F is the smallest σ-field over Ω, with respect to which all coordinate mappings ζj , j ≥ 1, are

measurable. In what follows we will also need the σ-fields Gj := ζ−1
j,1 (B([0, 1])) = {{ζj,1 ∈ Γ} |Γ ∈ B([0, 1])}
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and Hj := ζ−1
j,2 (B([0, 1])) generated by ζj,1 and ζj,2, respectively, j ≥ 1, as well as the σ-field

Fj := σ {∪i≤j(Gi ∪Hi)} = σ{ζi, 1 ≤ i ≤ j},

generated by the coordinate mappings ζ1, . . . , ζj , for j ≥ 1. We remark that, for all j ≥ 1, the σ-fields Gj ,Hj

and Fj−1 are independent. Moreover, F = (Fj)j≥1 forms a time-discrete filtration, and F = ∨j≥1Fj (:=

σ{∪j≥1Fj} ). We also recall that a random time τ : Ω → {0, 1, 2, . . .} is an F-stopping time, if {τ = j} ∈

Fj , j ≥ 0.

Let U and V be compact metric spaces; by ∆U and ∆V we denote the space of probability measures

on (U,B(U)) and on (V,B(V )), respectively. The fact that all probability measure µ ∈ ∆U (ν ∈ ∆V , resp.)

coincides with the law of a suitable U -valued random variable (V -valued random variable, resp.) defined over

the space ([0, T ],B([0, T ])) endowed with the one-dimensional Borel measure (it’s an elementary consequence

of Skorohod’s Representation Theorem, refer to pp 70 in [3]), implies, in particular, that

∆U = {Pξ | ξ ∈ L0(Ω,Gj , P ;U)}1, ∆V = {Pξ | ξ ∈ L0(Ω,Hj , P ;U)}, j ≥ 1.

In order to introduce the dynamics of the controlled system we want to investigate, we shall begin

with defining the admissible controls for the both players. We define them along a partition Π of the time

interval [0, T ].

Definition 2.1. (admissible control) A process u ∈ L0
F(0, T ;U)2 is said to be an admissible control for

Player 1 along a partition Π = {0 = t0 < t1 < · · · < tn = T } of the interval [0, T ], if, for any j (1 ≤ j ≤ n),

its restriction u|[tj−1,tj) to the interval [tj−1, tj) is of the form u|[tj−1,tj) =
∑

k≥1 IΓj,k
uj,k, where (Γj,k)k≥1 ⊂

Fj−1 is a partition of Ω and (uj,k)k≥1 ⊂ L0
Gj
(tj−1, tj ;U). If this is the case, we write u ∈ UΠ

0,T .

Similarly, we say that v ∈ L0
F(0, T ;V ) is an admissible control along the partition Π for Player 2, if, for

any j (1 ≤ j ≤ n), its restriction v|[tj−1,tj) to the interval [tj−1, tj) is of the form v|[tj−1,tj) =
∑

k≥1 IΓj,k
vj,k,

where (Γj,k)k≥1 ⊂ Fj−1 is a partition of Ω and (vj,k)k≥1 ⊂ L0
Hj

(tj−1, tj ;V ). If this is the case, we write

v ∈ VΠ
0,T .

Finally, for 0 ≤ t ≤ tl ∈ Π, we put

UΠ
t,tl

:= {(us)s∈[t,tl]|u ∈ UΠ
0,T } and VΠ

t,tl
:= {(vs)s∈[t,tl]|v ∈ VΠ

0,T }.

Let us describe now the dynamics of our differential game along a partition Π of the interval [0, T ].

For this we consider a bounded continuous function f = (f(t, x, u, v)) : [0, T ]× Rd × U × V −→ Rd which

is supposed to be Lipschitz in x, uniformly with respect to (t, u, v). Given initial data (t, x) ∈ [0, T ] × Rd

and two controls u ∈ UΠ
t,T and v ∈ VΠ

t,T , we define the continuous process Xt,x,u,v = (Xt,x,u,v
s )s∈[t,T ] as the

unique solution of the following pathwise differential equation:

Xt,x,u,v
s = x+

∫ s

t

f(r,Xt,x,u,v
r , ur, vr)dr, s ∈ [t, T ], (u, v) ∈ UΠ

t,T × VΠ
t,T . (2.1)

We remark that standard estimates show

Lemma 2.1. For a suitable real constant C independent of the partition Π we have, for all (u, v) ∈ UΠ
t,T×VΠ

t,T ,

for all (t, x), (t′, x′) ∈ [0, T ]×Rd and all s ∈ [t ∨ t′, T ],

(i) |Xt,x,u,v
s − x| ≤ CT,

(ii) |Xt,x,u,v
s −Xt′,x′,u,v

s | ≤ C(|t− t′|+ |x− x′|).
(2.2)

Let g : Rd → R be a bounded Lipschitz function. For a game over the time interval [t, T ] along the

partition Π = {0 = t0 < t1 < · · · < tn = T }, with 0 ≤ i ≤ n − 1 such that ti ≤ t < ti+1, we consider

the payoff functional E[g(Xt,x,u,v
T )|Fi] which Player 1 tries to maximize through the control u ∈ UΠ

t,T and

Player 2 tries to minimize through his choice of v ∈ VΠ
t,T . However, in order to guarantee the existence of

a value of the game, we consider a game in which both players use non-anticipative strategies with delay

(NAD-strategies).

1As usual, L0(Ω,Gj , P ;U)} denotes the space of all U -valued random variables defined on (Ω,Gj , P ).
2L0

F
(0, T ;U) denotes the space of all measurable U -valued processus u = (ut)t∈[0,T ] such that ut is F-measurable, for all

t ∈ [0, T ].
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Definition 2.2. (NAD-strategies) Let Π = {0 = t0 < t1 < · · · < tn = T } be a partition of the interval [0, T ]

and 0 ≤ t ≤ tl ∈ Π. We say that β : UΠ
t,tl

−→ VΠ
t,T is an NAD-strategy for Player 2 over the time interval

[t, tl] along the partition Π, if for all F-stopping time τ : Ω → {0, 1, . . . , n− 1} and all controls u, u′ ∈ UΠ
t,tl

with u = u′, dsdP -a.s. on [[t, tτ ]]
3, it holds β(u) = β(u′), dsdP -a.s. on [[t, tτ+1]]. The set of all NAD-strategy

for Player 2 over [t, tl] along Π is denoted by BΠ
t,tl

.

In an obvious symmetric way we also introduce for Player 1 the set of all NAD-strategies over the

interval [t, tl] along Π, and we denote it by AΠ
t,tl

.

The following result is crucial; it permits to associate couples of NAD-strategies with couples of admissible

controls.

Lemma 2.2. For all couple of NAD strategies (α, β) ∈ AΠ
t,tl

×BΠ
t,tl

, there exists unique couple of admissible

controls (u, v) ∈ UΠ
t,tl

× VΠ
t,tl

such that α(v) = u, β(u) = v, dsdP -a.s. on [t, tl]× Ω.

Although such a result is well-known for deterministic and stochastic differential games (see, for

instance, [4] and [5]), we want to sketch here the proof for the convenience of the reader, because the context

we study differs a bit from that of [4] and [5].

Proof. Let Π = {0 = t0 < t1 < · · · < tn = T } be a partition of the interval [0, T ], 0 ≤ ti ≤ t < ti+1 ≤ tl ∈ Π,

and (α, β) ∈ AΠ
t,tl

×BΠ
t,tl

. Then, due to the definition of NAD strategies, α(v), β(u) restricted to the interval

[t, ti+1] depend only on the restrictions of the controls v ∈ VΠ
t,tl

and u ∈ UΠ
t,tl

to the interval [t, ti]. But since

this interval is empty or at most a singleton (and, hence, of Lebesgue measure zero), α(v), β(u) restricted

to the interval [t, ti+1] don’t depend on v and u. Consequently, given arbitrary u0 ∈ UΠ
t,tl

, v0 ∈ VΠ
t,tl

, we put

u1 := α(v0), v1 := β(u0), and we have

α(v1) = u1, β(u1) = v1, on [t, ti+1].

Supposing that we have constructed (uj−1, vj−1) ∈ UΠ
t,tl

×VΠ
t,tl

such that α(vj−1) = uj−1 and β(uj−1) =

vj−1, dsdP -a.s. on [t, ti+j−1], we put uj := β(vj−1), vj := α(uj−1). Then, obviously, (uj , vj) ∈ UΠ
t,tl

× VΠ
t,tl

,

(uj , vj) = (uj−1, vj−1), dsdP -a.s. on [t, ti+j−1], and because of the NAD property of the strategies α, β we

have uj = β(vj), vj = α(uj), dsdP -a.s. on [t, ti+j ]. By iterating the argument up to j = l − i we obtain the

assertion of the lemma.

Remark 2.1. Given a couple of NAD strategies (α, β) ∈ AΠ
t,tl

×BΠ
t,tl

the above Lemma 2.2 allows to define

the dynamics Xt,x,α,β = (Xt,x,α,β
s )s∈[t,tl] along the partition Π over the interval [t, tl] (tl ∈ Π) through that

of the couple of admissible controls (u, v) ∈ UΠ
t,tl

× VΠ
t,tl

associated with by the relation α(v) = u, β(u) = v,

dsdP -a.s. on [t, tl]× Ω.

After the above preliminary discussion we can now introduce the value functions of the game along a

partition Π = {0 = t0 < · · · < tn = T } of the interval [0, T ]. For the initial data (t, x) ∈ [0, T ]×Rd we define

the lower value function V and the upper value function U along a partition Π = {0 = t0 < · · · < tn = T }

as follows:
V Π(t, x) := esssupα∈AΠ

t,tl

essinfβ∈BΠ
t,tl

E[g(Xt,x,α,β
T )|Fi],

UΠ(t, x) := essinfβ∈BΠ
t,tl

esssupα∈AΠ
t,tl

E[g(Xt,x,α,β
T )|Fi],

for ti ≤ t < ti+1 < T (0 ≤ i ≤ n− 1).

(2.3)

We emphasize that, since the lower and the upper value functions are defined as a combination of

essential supremum and essential infimum over an indexed family of uniformly bounded, Fi-measurable

random variables, also they themselves are a priori bounded, Fi-measurable random variables (Recall the

definition of the essential supremum and infimum, e.g., in Dunford and Schwartz [11], Dellacherie [10] or

in the appendix of Karatzas and Shreve [15], where a detailed discussion is made.). However, in the next

section we will show that the lower and the upper value functions are deterministic (The interested reader

3The stochastic interval [[t, tτ ]] is defined as {(s, ω) ∈ [t, T ]× Ω | t ≤ s ≤ tτ(ω)}.
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is also referred to [6], where a comparable approach, but in a completely different framework is done for

stochastic differential games with Isaacs condition.)

We also remark that we have the following statement as an immediate consequence of Lemma 2.1 and

the fact the the function g is bounded and Lipschitz:

Lemma 2.3. Under our standard assumptions on the coefficients f and g we have that there is some constant

L such that, for all (t, x), (t′, x′) ∈ [0, T ]×Rd and for all partition Π,

(i)|V Π(t, x)| ≤ L,

(ii)|V Π(t, x)− V Π(t, x′)| ≤ L|x− x′|, P -a.s.
(2.4)

3 Lower and upper value functions along a partition

The objective of this section is to study the properties of the above introduced lower and upper value

functions along a partition Π = {0 = t0 < t1 < · · · < tn = T } of the interval [0, T ]. More precisely, we first

establish a dynamic programming principle (DPP) which on its part will allow to prove that the both value

functions are deterministic.

Theorem 3.1. (Dynamic Programming Principle) Let Π = {0 = t0 < · · · < tn = T } be an arbitrary

partition of the interval [0, T ] and (t, x) ∈ [0, T ]×Rd. Then, for i, l such that ti ≤ t < ti+1 ≤ tl,

V Π(t, x) = esssupα∈AΠ
t,tl

essinfβ∈BΠ
t,tl

E[V Π(tl, X
t,x,α,β
tl

) | Fi],

UΠ(t, x) = essinfβ∈BΠ
t,tl

esssupα∈AΠ
t,tl

E[UΠ(tl, X
t,x,α,β
tl

) | Fi], P -a.s.
(3.1)

For the proof which will be split in two lemmas, we will restrict to the lower value function along a

partition; the proof for the upper value function along a partition uses a symmetric argument. Keeping the

notations introduced in the above theorem we put

Ṽ Π
l (t, x) = esssupα∈AΠ

t,tl

essinfβ∈BΠ
t,tl

E[V Π(tl, X
t,x,α,β
tl

) | Fi]. (3.2)

We remark that Ṽ Π
l (t, x) is an Fi-measurable random variable.

Lemma 3.1. Under our standard assumptions we have Ṽ Π
l (t, x) ≤ V Π(t, x), P -a.s.

Proof. Step 1. Let us fix arbitrarily ε > 0. Then, there exists αε
1 ∈ AΠ

t,tl
such that

Ṽ Π
l (t, x) ≤ essinfβ1∈BΠ

t,tl

E[V Π(tl, X
t,x,αε

1,β1

tl
) | Fi] + ε, P-a.s. (3.3)

Indeed, setting I1(α) = essinfβ1∈BΠ
t,tl

E[V Π(tl, X
t,x,α,β1

tl
) | Fi], we know from the properties of the essential

supremum over a family of random variables that there is a countable sequence (αk)k≥1 ⊂ AΠ
t,tl

such that

Ṽ Π
l (t, x) = esssupα1∈AΠ

t,tl

I1(α1) = supk≥1I1(αk), P -a.s. (3.4)

Then, obviously, △k := {Ṽ Π
l (t, x) ≤ I1(αk) + ε} ∈ Fi, k ≥ 1, and putting Γk := ∆k \ (

⋃
i<k ∆i), k ≥ 1, we

define an (Ω,Fi)-partition, i.e., a partition of Ω, composed of elements of the σ-field Fi. Let us now introduce

the mapping αε
1 := Σk≥1IΓk

αk(·) : V
Π
t,tl

→ UΠ
t,tl

. It can be easily checked that such defined mapping belongs

to AΠ
t,tl

, and standard arguments (see, e.g., [6]) allow to show that

E[V Π(tl, X
t,x,αε

1,β1

tl
) | Fi] =

∑

j≥1

IΓj
E[V Π(tl, X

t,x,αj,β1

tl
) | Fi], for all β1 ∈ BΠ

t,tl
.

Therefore, again for all β1 ∈ BΠ
t,tl

,

Ṽ Π
l (t, x) ≤

∑
k≥1 IΓk

I1(αk) + ε

≤
∑

k≥1

IΓk
E[V Π(tl, X

t,x,αk,β1

tl
) | Fi] + ε = E[V Π(tl, X

t,x,αε
1,β1

tl
) | Fi] + ε.
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Given now an arbitrary β ∈ BΠ
t,T and any u2 ∈ UΠ

tl,T
we make the following particular choice of β1:

β1(u1)(s) := β(u)(s), s ∈ [t, tl], u1 ∈ UΠ
t,tl

,

where

u(s) :=

{
u1(s), s ∈ [t, tl]

u2(s), s ∈ (tl, T ].

Abbreviating, in what follows we will write for such a process composed over different intervals:

u = u1 ⊕ u2, β1(u1) = β(u1 ⊕ u2)|[t,tl].

We observe that β1 ∈ BΠ
t,tl

, and as consequence of its nonanticipativity property, it is independent of the

particular choice of u2. Consequently,

Ṽ Π
l (t, x) ≤ ε+ E[V Π(tl, X

t,x,αε
1,β1

tl
) | Fi], P -a.s., (3.5)

for our particular choice of β1, since we have seen that this relation holds true for all β1 ∈ BΠ
t,tl

.

Step 2. Let us now continue by discussing the expression V Π(tl, X
t,x,αε

1,β1

tl
) inside the above conditional

expectation in (3.5). For this end we consider a partition (Oj)j≥1 of Rd, composed of nonempty Borel sets,

such that, for all j ≥ 1, the maximal distance between two elements of Oj is less than or equal to ε. Let us

fix in all Oj an arbitrary element yj .

In analogy to Step 1 we see also here that, for every j ≥ 1, there exists αε,j
2 ∈ AΠ

tl,T
such that

V Π(tl, yj) = esssupα2∈AΠ
tl,T

essinfβ2∈BΠ
tl,T

E[g(X
tl,yj,α2,β2

T ) | Fl]

≤ ε+ essinfβ2∈BΠ
tl,T

E[g(X
tl,yj ,α

ε,j
2 ,β2

T ) | Fl], P -a.s.

In dependence of our β ∈ BΠ
t,T already chosen in the preceding Step 1 we want to make now a particular

choice of β2 ∈ BΠ
tl,T

. For this end we notice that, since (αε
1, β1) ∈ AΠ

t,tl
× BΠ

t,tl
, due to Lemma 2.2 there

exists a unique couple (uε
1, v

ε
1) ∈ UΠ

t,tl
× VΠ

t,tl
such that αε

1(v
ε
1) = uε

1, and β1(u
ε
1) = vε1. With the notations

introduced in Step 1 we define now

β2(u2) := β(uε
1 ⊕ u2)|[tl,T ], u2 ∈ UΠ

tl,T
.

It is straight-forward to check that β1 ∈ BΠ
tl,T

, and, consequently,

V Π(tl, yj) ≤ ε+ E[g(X
tl,yj,α

ε,j
2 ,β2

T ) | Fl], P -a.s. (3.6)

Thus, from the Lipschitz continuity of V Π(tl, .) (see Lemma 2.3) we obtain

V Π(tl, X
t,x,αε

1,β1

tl
) ≤ Cε+

∑

j≥1

V Π(tl, yj)I
{X

t,x,αε
1
,β1

tl
∈Oj}

≤ (C + 1)ε+
∑

j≥1

I
{X

t,x,αε
1,β1

tl
∈Oj}

E[g(X
tl,yj,α

ε,j
2 ,β2

T ) | Fl].
(3.7)

Let us introduce now αε
2 :=

∑

j≥1

I
{X

t,x,αε
1,β1

tl
∈Oj}

α
ε,j
2 . It is easy to verify that αε

2 belongs to AΠ
tl,T

. On the

other hand, for every (αε,j
2 , β2) ∈ AΠ

tl,T
× BΠ

tl,T
, there exists a unique couple (uε,j

2 , v
ε,j
2 ) ∈ UΠ

tl,T
× VΠ

tl,T
, such

that

α
ε,j
2 (vε,j2 ) = u

ε,j
2 , β2(u

ε,j
2 ) = v

ε,j
2 ,

and with its help we define

(uε
2, v

ε
2) :=

∑

j≥1

I
{X

t,x,αε
1,β1

tl
∈Oj}

(uε,j
2 , v

ε,j
2 ) ∈ UΠ

tl,T
× VΠ

tl,T
.

Then, according to the definition of αε
2 and the nonanticipativity of the elements of AΠ

tl,T
(see Definition 2.2

for nonanticipative strategies), since vε2 = v
ε,j
2 on {X

t,x,αε
1,β1

tl
∈ Oj} × [tl, T ], we also have

αε
2(v

ε
2) = α

ε,j
2 (vε2) = α

ε,j
2 (vε,j2 ) = u

ε,j
2 = uε

2 on {X
t,x,αε

1,β1

tl
∈ Oj} × [tl, T ], j ≥ 1.
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Consequently, since (Oj)j≥1 forms a partition of Rd, it holds αε
2(v

ε
2) = uε

2. Analogously, we obtain β2(u
ε
2) =

vε2. Moreover, recalling that (uε
1, v

ε
1) ∈ AΠ

t,tl
×BΠ

t,tl
has been introduced such that αε

1(v
ε
1) = uε

1, β1(u
ε
1) = vε1,

we define a couple of controls (uε, vε) ∈ UΠ
t,T ×VΠ

t,T by putting uε := uε
1⊕uε

2 and vε := vε1⊕vε2. Furthermore,

we introduce

αε(v) := αε
1(v1)⊕ αε

2(v2), for v1 := v|[t,tl], v2 := v|[tl,T ], v ∈ VΠ
t,T .

Then αε ∈ AΠ
t,T , and αε(vε) = αε

1(v
ε
1) ⊕ αε

2(v
ε
2) = uε

1 ⊕ uε
2 = uε, and, on the other hand, recalling the

definition of β1 and β2, we have

β(uε) = β(uε
1 ⊕ uε

2) |[t,tl) ⊕β(uε
1 ⊕ uε

2) |[tl,T ]= β1(u
ε
1)⊕ β2(u

ε
2) = vε1 ⊕ vε2 = vε.

This shows that (uε, vε) ∈ UΠ
t,T × VΠ

t,T is the unique couple of controls which is associated with (αε, β) ∈

AΠ
t,T × BΠ

t,T . Hence,

X
tl,X

t,x,αε
1,β1

tl
,uε

2,v
ε
2

T = X
tl,X

t,x,uε
1,vε1

tl
,uε

2,v
ε
2

T = X
t,x,uε,vε

T = X
t,x,αε,β
T , (3.8)

and, taking into account in addition the Lipschitz property of g , we get

∑
j≥1 I{X

t,x,αε
1,β1

tl
∈Oj}

g(X
tl,yj ,α

ε,j
2 ,β2

T )

=
∑

j≥1 I{X
t,x,αε

1,β1
tl

∈Oj}
g(X

tl,yj,u
ε,j
2 ,v

ε,j
2

T )

=
∑

j≥1 I{X
t,x,αε

1
,β1

tl
∈Oj}

g(X
tl,yj,u

ε
2,v

ε
2

T )

≤ g(X
tl,X

t,x,αε
1,β1

tl
,uε

2,v
ε
2

T ) + Cε = g(Xt,x,αε,β
T ) + Cε.

(3.9)

Consequently, from (3.7) and (3.9),

V Π(tl, X
t,x,αε

1,β1

tl
) ≤ Cε+ E[g(Xt,x,αε,β

T ) | Fl], P -a.s. (3.10)

Furthermore, from (3.5),

Ṽ Π
l (t, x) ≤ ε+ E[V Π(tl, X

t,x,αε
1,β1

tl
) | Fi] ≤ Cε+ E[g(Xt,x,αε,β

T ) | Fi], P -a.s. (3.11)

This relation holds true for our arbitrarily chosen and, hence, for all β ∈ BΠ
t,T . It follows that

Ṽ Π
l (t, x) ≤ Cε+ essinfβ∈BΠ

t,tl

E[g(Xt,x,αε,β
T ) | Fi]

≤ Cε+ esssupα∈AΠ
t,tl

essinfβ∈BΠ
t,tl

E[g(Xt,x,α,β
T ) | Fi]

= Cε+ V Π(t, x), P -a.s.,

(3.12)

and the statement follows by letting ε tend to zero.

Let us now come the converse statement to Lemma 3.1.

Lemma 3.2. Under our standard assumptions we have Ṽ Π
l (t, x) ≥ V Π(t, x), P -a.s.

Proof. Because of the symmetry of some arguments to those in the proof of Lemma 3.1, this proof here will

be kept shorter.

Let us fix any α ∈ AΠ
t,T and, for some arbitrarily chosen v2 ∈ Vtl,T , we put α1(v1) := α(v1 ⊕ v2) ||[t,tl),

v1 ∈ Vt,tl . Obviously, such defined mapping α1 belongs to AΠ
t,tl

and, as a consequence of its nonanticipativity,

it doesn’t depend on the choice of v2. Thus, from the definition of Ṽ Π
l (t, x) it follows that

Ṽ Π
l (t, x) ≥ essinfβ1∈BΠ

t,tl

E[V Π(tl, X
t,x,α1,β1

tl
) | Fi], P -a.s., (3.13)
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and, similarly to (3.5), we can show that, for any given ε > 0, there exists some βε
1 ∈ BΠ

t,tl
such that

Ṽ Π
l (t, x) ≥ E[V Π(tl, X

t,x,α1,β
ε
1

tl
)|Fi]− ε, P -a.s. (3.14)

In analogy to the proof of Lemma 3.1 we discuss now the expression V Π(tl, X
t,x,α1,β

ε
1

tl
) inside the above

conditional expectation in (3.14). For this we let (uε
1, v

ε
1) ∈ UΠ

t,tl
×VΠ

t,tl
denote the unique couple of admissible

controls associated with (α1, β
ε
1) ∈ AΠ

t,tl
× BΠ

t,tl
by Lemma 2.2, i.e., such that α1(v

ε
1) = uε

1, β
ε
1(u

ε
1) = vε1,

and we introduce the NAD-strategy αε
2 ∈ AΠ

tl,T
by putting αε

2(v2) := α(vε1 ⊕ v2) |[tl,T ], v2 ∈ VΠ
tl,T

. In order

to construct an appropriate NAD-strategy βε
2 ∈ BΠ

tl,T
, we use the Borel partition (Oj)j≥1 and the sequence

yj ∈ Oj , j ≥ 1, introduced in the second step of the proof of Lemma 3.1. Choosing β
ε,j
2 ∈ BΠ

tl,T
such that

V Π(tl, yj) ≥ essinfβ2∈BΠ
tl,T

E[g(X
tl,yj,α

ε
2,β2

T )|Fl]

≥ E[g(X
tl,yj,α

ε
2,β

ε,j
2

T )|Fl]− ε, P -a.s., j ≥ 1,
(3.15)

we define βε
2 ∈ BΠ

tl,T
and βε ∈ BΠ

t,T by putting

βε
2(u2) :=

∑

j≥1

I
{X

t,x,α1,βε
1

tl
∈Oj}

β
ε,j
2 (u2), u2 ∈ UΠ

tl,T
,

βε(u) := βε
1(u1)⊕ βε

2(u2), u1 := u|[t,tl), u2 := u|[tl,T ], u ∈ UΠ
t,T .

(3.16)

Consequently, taking into account the Lipschitz property of V Π(tl, .) and using (3.15), we have similarly to

Step 2 of the proof of the preceding Lemma 3.1

Ṽ Π
l (t, x) ≥ E[V Π(tl, X

t,x,α1,β
ε
1

tl
)|Fi]− ε

≥
∑

j≥1

E[I
{X

t,x,α1,βε
1

tl
∈Oj}

V Π(tl, yj)|Fi]− Cε

≥
∑

j≥1

E[I
{X

t,x,α1,βε
1

tl
∈Oj}

g(X
tl,yj,α

ε
2,β

ε,j
2

T )|Fi]− Cε

=
∑

j≥1

E[I
{X

t,x,α1,βε
1

tl
∈Oj}

g(X
tl,yj,α

ε
2,β

ε
2

T )|Fi]− Cε

≥ E[g(X
tl,X

t,x,α1,βε
1

tl
,αε

2,β
ε
2

T )|Fi]− Cε, P -a.s.

(3.17)

Let (uε
2, v

ε
2) ∈ UΠ

tl,T
× VΠ

tl,T
be the unique couple of controls associated with (αε

2, β
ε
2) ∈ AΠ

tl,T
× BΠ

tl,T
by

Lemma 2.2. Then, it is straight-forward to show that the couple (uε, vε) = (uε
1 ⊕ uε

2, v
ε
1 ⊕ vε2) ∈ UΠ

t,T × VΠ
t,T

verifies α(vε) = uε, β(uε) = vε. Consequently,

Ṽ Π
l (t, x) ≥ E[g(X

tl,X
t,x,α1,βε

1
tl

,αε
2,β

ε
2

T )|Fi]− Cε

≥ E[g(X
tl,X

t,x,uε
1,vε1

tl
,uε

2,v
ε
2

T )|Fi]− Cε

= E[g(Xt,x,uε,vε

T )|Fi]− Cε

= E[g(Xt,x,α,βε

T )|Fi]− Cε

≥ essinfβ∈BΠ
t,T

E[g(Xt,x,α,β
T )|Fi]− Cε, P -a.s.

(3.18)

Taking into account the arbitrariness of α ∈ AΠ
t,T and of ε > 0, we conclude

Ṽ Π
l (t, x) ≥ V Π(t, x), P -a.s., (3.19)

and the proof is complete.

Obviously, the proof of the DPP for V Π is an immediate consequence of the both preceding lemmas,

and the proof for UΠ is analogous.

After having established the DPP for the lower and the upper value functions along a partition V Π

and UΠ, we can now show that these a priori random fields are deterministic. More precisely, we have the

following
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Theorem 3.2. For all partition Π of the interval [0, T ], the lower value function along a partition V Π as

well as the upper one UΠ is deterministic, i.e., for all (t, x) ∈ [0, T ]×Rd,

V Π(t, x) = E
[
V Π(t, x)

]
and UΠ(t, x) = E

[
UΠ(t, x)

]
, P -a.s.

Remark 3.1. The above theorem allows to identify the lower and the upper value functions along a partition

with their deterministic versions: V Π(t, x) := E
[
V Π(t, x)

]
and UΠ(t, x) := E

[
UΠ(t, x)

]
, (t, x) ∈ [0, T ]×Rd.

In view of the symmetry of the arguments we will restrict the proof to the case of the lower value

function along a partition V Π. We consider a partition of the interval [0, T ] of the form Π = {0 = t0 <

· · · < tn−1 < tn = T } and prove by backward iteration that the lower value function along a partition V Π is

deterministic. For this we note that, for the first step of the backward iteration, we have the following

Lemma 3.3. For the above introduced partition Π and with the above notations we have that

V Π(tn−1, x) = esssupαǫAΠ
tn−1,tn

essinfβǫBΠ
tn−1,tn

E[g(X
tn−1,x,α,β
tn

)|Fn−1]

is deterministic, i.e., V Π(tn−1, x) = E
[
V Π(tn−1, x)

]
, P -a.s., for all x ∈ Rd.

Proof. A crucial role will be played by the following auxiliary statement:

Let τ : Ω → Ω, ω → τ(ω) = (τ(ω)k)k≥1, be an arbitrary measurable bijection which law P ◦ [τ ]−1 is

equivalent to the underlying probability measure P , such that τ ′(ω) := (τ(ω)1, . . . , τ(ω)n−1), ω ∈ Ω, is

Fn−1 − B(([0, 1]2)n−1)-measurable, and τ(ω)k = ωk, k ≥ n, ω ∈ Ω. Then

V Π(tn−1, x) ◦ τ = V Π(tn−1, x), P -a.s.

Let us prove this assertion. For this we notice first that, using the equivalence between P ◦ [τ ]−1 and P

as well as the bijectivity of τ , we can change the order between esssupα∈AΠ
tn−1,tn

essinfβ∈BΠ
tn−1,tn

and the

transformation τ (The reader interested in details is referred to the corresponding proof in [6].), i.e., we have

V Π(tn−1, x) ◦ τ = esssupα∈AΠ
tn−1,tn

essinfβ∈BΠ
tn−1,tn

(
E[g(X

tn−1,x,α,β
tn

)|Fn−1] ◦ τ
)
, P -a.s.

Let us study now the expression E[g(X
tn−1,x,α,β
tn

)|Fn−1](τ), occurring in the above formula. For this we recall

first that, due to the definition, for any couple of admissible control processes (u, v) ∈ UΠ
tn−1,tn

×VΠ
tn−1,tn

, there

exists an (Ω,Fn−1)-partition (Γj)j≥1 and an associated sequence of couples of control processes (uj, vj) ∈

L0
Gn

(tn−1, tn;U) × L0
Hn

(tn−1, tn;V ), j ≥ 1, such that (u, v) =
∑

j≥1 IΓj
(uj, vj). Since Γj ∈ Fn−1, we can

find a Borel function fj with fj(ζ1, . . . , ζn−1) = IΓj
, j ≥ 1. Then the relation

Iτ−1(Γj)(ω) = fj(τ
′(ω)), ω ∈ Ω,

proves that τ−1(Γj) ∈ Fn−1, j ≥ 1. Hence, taking into account that the mapping τ : Ω → Ω is bijective and

τ(ω)n = ωn, ω ∈ Ω, we see that also (τ−1(Γj))j≥1 forms an (Ω,Fn−1)-partition, and

(u(τ), v(τ)) =
∑

j≥1

IΓj
(τ) · (uj , vj) =

∑

j≥1

Iτ−1(Γj) · (u
j , vj) ∈ UΠ

tn−1,tn
× VΠ

tn−1,tn
. (3.20)

(Recall that uj is Gn-measurable and, hence, a measurable function of ζn,1, while vj is is Hn-measurable

and, thus, a measurable function of ζn,2.)

On the other hand, a straight-forward application of the transformation τ : Ω → Ω to equation (2.1) yields

X
t1,x,u,v
t2

(τ) = X
t1,x,u(τ),v(τ)
t2

.

Indeed, the only random processes in the equation (2.1) of the dynamics are the control processes u and v.
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Let us now consider an arbitrary couple of nonanticipative strategies (α, β) ∈ AΠ
tn−1,tn

×BΠ
tn−1,tn

with

which we associate the mappings ατ : VΠ
tn−1,tn

→ UΠ
tn−1,tn

and βτ : UΠ
tn−1,tn

→ VΠ
tn−1,tn

defined as follows:

ατ (v) = α(v(τ−1))(τ), βτ (u) = β(u(τ−1))(τ),

for u ∈ UΠ
tn−1,tn

, v ∈ VΠ
tn−1,tn

. It can be easily checked that such defined mappings are themselves again

nonanticipative strategies: ατ ∈ AΠ
tn−1,tn

, β ∈ BΠ
tn−1,tn

. Moreover, from the bijectivity of τ it can be easily

deduced that

{ατ |α ∈ AΠ
tn−1,tn

} = AΠ
tn−1,tn

, {βτ |β ∈ BΠ
tn−1,tn

} = BΠ
tn−1,tn

.

Given an arbitrary couple of nonanticipative strategies (α, β) ∈ AΠ
tn−1,tn

× BΠ
tn−1,tn

we consider the

couple of admissible controls (u, v) ∈ UΠ
tn−1,tn

×VΠ
tn−1,tn

, associated with by the relations α(v) = u, β(u) = v.

Since τ ′ is Fn−1-measurable and τ(ω)n = ωn, ω ∈ Ω, we obtain

E[g(X
tn−1,x,α,β
tn

)|Fn−1] ◦ τ = E[g(X
tn−1,x,u,v
tn

)|Fn−1] ◦ τ = E[g(X
tn−1,x,u,v
tn

◦ τ)|Fn−1]

= E[g(X
tn−1,x,u(τ),v(τ)
tn

)|Fn−1].

On the other hand, we observe that, due to the definition of the strategies ατ and βτ we have

u = α(v) = α(v(τ) ◦ τ−1), i.e., u(τ) = α(v(τ) ◦ τ−1)(τ) = ατ (v(τ)),

and the symmetric argument yields v(τ) = βτ (u(τ)). Consequently, the unique couple of admissible controls

associated with (ατ , βτ ) is (u(τ), v(τ)), and we can conclude that

E[g(X
tn−1,x,α,β
tn

)|Fn−1](τ) = E[g(X
tn−1,x,ατ ,βτ

tn
)|Fn−1].

Using this together with the fact that

{ατ |α ∈ AΠ
tn−1,tn

} = AΠ
tn−1,tn

, {βτ |β ∈ BΠ
tn−1,tn

} = BΠ
tn−1,tn

,

we obtain

V Π(tn−1, x) ◦ τ = esssupα∈AΠ
tn−1,tn

essinfβ∈BΠ
tn−1,tn

(
E[g(X

tn−1,x,α,β
tn

)|Fn−1] ◦ τ
)

= esssupα∈AΠ
tn−1,tn

essinfβ∈BΠ
tn−1,tn

E[g(X
tn−1,x,ατ ,βτ

tn
)|Fn−1]

= esssupα∈AΠ
tn−1,tn

essinfβ∈BΠ
tn−1,tn

E[g(X
tn−1,x,α,β
tn

)|Fn−1]

= V Π(tn−1, x).

Hence, V π(t1, x) ◦ τ = V π(t1, x), P-a.s., and the proof of Lemma 3.3 will be completed by the following

result.

Lemma 3.4. Let ξ ∈ L1(Ω,Fn−1, P ) be a random variable which is invariant with respect to all measurable

bijection τ : Ω → Ω which law P ◦ [τ ]−1 is equivalent to the underlying probability measure P , such that

τ ′(ω) := (τ(ω)1, . . . , τ(ω)n−1), ω ∈ Ω, is Fn−1 − B(([0, 1]2)n−1)-measurable, and τ(ω)k = ωk, k ≥ n, ω ∈ Ω.

Then ξ is almost surely constant, i.e., ξ = E[ξ].

Proof. We begin with noting that it suffices to prove this lemma under the additional assumption that ξ

is nonnegative. Otherwise, we can always decompose ξ as a difference of its positive and its negative part,

and observing that both parts are invariant with respect to τ on their turn we can make the proof for them

separately.

Given 1 ≤ i ≤ n−1, j = 1, 2, let us denote by θi,j the vector of all coordinate mappings (ζ1,1, ζ1,2, ζ2,1,

ζ2,2, . . . ) but without the component ζi,j . Then, putting ζ(ω) := ω, ω ∈ Ω, we can identify ζ ≡ (θi,j , ζi,j),

and with this identification we can write ξ(ω) = ξ(θi,j(ω), ζi,j(ω)), ω ∈ Ω.

11



Recalling that ξ ≥ 0, let us now introduce the following Fn−1-measurable mapping ϕ : Ω → [0, 1] :

ϕ(ω) = ϕ(θi,j(ω), ζi,j(ω)) =

∫ ζi,j(ω)

0 (ξ(θi,j(ω), s) + 1)ds
∫ 1

0
ξ(θi,j(ω), s)ds+ 1

, ω ∈ Ω.

Obviously, ϕ(θi,j(ω), .) : [0, 1] → [0, 1] is a continuous, strictly increasing bijection which derivative is

∂

∂s
ϕ(θi,j(ω), s) =

ξ(θi,j(ω), s) + 1
∫ 1

0 ξ(θi,j(ω), r)dr + 1
, s ∈ [0, 1], ω ∈ Ω.

We now put

τ(ω) := (θi,j(ω), ϕ(θi,j(ω), ζi,j(ω))), ω ∈ Ω.

Such defined mapping τ : Ω → Ω satisfies the assumptions of the lemma. Indeed, due to the definition τ is a

bijection, τ(ω)k = ωk, k ≥ n, ω ∈ Ω, and τ ′ is Fn−1-measurable. Moreover, the law P ◦ [τ ]−1 is equivalent

to the underlying probability measure P . Indeed, for any nonnegative random variable η over (Ω,F , P ) we

have

E

[
η(τ)

∂

∂s
ϕ(θi,j , ζi,j)

]
= E

[∫ 1

0

η(θi,j , ϕ(θi,j , s))
∂

∂s
ϕ(θi,j , s)ds

]

= E

[∫ 1

0

η(θi,j , s)ds

]
= E[η],

where
∂

∂s
ϕ(θi,j , s) > 0, for all s ∈ [0, 1]. Consequently, we know from our assumption that the random

variable ξ is invariant under the transformation τ , and, thus, observing that

∫ 1

0

ξ(θi,j(ω), s)ds does not

depend on ζi,j(ω), we have

E[ξ2] + E[ξ] = E[ξ(ξ + 1)]

= E[ξ(τ)(ξ + 1)] = E

[
ξ(τ)

∂

∂s
ϕ(θi,j , ζi,j)

(∫ 1

0

ξ(θi,j , s)ds+ 1

)]

= E

[
ξ

(∫ 1

0

ξ(θi,j , s)ds+ 1

)]
= E

[
ξ

∫ 1

0

ξ(θi,j , s)ds

]
+ E[ξ]

= E

[(∫ 1

0

ξ(θi,j , s)ds

)2
]
+ E[ξ].

Consequently,

E

[∫ 1

0

ξ(θi,j , s)
2ds

]
= E[ξ2] = E

[(∫ 1

0

ξ(θi,j , s)ds

)2
]
,

from where we see that

E

[∫ 1

0

(
ξ(θi,j , s)−

∫ 1

0

ξ(θi,j , s)ds

)2

ds

]
= 0.

It follows that

ξ =

∫ 1

0

ξ(θi,j , s)ds, P-a.s., 1 ≤ i ≤ n− 1, j = 1, 2.

Therefore, taking into account that ξ is Fn−1-measurable and iterating the above result, we get

ξ =

∫ 1

0

ξ(θ1,1, s1,1)ds1,1 =

∫ 1

0

(∫ 1

0

ξ(θ1,2, s1,2)ds1,2

)
(θ1,1, s1,1)ds1,1

=

∫

[0,1]2
ξ(s1, (ζ2,1, ζ2,2, . . . , ζn−1,1, ζn−1,2)ds1 = · · · =

∫

[0,1]2(n−1)

ξ(s)ds, P-a.s.

The proof of the lemma is complete now.
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By iterating the argument developed in the both preceding lemmas, we can prove now Theorem 3.2.

Proof. From the both preceding lemmas we see that together with V Π(tn, .) := g(.) also the function

V Π(tn−1, .) is deterministic. On the other hand, from the DPP satisfied by V Π we obtain

V Π(tn−2, x) = esssupαǫAΠ
tn−2,tn−1

essinfβǫBΠ
tn−2,tn−1

E[V Π(tn−1, X
tn−2,x,α,β
tn−1

)|Fn−2], P-a.s.,

for all x ∈ Rd. Hence, applying the argument of the both preceding lemmas again, but now for the determin-

istic function V Π(tn−1, .) instead of g (recall that due to Lemma 2.1 also the function V Π(tn−1, .) is bounded

and Lipschitz), we conclude that also the function V Π(tn−2, .) is deterministic. Iterating this argument, we

see that all V Π(tl, .) (0 ≤ l ≤ n) are deterministic. This implies that V Π is a deterministic function. Indeed,

let ti ≤ t < ti+1. For the conclusion that the non-randomness of V Π(ti+1, .) involves that of V Π(t, .), it

suffices to replace the driving coefficient f(s, x, u, v) of the controlled dynamics by f(s, x, u, v)I[t,T ](s). This

substitution doesn’t change the values of V Π(tl, x), (i+ 1 ≤ l ≤ n) and V Π(t, x), x ∈ Rd, but now V Π(t, x)

coincides with the deterministic function V Π(ti, .) associated with the driver f(s, x, u, v)I[t,T ](s). The proof

of Theorem 3.2 is complete.

The both preceding major results, the DPP as well as the statement of non-randomness yield the

following important characterization of the lower and the upper value functions along a partiton.

Theorem 3.3. For all partition Π of the time interval [0, T ], and all (t, x) ∈ [0, T ]×Rd, we have

V Π(t, x) = supα∈AΠ
t,T

infβ∈BΠ
t,T

E[g(Xt,x,α,β
T )],

UΠ(t, x) = infβ∈BΠ
t,T

supα∈AΠ
t,T

E[g(Xt,x,α,β
T )].

(3.21)

Proof. Let Π = {0 = t0 < · · · < tn = T }, ti ≤ t < ti+1 (0 ≤ i ≤ n − 1) and x ∈ Rd. Moreover, fix an

arbitrary ε > 0. Then, due to (3.11) from the the proof of the DPP we know that there exists αε ∈ AΠ
t,T

such that, for all β ∈ BΠ
t,T ,

V Π(t, x)(= Ṽ Π
l (t, x)) ≤ E[g(Xt,x,αε,β

T ) | Fi] + ε, P -a.s., (3.22)

and from (3.18) we get for all α ∈ AΠ
t,T the existence of βα,ε ∈ BΠ

t,T such that

V Π(t, x)(= Ṽ Π
l (t, x)) ≥ E[g(Xt,x,α,βα,ε

T )|Fi]− ε, P -a.s. (3.23)

Consequently, considering that the function V Π is deterministic and taking the expectation on both sides of

(3.22) and (3.23), we get

E[g(Xt,x,α,βα,ε

T )]− ε ≤ V Π(t, x) ≤ E[g(Xt,x,αε,β
T ) | Fi] + ε,

for all (α, β) ∈ AΠ
t,T × BΠ

t,T . Thus, taking into account the arbitrariness of ε > 0, the statement for V Π

follows directly, and that for UΠ can be verified analogously. The proof is complete.

We observe that the latter Theorem3.3 combined with (2.2) provides directly the following statement:

Lemma 3.5. There is some real constant L, only depending on the bound of f and the Lipschitz constants

of f(s, ., u, v) and of g, such that, for all partition Π of the interval [0, T ] and (t, x), (t′, x′) ∈ [0, T ]×Rd,

|V Π(t, x)− V Π(t′, x′)|+ |UΠ(t, x) − UΠ(t′, x′)| ≤ L(|t− t′|+ |x− x′|). (3.24)
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4 Value in mixed strategies and associated Hamilton-Jacobi-Isaacs

equation

The objective of this section is to show that the lower and the upper value functions along a partition V Π,

UΠ converge, as the maximal distance |Πn| between two neighbouring points of Πn tends to zero as n → +∞,

and that their common limit function V is the viscosity solution of the Hamilton-Jacobi-Isaacs equation





∂

∂t
W (t, x) + supµ∈∆U infν∈∆V

(
f̃(t, x, µ, ν)∇W (t, x)

)
= 0;

W (T, x) = g(x),
(4.1)

where

f̃(x, µ, ν) :=

∫

U

∫

V

f(x, u, v)µ(du)ν(dv), µ ∈ ∆U, ν ∈ ∆V.

More precisely, our main result of this section is the following

Theorem 4.1. Under our standard assumptions on the coefficients f and g, the above Hamilton-Jacobi-

Isaacs equation (4.1) possesses in the class of bounded continuous functions a unique viscosity solution V .

Moreover, for any sequence of partitions Πn, n ≥ 1, of the interval [0, T ] with |Πn| → 0 as n → +∞, both

the sequence of the lower value functions along a partition V Πn as well as that of the upper value functions

along a partition UΠn , n ≥ 1, converge uniformly on compacts to the function V .

The definition of a continuous viscosity solution is by now standard, and the reader interested can

find many literatures, e.g., refer to [9].

Definition 4.1. A real-valued continuous function W ∈ C([0, T ]× R
d) is called

(i) a viscosity subsolution of equation (4.1) if W (T, x) ≤ Φ(x), for all x ∈ R
d, and if for all functions

ϕ ∈ C1([0, T ]× R
d) and (t, x) ∈ [0, T )× R

d such that W − ϕ attains its local maximum at (t, x),

∂ϕ

∂t
(t, x) + supµ∈∆U infν∈∆V

(
f̃(t, x, µ, ν)∇ϕ(t, x)

)
≥ 0;

(ii) a viscosity supersolution of equation (4.1) if W (T, x) ≥ Φ(x), for all x ∈ R
d, and if for all functions

ϕ ∈ C1([0, T ]× R
d) and (t, x) ∈ [0, T )× R

d such that W − ϕ attains its local minimum at (t, x),

∂ϕ

∂t
(t, x) + supµ∈∆U infν∈∆V

(
f̃(t, x, µ, ν)∇ϕ(t, x)

)
≤ 0;

(iii) a viscosity solution of equation (4.1) if it is both a viscosity sub- and a supersolution of equation (4.1).

The whole section is devoted to the proof of the above theorem. The proof will be split in a sequel of

auxiliary statements. Let us begin with observing that the equi-Lipschitz continuity of the families of lower

and upper value functions along a partition, indexed with the help of the partitions Π of the interval [0, T ],

stated in Lemma 3.5, is crucial for the application of the Arzelà-Ascoli Theorem. Let us arbitrarily fix a

sequence of partitions (Πn)n≥1 of the interval [0, T ], such that for the mesh of the partition Πn it holds:

|Πn| → 0 as n → +∞. Then we have

Lemma 4.1. There exists a subsequence of partitions, again denoted by (Πn)n≥1, and there are bounded

Lipschitz functions V, U : [0, T ] × Rd → R such that (V Πn , UΠn) → (V, U), uniformly on compacts in

[0, T ]×Rd.

Later we will see that the function (V, U) defined by this Lemma 4.1 coincide and are independent of

the choice of the sequence of partitions.
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Proof. Indeed, from the Arzelà-Ascoli Theorem we know that, for any compact subset K of [0, T ]×Rd and

for any subsequence of partitions of [0, T ], there exist a subsequence (Π′
n) and functions U ′, V ′ : K → R

such that (V Π′

n , UΠ′

n) → (V ′, U ′) uniformly on K, as n → +∞. By combining this result with a standard

diagonalisation argument we can easily prove the stated assertion.

Let us fix the subsequence (Πn)n≥1 related with U, V by Lemma 4.1. From Lemma 3.5 we have

Corollary 4.1. For the real constant L introduced in Lemma 3.5 we have, for all (t, x), (t′, x′) ∈ [0, T ]×Rd,

|V (t, x)− V (t′, x′)|+ |U(t, x) − U(t′, x′)| ≤ L(|t− t′|+ |x− x′|). (4.2)

By taking into account the uniform boundedness of the functions V Π, UΠ, parameterized by Π-

partition of the interval [0, T ] (Indeed, they are bounded by the bound of g.), this shows, in particular, that

V, U ∈ Cb([0, T ]×Rd) are bounded continuous functions. We are able to prove that V and U are viscosity

solutions of equation (4.1). For this let us begin with

Proposition 4.1. The function V is a viscosity solution of the Hamilton-Jacobi-Isaacs equation (4.1).

In order to prove this statement, we show in a first step that

Lemma 4.2. The function V is a viscosity subsolution of the Hamilton-Jacobi-Isaacs equation (4.1).

Proof. Since we know that, by definition (2.3) of V Π, V Π(T, x) = g(x), x ∈ Rd, for all partition Π, we also

have V (T, x) = g(x), x ∈ Rd. Let (t, x) ∈ [0, T )× Rd and ϕ ∈ C1([0, T ]× R
d) be an arbitrary test function

such that ϕ(t, x) − V (t, x) = 0 ≤ ϕ(s, y) − V (s, y), (s, y) ∈ [0, T ]×Rd. Since V ∈ Cb([0, T ];R
d) is bounded,

we can assume without loss of generality that ϕ ∈ C1
b ([0, T ]×R

d), i.e., that ϕ itself as well as its first order

derivatives are bounded. Recall that verifying that V is a viscosity subsolution is equivalent with showing

that
∂

∂t
ϕ(t, x) + supµ∈∆U infν∈∆V f̃(t, x, µ, ν)∇ϕ(t, x) ≥ 0. (4.3)

For proving the above relation we note that for any ρ > 0 and M > 0 we can find a positive integer

nρ,M such that, for all n ≥ nρ,M ,

|ϕ(t, x) − V Πn(t, x)| ≤ ρ, and V Πn(s, y) ≤ ϕ(s, y) + ρ, for all s ∈ [0, T ], |y| ≤ M.

Indeed, recall that V Πn → V converges uniformly on compacts, V (t, x) = ϕ(t, x) and V ≤ ϕ on [0, T ]×Rd.

Let n ≥ nρ,M , Πn = {0 = tn0 < · · · < tnN = T }, and let i = in be such that tni ≤ t < tni+1 ≤ tnl . Then,

from the DPP (Theorem 3.1) with respect to the partition Πn and since V Πn is bounded by some constant

C, uniformly with respect to n ≥ 1, we have

ϕ(t, x) − ρ ≤ V Πn(t, x)

= esssup
α∈AΠn

t,tn
l

essinf
β∈BΠn

t,tn
l

E[V Πn(tnl , X
t,x,α,β
tn
l

)|Fi]

≤ esssup
α∈AΠn

t,tn
l

essinf
β∈BΠn

t,tn
l

E[ϕ(tnl , X
t,x,α,β
tn
l

)|Fi]

+CP{ |Xt,x,α,β
tn
l

| > M |Fi}+ ρ, P -a.s.

(4.4)

However,

P{ |Xt,x,α,β
tn
l

| > M |Fi} ≤
1

M
E[|Xt,x,α,β

tn
l

| |Fi] ≤
1

M
(|x| + TCf),

where we have used that |Xt,x,α,β
tn
l

| ≤ |x| + TCf , with Cf denoting the bound of f . Thus, by choosing

M = Mρ large enough, such that C
M
(|x|+TCf ) ≤ ρ, and recalling the equation for the dynamics of Xt,x,α,β

. ,

we have for n ≥ nρ (:= nρ,Mρ
)

−3ρ ≤ esssup
α∈AΠn

t,tn
l

essinf
β∈BΠn

t,tn
l

E
[
ϕ(tnl , X

t,x,α,β
tn
l

)− ϕ(t, x)|Fi

]

= esssup
α∈AΠn

t,tn
l

essinf
β∈BΠn

t,tn
l

E

[∫ tnl

t

(
∂

∂r
ϕ(r,Xt,x,α,β

r )+f(r,Xt,x,α,β
r , (α, β)r)∇ϕ(r,Xt,x,α,β

r )

)
dr|Fi

]
.

(4.5)
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Here we have denoted by (α, β)r the unique couple of control processes (u, v) ∈ UΠn

t,tn
l
× VΠn

t,tn
l
at time r,

associated with (α, β) ∈ AΠn

t,tn
l
× BΠn

t,tn
l
by Lemma 2.2. Let us introduce the continuity modulus

m(δ) := sup|r−t|+|y−x|≤δ,u∈U,v∈V

∣∣∣∣
(
(
∂

∂r
ϕ)(r, y) + f(r, y, u, v)∇ϕ(r, y)

)
−

(
(
∂

∂r
ϕ(t, x) + f(t, x, u, v)∇ϕ(t, x)

)∣∣∣∣ ,

δ > 0. Recalling that the function f(., ., u, v) is bounded and uniformly continuous, uniformly with respect

to (u, v) ∈ U × V , and that the first order derivatives of ϕ are bounded continuous functions, we see

that m : R+ → R+ is an increasing function with m(δ) → 0, as δ ↓ 0. Thus, taking into account that

|Xt,x,α,β
r − x| ≤ Cf |r − t| ≤ Cf |t

n
l − t|, r ∈ [t, tnl ], we obtain

∣∣∣∣(
∂

∂r
ϕ)(r,Xt,x,u,v

r ) + f(r,Xt,x,u,v
r , ur, vr)∇ϕ(r,Xt,x,u,v

r ))− (
∂

∂t
ϕ(t, x) + f(t, x, ur, vr)∇ϕ(t, x))

∣∣∣∣
≤ m(C|tnl − t|), r ∈ [t, tnl ].

(4.6)

(The constant C depends on x, fixed in this proof.) Consequently, thanks to (4.5),

−3ρ− (tnl − t)

(
∂

∂t
ϕ(t, x) +m(C|tnl − t|)

)

≤ esssup
α∈AΠn

t,tn
l

essinf
β∈BΠn

t,tn
l

E

[∫ tnl

t

f(t, x, (α, β)r)∇ϕ(t, x)dr|Fi

]
, P -a.s.

(4.7)

Similarly to the argument of (3.3) in Step 1 of the proof of Lemma 3.1 we can show there is an NAD strategy

αρ ∈ AΠn

t,tn
l
such that

−4ρ− (tnl − t)

(
∂

∂t
ϕ(t, x) +m(C|tnl − t|)

)

≤ essinf
β∈BΠn

t,tn
l

E

[∫ tnl

t

f(t, x, (αρ, β)r)∇ϕ(t, x)dr|Fi

]
.

(4.8)

Thus, since VΠn

t,tn
l
⊂ BΠn

t,tn
l
(Indeed, the controls v ∈ VΠn

t,tn
l
are identified with βv ∈ BΠn

t,tn
l
, where βv(u) := v, u ∈

UΠn

t,tn
l
.), we obtain from (4.8) that, for all v ∈ VΠn

t,tn
l
,

− 4ρ− (tnl − t)

(
∂

∂t
ϕ(t, x) +m(C|tnl − t|)

)
≤ E

[∫ tnl

t

f(t, x, (αρ, v)r)∇ϕ(t, x)dr|Fi

]
. (4.9)

Let v ∈ VΠn

t,tn
l
be now of the special form v :=

∑l
j=i+1 ξjI[t∨tnj−1,t∨tnj )

, ξj ∈ L0(Ω,Hj , P ;V ). Then,

E

[∫ tnl

t

f(t, x, (αρ, v)r)∇ϕ(t, x)dr|Fi

]
=

l∑

j=i+1

E

[∫ t∨tnj

t∨tnj−1

f(t, x, αρ(v)r , ξj)∇ϕ(t, x)dr|Fi

]
. (4.10)

Let us put uρ := αρ(v) ∈ UΠn

t,tn
l
, and let i+ 1 ≤ j ≤ l. Then, due to the definition of the controls from UΠn

t,tn
l
,

there exist an partition (Γk)k≥1 ⊂ Fj−1 of Ω and a sequence (uk)k≥1 ⊂ L0
Gj
(t∨ tnj−1, t∨ tnj ;U) such that, for

the restriction of uρ to [t ∨ tnj−1, t ∨ tnj ),

u
ρ

|[t∨tnj−1,t∨tnj )
=

∑

k≥1

IΓk
uk.

Consequently, recalling that ξj ∈ L0(Ω,Hj , P ;V ) and that the three σ-fields Gj ,Hj and Fj−1 are mutually

independent, we have
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E

[∫ t∨tnj

t∨tnj−1

f(t, x, αρ(v)r , ξj)∇ϕ(t, x)dr|Fi

]

= E



∑

k≥1

IΓk

∫ t∨tnj

t∨tnj−1

E
[
f(t, x, uk

r , ξj)∇ϕ(t, x)|Fj−1

]
dr|Fi




= E



∑

k≥1

IΓk

∫ t∨tnj

t∨tnj−1

(∫

U×V

f(t, x, u, v)∇ϕ(t, x)Puk
r
(du)⊗ Pξj (dv)

)
dr|Fi




≤ (t ∨ tnj − t ∨ tnj−1) · supµ∈△U

(∫

U×V

f(t, x, u, v)∇ϕ(t, x)µ(du) ⊗ Pξj (dv)

)
.

(4.11)

Recall that f̃(t, x, µ, ν) :=

∫

U×V

f(t, x, u, v)µ(du)ν(dv). Hence, from (4.9), (4.10) and (4.11),

−4ρ− (tnl − t)

(
∂

∂t
ϕ(t, x) +m(C|tnl − t|)

)

≤ E

[∫ tnl

t

f(t, x, (αρ, v)r)∇ϕ(t, x)dr|Fi

]

≤

l∑

j=i+1

(t ∨ tnj − t ∨ tnj−1) · supµ∈∆U f̃(t, x, µ, Pξj )∇ϕ(t, x),

(4.12)

and from the arbitrariness of the random variables ξj ∈ L0(Ω,Hj , P ;V ), i + 1 ≤ j ≤ l and the fact that

∆V = {Pξ | ξ ∈ L0(Ω,Hj , P ;V ), we conclude

−4ρ− (tnl − t)

(
∂

∂t
ϕ(t, x) +m(C|tnl − t|)

)

≤

l∑

j=i+1

(t ∨ tnj − t ∨ tnj−1) · infν∈∆V supµ∈∆U f̃(t, x, µ, ν)∇ϕ(t, x)

= (tnl − t) · infν∈∆V supµ∈∆U f̃(t, x, µ, ν)∇ϕ(t, x).

(4.13)

We choose now ε > 0 arbitrarily small and we put ρ = ε2. For n ≥ nρ large enough we can find some

l (i + 1 ≤ l ≤ n), such that ε ≤ t
(n)
l − t ≤ 2ε. Indeed, recall that the mesh of Πn converges to zero, as

n → +∞. Then it follows from (4.13) that

−4(tnl − t)2 − (tnl − t)

(
∂

∂t
ϕ(t, x) +m(C|tnl − t|)

)

≤ (tnl − t) · infν∈∆V supµ∈∆U f̃(t, x, µ, ν)∇ϕ(t, x).
(4.14)

Consequently, dividing both sides of this latter relation by tnl − t and taking the limit as ε → 0, we obtain

∂

∂t
ϕ(t, x) + infν∈∆V supµ∈∆U f̃(t, x, µ, ν)∇ϕ(t, x) ≥ 0. (4.15)

In order to conclude, we remark that, for all (t, x, p) ∈ [0, T ] × Rd × Rd, the function H(t, x, µ, ν, p) :=

f̃(t, x, µ, ν)p is bilinear in (µ, ν) ∈ ∆U×∆V . The spaces ∆U and ∆V are compact and convex. Consequently,

infν∈∆V supµ∈∆U f̃(t, x, µ, ν)p = supµ∈∆U infν∈∆V f̃(t, x, µ, ν)p, (t, x, p) ∈ [0, T ]×Rd ×Rd, (4.16)

and relation (4.3) follows from (4.15). The proof is complete.

In order to complete the proof of Proposition 4.1 we also have to prove the following

Lemma 4.3. The function V is the viscosity supersolution of the Hamilton-Jacobi-Isaacs equation (4.1).
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Proof. In the proof of Lemma 4.2 we have already noticed that V (T, x) = g(x), x ∈ Rd. Let us fix again

(t, x) ∈ [0, T )×Rd and consider a test function ϕ ∈ C1
b ([0, T ]×R

d) which is bounded together with its first

order derivatives, such that V (t, x)−ϕ(t, x) = 0 ≤ V −ϕ on [0, T ]×Rd. In order to prove the statement we

have to show that
∂

∂t
ϕ(t, x) + supµ∈∆U infν∈∆V f̃(t, x, µ, ν)∇ϕ(t, x) ≤ 0. (4.17)

Let us suppose that this latter relation doesn’t hold true. Then, there exist δ > 0, and µ∗ ∈ ∆U such that

0 < δ <
∂

∂t
ϕ(t, x) + supµ∈∆U infν∈∆V f̃(t, x, µ, ν)∇ϕ(t, x)

=
∂

∂t
ϕ(t, x) + infν∈∆V f̃(t, x, µ

∗, ν)∇ϕ(t, x)

≤
∂

∂t
ϕ(t, x) + f̃(t, x, µ∗, ν)∇ϕ(t, x),

(4.18)

for all ν ∈ ∆V. On the other hand, given an arbitrarily small ρ > 0 and M ≥ Cρ−1(|x|+CfT ), there exists

nρ ≥ 1, such that for all n ≥ nρ,

|ϕ(t, x) − V Πn(t, x)| ≤ ρ, V Πn(s, y) ≥ ϕ(s, y)− ρ, s ∈ [0, T ], |y| ≤ M.

Let n ≥ nρ. Adapting the argument of the proof of the preceding Lemma 4.2 and using the notations

introduced there, we first deduce from the DPP (Theorem 3.1) with respect to the partition Πn that

ϕ(t, x) + ρ ≥ V Πn(t, x)

= esssup
α∈AΠn

t,tn
l

essinf
β∈BΠn

t,tn
l

E[V Πn(tnl , X
t,x,α,β
tn
l

)|Fi]

≥ esssup
α∈AΠn

t,tn
l

essinf
β∈BΠn

t,tn
l

E[ϕ(tnl , X
t,x,α,β
tn
l

)|Fi]

−CP{ |Xt,x,α,β
tn
l

| > M |Fi} − ρ

≥ esssup
α∈AΠn

t,tn
l

essinf
β∈BΠn

t,tn
l

E[ϕ(tnl , X
t,x,α,β
tn
l

)|Fi]− 2ρ, P -a.s.

(4.19)

Consequently,

3ρ ≥ esssup
α∈AΠn

t,tn
l

essinf
β∈BΠn

t,tn
l

E

[∫ tnl

t

(
∂

∂r
ϕ(r,Xt,x,α,β

r )+f(r,Xt,x,α,β
r , (α, β)r)∇ϕ(r,Xt,x,α,β

r )

)
dr|Fi

]
,

(4.20)

and using the continuity modulus m(.) introduced in the proof of Lemma 4.2 we obtain

3ρ− (tnl − t)

(
∂

∂t
ϕ(t, x) −m(C|tnl − t|)

)

≥ esssup
α∈AΠn

t,tn
l

essinf
β∈BΠn

t,tn
l

E

[∫ tnl

t

f(t, x, (α, β)r)∇ϕ(t, x)dr|Fi

]
, P -a.s.

(4.21)

In the next step, observing that we can identify UΠn

t,tn
l
as a subset of AΠn

t,tn
l
, and choosing u ∈ UΠn

t,tn
l
of the form

u =
∑l

j=i+1 ξjI[t∨tnj−1,t∨tnj )
, with ξj ∈ L0(Ω,Gj , P ;U) such that Pξj = µ∗ (i+ 1 ≤ j ≤ l), we get

3ρ− (tnl − t)

(
∂

∂t
ϕ(t, x)−m(C|tnl − t|)

)

≥ essinf
β∈BΠn

t,tn
l

E

[∫ tnl

t

f(t, x, (u, β(u)r))∇ϕ(t, x)dr|Fi

]
, P -a.s.

(4.22)

In analogy to the argument of (3.3) in Step 1 of the proof of Lemma 3.1 we now can construct some βρ ∈ BΠ
t,tn

l

(depending on the control process u) such that
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4ρ− (tnl − t)

(
∂

∂t
ϕ(t, x) −m(C|tnl − t|)

)

≥ E

[∫ tnl

t

f(t, x, (u, βρ(u)r))∇ϕ(t, x)dr|Fi

]

≥ E




l∑

j=i+1

∫ t∨tnj

t∨tni−1

f(t, x, (ξj , β
ρ(u)r))∇ϕ(t, x)dr|Fi


 .

(4.23)

We put now v := βρ(u), and we observe that, for any i + 1 ≤ j ≤ n, the restriction of v to the interval

[t ∨ tnj−1, t
n
j ) belongs to VΠn

t∨tnj−1,t
n
j
. Consequently, by definition, v|[t∨tnj−1,t∨tnj )

is of the form v|[t∨tnj−1,t∨tnj )
=

∑

k≥1

IΓk
vk, where (Γk)k≥1 ⊂ Fj−1 is a partition of Ω and vk ∈ L0

Hj
(tnj−1, t

n
j ;V ), k ≥ 1 (For simplicity of

notations we have suppressed in this representation the dependence on j). Thus, the independence of the

three σ-fields Hj , Gj and Fj−1yields

E

[∫ t∨tnj

t∨tnj−1

f(t, x, ξj , β
ρ(u)r)∇ϕ(t, x)dr|Fn

i

]

= E



∑

k≥1

IΓk

∫ t∨tnj

t∨tnj−1

E
[
f(t, x, ξj , v

k
r )∇ϕ(t, x)|Fj−1

]
dr|Fi




= E



∑

k≥1

IΓk

∫ t∨tnj

t∨tnj−1

f̃(t, x, µ∗, Pvk
r
)∇ϕ(t, x)dr|Fi




≥ (t ∨ tnj − t ∨ tnj−1) · E



∑

k≥1

IΓk
infν∈∆V (f̃(t, x, µ

∗, ν)∇ϕ(t, x))|Fi




= (t ∨ tnj − t ∨ tnj−1) · infν∈∆V f̃(x, µ
∗, ν)∇ϕ(t, x)).

(4.24)

Therefore, summing up (4.24) with respect to j and substituting the result in (4.23) we obtain

4ρ+ (tnl − t)m(C|tnl − t|)

≥ (tnl − t) ·

(
∂

∂t
ϕ(t, x) + infν∈∆V f̃(x, µ

∗, ν)∇ϕ(t, x)

)

≥ δ(tnl − t).

(4.25)

Let now ε > 0, ρ = ε2 and |Πn| > 0 be small enough, such that tnl can be chosen such that ε
2 ≤ tnl − t ≤ ε.

Then, from (4.25) we have

4ε2 + εm(Cε) ≥
ε

2
δ. (4.26)

Thus, first dividing this latter relation by ε and after letting ε → 0, we get δ ≤ 0, which contradicts δ > 0

in (4.18). Therefore, our hypothesis is wrong and we have (4.17). The proof is complete.

In analogy to Proposition 4.1 we can prove the following

Proposition 4.2. Also the function U ∈ Cb([0, T ]×Rd) is a viscosity solution of the Hamilton-Jacobi-Isaacs

equation (4.1).

Finally, we are able to prove Theorem 4.1.

Proof. Due to relation (4.16) we know that the bounded continuous functions V and U are viscosity solutions

of the same Hamilton-Jacobi-Isaacs equation. On the other hand, since the Hamiltonian of this equation

H(t, x, p) = infν∈∆V supµ∈∆U (f̃(t, x, µ, ν)p), (t, x, p) ∈ [0, T ]×Rd ×Rd,

is bounded and continuous, Lipschitz in z, uniformly with respect to (t, x) ∈ [0, T ] ∈ Rd, and
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|H(t, x, p)−H(t, x′, p)| ≤ C|p||x − x′|, x, x′ ∈ Rd, (t, p) ∈ [0, T ]×Rd,

it is by now well-known, that the viscosity solution of the Hamilton-Jacobi-Isaacs equation (4.1) is unique

in the class of continuous functions with at most polynomial growth. Consequently, V = U . On the

other hand, recall that we have got V and U as limit over a converging subsequence of the sequence V Πn

and UΠn , respectively, where (Πn)n≥1 is an arbitrarily chosen sequence of partitions of [0, T ] such that

|Πn| → 0 (n → +∞). Therefore, since the limit of the converging subsequence doesn’t depend on the choice

of the sequence, it follows that V Π and UΠ converge along all sequence of partitions Π with |Π| → 0, and

the limit is V = U. The proof of Theorem 4.1 is complete.
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