
HAL Id: hal-00800065
https://hal.science/hal-00800065

Submitted on 13 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parameter estimation for peaky altimetric waveforms
Abderrahim Halimi, Corinne Mailhes, Jean-Yves Tourneret, Pierre Thibault,

François Boy

To cite this version:
Abderrahim Halimi, Corinne Mailhes, Jean-Yves Tourneret, Pierre Thibault, François Boy. Parameter
estimation for peaky altimetric waveforms. IEEE Transactions on Geoscience and Remote Sensing,
2013, vol. 51, pp.1568-1577. �10.1109/TGRS.2012.2205697�. �hal-00800065�

https://hal.science/hal-00800065
https://hal.archives-ouvertes.fr


 
 

 

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ 
Eprints ID : 8501 
 
 

 
To link to this article : DOI:10.1109/TGRS.2012.2205697 

URL : http://dx.doi.org/10.1109/TGRS.2012.2205697 

Open Archive TOULOUSE Archive Ouverte (OATAO) 
OATAO is an open access repository that collects the work of Toulouse researchers and 

makes it freely available over the web where possible. 

 
To cite this version : 
Halimi, Abderrahim and Mailhes, Corinne and Tourneret, Jean-
Yves and Thibault, Pierre and Boy, François Parameter estimation 
for peaky altimetric waveforms. (2013) IEEE Transactions on 
Geoscience and Remote Sensing, vol. 51 (n° 3). pp. 1568-1577. 
ISSN 0196-2892 
 
 
 
 
 
 
 
 
 
 
 Any correspondence concerning this service should be sent to the repository 

administrator: staff-oatao@listes.diff.inp-toulouse.fr 

 



Parameter Estimation for Peaky
Altimetric Waveforms

Abderrahim Halimi, Student Member, IEEE, Corinne Mailhes, Member, IEEE,
Jean-Yves Tourneret, Senior Member, IEEE, Pierre Thibaut, and Francois Boy

Abstract—Much attention has been recently devoted to the
analysis of coastal altimetric waveforms. When approaching the
coast, altimetric waveforms are sometimes corrupted by peaks
caused by high reflective areas inside the illuminated land surfaces
or by the modification of the sea state close to the shoreline.
This paper introduces a new parametric model for these peaky
altimetric waveforms. This model assumes that the received alti-
metric waveform is the sum of a Brown echo and an asymmetric
Gaussian peak. The asymmetric Gaussian peak is parameterized
by a location, an amplitude, a width, and an asymmetry coefficient.
A maximum-likelihood estimator is studied to estimate the Brown
plus peak model parameters. The Cramér–Rao lower bounds
of the model parameters are then derived providing minimum
variances for any unbiased estimator, i.e., a reference in terms of
estimation error. The performance of the proposed model and the
resulting estimation strategy are evaluated via many simulations
conducted on synthetic and real data. Results obtained in this
paper show that the proposed model can be used to retrack
efficiently standard oceanic Brown echoes as well as coastal echoes
corrupted by symmetric or asymmetric Gaussian peaks. Thus, the
Brown with Gaussian peak model is useful for analyzing altimetric
measurements closer to the coast.

Index Terms—Brown model, coastal altimetry, Cramér–Rao
bounds (CRBs), maximum likelihood (ML), peaks.

I. INTRODUCTION

OVER an ocean surface, the altimetric echo has a well-
defined shape, with a steeply rising leading edge followed

by a gradual decline in power over the rest of the waveform
called trailing edge [1], [2]. This well-defined shape is accu-
rately modeled by the Brown model [1], [3], [4]. Many different
algorithms have been proposed in the literature to estimate
the parameters of the Brown model. These algorithms are, for
instance, based on the maximum likelihood (ML) principle
[5], [6], the least squares method [7], [8], or, more recently,
on Bayesian inference [9]. However, the altimetric waveform
can be corrupted by land returns, by rain [10], [11], or by
the summation of backscattered signals coming from separate
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Fig. 1. Examples of real JASON-2 waveforms and their estimations. (a) Real
waveform from Class 7 and its estimates. (b) Real waveform from Class 13 and
its estimates.

reflective ocean surfaces which make these algorithms ineffec-
tive. This inefficiency is illustrated in Fig. 1 which shows two
representative coastal Jason-2 waveforms (black curves) and
their estimates resulting from the ML estimator (MLE) applied
to the Brown model (blue curves). Due to the presence of a
peak at the end of the leading edge [see Fig. 1(a)] or in the
middle of the trailing edge [see Fig. 1(b)], the Brown model is
clearly unable to capture the variations of the altimetric echo.
A great effort is now devoted to process coastal waveforms
in order to move the altimetric measurements closer to the



Fig. 2. Different shapes of altimetric signals resulting from CNES/PISTACH
project.

Fig. 3. Percentages of observed altimetric waveforms in Classes 1, 7, 13, and
others versus distance to the coast.

coast [12], [13]. The analysis of coastal waveforms has been
recently considered intensively in two projects, the PISTACH
[14]1 and the COASTALT [15].2 In the frame of the PISTACH
project aiming at improving coastal altimeter products, wave-
forms are classified according to geometrical shapes shown in
Fig. 2 [16]. The goal of this classification is to isolate echoes
having similar geometrical characteristics in order to estimate
the corresponding altimeter parameters thanks to dedicated so-
called retracking algorithms. As shown in Fig. 2, several signal
classes investigated in the PISTACH project are characterized
by signals corrupted by peaks. These signals are frequently
observed in the coastal areas. More precisely, in open ocean,
about 95% of the waveforms are in good agreement with the
Brown model. However, when approaching the coasts (or over
polar surfaces), this percentage rapidly decreases. As shown in
Fig. 3, roughly 25% to 30% of the waveforms are not Brownian
at a distance of 8 km off the shorelines.

1The PISTACH project has been funded by Centre National d’Etudes Spa-
tiales (CNES).

2The COASTALT project has been funded by the European Space Agency.

This paper introduces a parametric model for peaky altimet-
ric signals (similar to those classified in Classes 7 and 13 of
Fig. 2) referred to as the Brown with asymmetric Gaussian
peak (BAGP) model. The BAGP model is appropriate for
signals defined as the sum of a Brown echo and a Gaussian
peak. The idea of using Gaussian shapes to model peaks in
altimetric waveforms has appeared in [17] and [18]. However,
the model studied in this paper is more general since it allows
peak asymmetry to be considered. Peak asymmetry is clearly
important for signals of Class 7 characterized by an asymmetric
peak located at the end of the leading edge [see Fig. 1(a) for
an example]. An interesting property of the proposed BAGP
model is that it reduces to the classical Brown model when
the amplitude of the peak is zero. Thus, one can expect similar
performance with this model and the classical Brown model for
oceanic waveforms as well as improved signal reconstructions
for waveforms corrupted by peaks. Moreover, it is interesting
to note that the BAGP model can handle symmetric peaks
affecting the altimetric waveform when the asymmetry coef-
ficient is set to zero. Thus, the BAGP model should also be
able to model accurately altimetric waveforms from Class 13
[see Fig. 1(b) for an example]. To summarize, the proposed
BAGP model is appropriate for usual oceanic waveforms as
well as coastal waveforms corrupted by either a symmetric or an
asymmetric peak.

In order to estimate the unknown BAGP model parameters,
we propose to use the ML method that has shown interesting
results for the classical Brown model [5], [6]. Closed-form
expressions of the MLE for the BAGP model parameters are
difficult to obtain. As a consequence, numerical algorithms
are considered for computing this estimator. The first algo-
rithm is based on a Newton–Raphson (NR) strategy, similar
to the one investigated in [5] and [19]. A second algorithm
based on a geometrical technique known as the Nelder–Mead
(NM) method [20] is also studied. The Cramér–Rao bounds
(CRBs) associated with the BAGP model parameters are finally
determined. These bounds are interesting since they provide
the minimum variance of any unbiased estimator. Another
interesting property of these bounds is that the variance of
any MLE can be approximated for large sample size by its
corresponding CRB under weak conditions. These conditions
are, for instance, specified in [21, Chap. 18] (we mainly have
to check that the range of the likelihood does not depend on
the unknown parameters and that the likelihood is a twice
differentiable function of its unknown parameters throughout
its range).

This paper is structured as follows. Section II presents the
BAGP model considered in this study. Relationships between
the BAGP, the Brown model, and the Brown with Gaussian
peak model introduced in [18] are also studied. The likelihood
associated with the BAGP model is derived in Section III.
Section IV introduces the different algorithms used to max-
imize the likelihood of the BAGP model. Section V derives
the CRBs of the BAGP model parameters. Simulation re-
sults obtained with synthetic data are analyzed in Section VI,
whereas an analysis of real Jason-2 waveforms is presented in
Section VII. Conclusions and future works are finally reported
in Section VIII.



II. WAVEFORM MODEL

A simplification of the Brown model assumes that the alti-
metric waveform, associated with oceanic surfaces, is charac-
terized by three parameters, the amplitude Pu, the epoch τ , and
the significant wave height SWH. The resulting mathematical
model for the altimetric signal is

sk=
Pu

2

[
1+erf

(
kTs−τ−ασ2

c√
2σc

)]
e
−α

(
kTs−τ−

ασ2
c

2

)
+Nt (1)
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σ2
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(
SWH
2c

)2

+ σ2
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where sk = s(kTs) is the kth data sample of the re-
ceived altimetric signal, Ts is the sampling period, erf(t) =
(2/

√
π)

∫ t

0 e−z2
dz stands for the Gaussian error function, c

denotes the speed of light, α and σ2
p are two known parameters

(depending on the satellite and on the point target response
of the altimeter), and Nt is the instrument thermal noise. The
additive noise parameter Nt is generally estimated using the
first data samples and subtracted from the observed samples sk,
resulting in Nt = 0 in model (1). The model (1) has received
considerable attention in the literature and has been shown
to be very accurate for oceanic waveforms. However, it is
inappropriate for modeling altimetric waveforms backscattered
from nonoceanic surfaces such as ice and land or from coastal
areas [16]–[18]. Indeed, over such surfaces, altimetric echoes
can show some peaks in their trailing edge due to backscattering
returns from nonwater areas. Therefore, this paper studies a new
model (referred to as BAGP for Brown Asymmetric Gaussian
Peak) defined as the superposition of a Brown echo sk and an
asymmetric Gaussian peak pk such that the observed signal is

s̃k = sk + pk (3)

with

pk=A exp

[
−1

2σ2
(kTs−T )2

]{
1+erf

[
γ
(kTs−T )√

2

]}
(4)

where A, T , σ, and γ are the amplitude, location, width, and
asymmetry coefficient of the peak. It is interesting to note
that the Gaussian peak defined in (4) reduces to a symmetric
Gaussian peak when γ = 0 (thus, the parameter γ will be
referred to as an asymmetry coefficient in this paper). The
resulting model parameterized by A, T , and σ is referred to
as the BGP model (for Brown Gaussian Peak model). Note also
that the BAGP and BGP models reduce to the Brown model
for A = 0. Fig. 4 shows the effect of the asymmetry coefficient
γ on the normalized peak pk defined in (4). A positive value
of γ squeezes the left side of the peak while a negative value
squeezes its right side. Note that, for real JASON-2 waveforms,
the estimated values of γ are mainly positive and located near 0
(see [22] for more details).

The next section introduces an ML estimation method to esti-
mate the unknown parameter vector associated with the BAGP
model defined by (3) and (4). These unknown parameters are
shown in Table I.

Fig. 4. Effect of the asymmetry coefficient on the peak.

TABLE I
DESCRIPTION OF THE MODEL PARAMETERS

III. MAXIMUM LIKELIHOOD ESTIMATOR

Altimeter data are corrupted by multiplicative speckle noise.
In order to reduce the influence of this noise affecting each
individual echo, a sequence of L consecutive echoes are aver-
aged on board the satellite. Assuming pulse-to-pulse statistical
independence (which is a valid assumption for Jason [23]), the
resulting speckle noise sequence is independent and identically
distributed according to a gamma distribution whose shape
and scale parameters equal the number of looks L, i.e., the
number of incoherent summations of consecutive echoes. When
using the BAGP model defined in (3), an observed altimetric
waveform can be expressed as

yk = s̃knk, k = 1, . . . ,K (5)

where K is the number of samples. Using (5) and the proper-
ties of the noise sequence n = (n1, . . . , nK)T , the likelihood
function of the observed samples f(y|θ) can be expressed as
follows:

f(y|θ) =
[

LL

Γ(L)

]K
exp

(
−L

K∑
k=1

yk
s̃k

)(
K∏

k=1

yk

)L−1

×
(

K∏
k=1

s̃k

)−L (
K∏

k=1

IR+(yk)

)
(6)

where y = (y1, . . . , yK)T , θB = (Pu, τ,SWH)T , and θp =
(A, T, σ, γ)T contain the unknown Brown and peak param-

eters, θ = (θT
B,θ

T
p )

T
, and IR+(yk) is the indicator function

(IR+(yk) = 1 if yk ∈ R
+, and IR+(yk) = 0 otherwise). The

MLE of θ (denoted as θ̂MLE) is obtained by maximizing the
likelihood function f(y|θ) with respect to θ or, equivalently,



by minimizing the negative log-likelihood that reduces to the
following cost function

C = L

K∑
k=1

yk
s̃k

+ L
K∑

k=1

ln(s̃k) (7)

after removing unnecessary constants. The MLE of θ cannot
be computed in closed form even in the case of a classical
Brown model where there is no peak in the altimetric signal
model. Consequently, numerical optimization techniques have
to be used to implement the MLE. Two approaches have been
investigated in this paper based on the NR [24] and NM [20]
methods. These methods are presented in the next section.

IV. ESTIMATION ALGORITHMS

A. NR Method

The estimation of the BAGP parameters can be achieved by
generalizing the NR algorithm commonly used to estimate the
Brown model parameters. This section first summarizes the
main steps of the NR algorithm when applied to the Brown
model. A generalization to the BAGP model is then presented.

1) NR Method for Brown Model: The NR method is an
iterative algorithm that updates the parameters to be estimated
according to the following recursion:

θB(n+ 1) = θB(n)− ψ(n)H−1
B (n)∇CB(n) (8)

where θB = (Pu, τ,SWH)T = (θB,1, θB,2, θB,3)
T , ψ(n) is a

step size belonging to the interval [0, 1] (ensuring the conver-
gence of the algorithm), ∇ is the gradient operator, and HB

is a symmetric and invertible matrix defined as the Hessian of
the cost function CB which is obtained by setting s̃k = sk in
(7). The gradient of the cost function CB [of size (3 × 1)] with
respect to the Brown vector parameters θB is given by

∇CB =

(
−∂ ln [fB(y|θB)]

∂θB,i

)T

i=1,...,3

=L

(
K∑

k=1

sk − yk
s2k

∂sk
∂θB,i

)T

i=1,...,3

(9)

where fB is the likelihood obtained by setting s̃k = sk and θ =
θB in (6). More precisely, (9) can be expressed as

∇CB = LBBdB (10)

where dB = (dk)k=1,...,K is a (K × 1) vector with dk = (sk −
yk)/sk and BB is a matrix whose components are Bi,k =
(1/sk)(∂sk/∂θB,i), for i = 1, . . . , 3 and k = 1, . . . ,K.

In order to reduce the computational complexity due to the
calculation of the Hessian at each iteration, an approximation

of this matrix is generally used. This approximation replaces
the matrix HB by its expectation

FB=E[HB]=−E

⎡⎢⎢⎣
∂2 lnfB
∂θ2

B,1

∂2 ln fB
∂θB,1θB,2

∂2 lnfB
∂θB,1θB,3

∂2 lnfB
∂θB,2θB,1

∂2 ln fB
∂θ2

B,2

∂2 lnfB
∂θB,2θB,3

∂2 lnfB
∂θB,3θB,1

∂2 ln fB
∂θB,3θB,2

∂2 lnfB
∂θ2

B,3

⎤⎥⎥⎦ (11)

where E stands for the mathematical expectation. Note that
the matrix FB is the Fisher information matrix (FIM) that
is commonly used to compute the CRBs [25]. The iterative
formula obtained after replacing HB by FB in (8) is

θB(n+ 1) = θB(n)− ψ(n)F −1
B (n)∇CB(n). (12)

This parameter recursion has shown interesting properties for
adaptive filtering and is sometimes referred to as Fisher scor-
ing [26]. Determining the matrix FB requires to compute
the expectations of the second-order derivatives of fB. It is
straightforward to show that

E

[
− ∂2 ln fB
∂θB,i∂θB,j

]
= L

K∑
k=1

1

s2k

∂sk
∂θB,i

∂sk
∂θB,j

. (13)

As a consequence, the matrix FB can be written as FB =
LBBB

T
B, and the recursive formula (12) reduces to

θB(n+ 1) = θB(n)− ψ(n)
(
BBB

T
B

)−1
BBdB. (14)

2) NR Method for the BAGP: In order to generalize
the previous NR recursion to the BAGP model, we in-
troduce a (3×K) matrix B̃ whose elements are B̃i,k =
(1/s̃k)(∂s̃k/∂θB,i) with i = 1, . . . , 3 and k = 1, . . . ,K, a (4×
K) matrix P̃ whose elements are P̃i,k = (1/s̃k)(∂pk/∂θp,i)

with i = 1, . . . , 4 and k = 1, . . . ,K, and a (K × 1) vector d̃
with components d̃k = (s̃k − yk)/s̃k. The unknown parameter

vector for the BAGP is θ = (θT
B,θ

T
p )

T
= (θ1, θ2, . . . , θ7)

T .
We propose to estimate θ using the following recursive
formula:

θ(n+ 1) = θ(n)− ψ(n)F −1(n)∇C(n) (15)

where F (n) and ∇C(n) are the FIM and gradient of C evaluated
at θ = θ(n). Straightforward computations lead to

F = − E

⎡⎢⎢⎢⎣
∂2 ln f
∂θ2

1

∂2 ln f
∂θ1θ2

. . . ∂2 lnf
∂θ1θ7
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∂θ2θ1

∂2 ln f
∂θ2

2
. . . ∂2 lnf

∂θ2θ7
. . . . . . . . . . . .

∂2 ln f
∂θ7θ1
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7
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(16)

∇C =L

(
B̃

P̃

)
d̃. (17)

As a consequence, the NR recursion (15) can be written

θ(n+1)=θ(n)−ψ(n)

(
B̃B̃

T
B̃P̃

T

P̃ B̃
T

P̃ P̃
T

)−1 (
B̃
P̃

)
d̃. (18)



B. NM Method

The NM method is a simplex method for nonlinear uncon-
strained optimization used for minimizing an objective function
in a many-dimensional subspace [20], [27]. This direct search
method does not use any information (explicit or implicit) about
the derivatives of the cost function. By considering m as the
length of the parameter vector to estimate (m = 3 for the Brown
model, m = 6 for the BGP, and m = 7 for the BAGP), the
NM algorithm3 works in an m-dimensional subspace that is
characterized by m+ 1 distinct vectors that are its vertices and
their associated function values. At each step of the search, a
new point in or near the current simplex4 is generated. The cost
function is evaluated at the new generated point and compared
with its values at the vertices of the simplex. When the cost
function is smaller at the generated point, one of the vertices
is replaced by this generated point, giving a new simplex. This
step is repeated until the diameter of the simplex is less than a
specified tolerance (see [20], [24], and [27] for more details).

V. CRAMÉR-RAO BOUNDS

The CRBs provide the minimum variances for unbiased
parameters. As a consequence, they can be considered as
references in terms of estimation errors. Comparing the mean
square errors (MSEs) of estimators to the corresponding CRBs
helps us to understand the potential gain in performance that
we might obtain with other estimation algorithms. The CRBs
for the parameters of the Brown model were derived in [25].
This section generalizes the results of [25] to the BAGP model.
The CRBs are obtained by inverting the FIM of θ. Since the
thermal noise parameter Nt has been estimated using the first
samples of the altimetric signal, it also has to be included in the
FIM, resulting in the (8 × 8) matrix

FCRB = −E

⎡⎢⎢⎢⎣
∂2 ln f
∂θ2

1

∂2 ln f
∂θ1θ2

. . . ∂2 ln f
∂θ1Nt

. . . . . . . . . . . .
∂2 ln f
∂θ7θ1

∂2 ln f
∂θ7θ2

. . . ∂2 ln f
∂θ7Nt

∂2 ln f
∂Ntθ1

∂2 ln f
∂Ntθ2

. . . ∂2 ln f
∂N2

t

⎤⎥⎥⎥⎦ (19)

whose elements are given by

E

[
−∂2 ln f

∂θi∂θj

]
=L

K∑
k=1

1

s̃2k

∂s̃k
∂θi

∂s̃k
∂θj

E

[
− ∂2 ln f

∂Nt∂θi

]
=L

K∑
k=1

1

s̃2k

∂s̃k
∂θi

. (20)

and the derivatives of sk and pk with respect to Nt and the
Brown and peak parameters are detailed in [22]. After replacing
these derivatives in (19), the inverse of the FCRB can be
computed. The BAGP model parameter CRBs are defined as
the diagonal elements of the resulting inverse FIM. Note that

3Note that this algorithm is available in MATLAB by the function “fmin-
search.”

4A simplex of dimension m is an m-dimensional polytope defined as the
convex hull of its m+ 1 vertices. For example, a simplex of dimension 2 is a
triangle [28].

the Brown CRBs used afterward are obtained by considering
the vector parameters θ = (θ1, θ2, θ3)

T and a (4 × 4) FIM.
Similarly, the BGP CRBs are obtained by considering θ =
(θ1, . . . , θ6)

T and a (7 × 7) FIM.

VI. SIMULATION RESULTS FOR SYNTHETIC WAVEFORMS

A. Estimation Performance

This section introduces the criteria used to evaluate the
quality of the estimators resulting from the different models
(Brown model, BGP, and BAGP). The quality of the estimation
for synthetic waveforms can be measured by comparing the
estimated and true parameters by using the root-mean-square
error (RMSE)

RMSE(θi) =

√√√√ 1

n

n∑
�=1

[
θi − θ̂i(
)

]2
, i = 1, . . . , 7 (21)

where θi is the true parameter, θ̂i(
) is the estimated parameter
for the 
th waveform, and n is the number of synthetic wave-
forms. In the case of a real waveform, since the true value θ
is not available, the reconstruction error (RE) can be used to
evaluate the quality of an estimation method

RE =

√√√√ 1

K

K∑
k=1

(yk − ŷk)2 =
‖y − ŷ‖√

K
(22)

where ŷk denotes the estimated waveform obtained by replac-
ing the unknown parameters by their estimates in s̃k defined in
(3). The average RE (ARE) given by

ARE =

√√√√ 1

nK

n∑
i=1

‖yi − ŷi‖2 (23)

can also be used when considering n synthetic waveforms, yi =
(yi1, . . . , yiK)T for i = 1, . . . , n.

B. Parameter Estimation

The first set of simulations shows that the proposed BAGP
model can handle Brown waveforms. For this, we have gen-
erated synthetic signals according to (1) with a sampling time
Ts = 3.125 ns and parameters Pu = 130, τ = 31Ts ≈ 96.9 ns,
and SWH which is varying. All results have been averaged
using 300 Monte Carlo runs (with different noise realizations)
for each value of SWH varying in the interval [0, 12] m.
Fig. 5(a), (c), and (e) shows that similar RMSEs are obtained
for the different models (Brown, BGP, or BAGP) when using
the NM algorithm for parameter estimation. However, when
using the NR algorithm, Fig. 5(b), (d), and (f) shows that
there are slightly different RMSEs from one model to another
[note that the scales are different in Fig. 5(a), (c), and (e)
and Fig. 5(b), (d), and (f)]. This result can be explained since
the NM algorithm provides the exact MLE, while the NR
algorithm only approximates the MLE via a descent method.
Note that the smallest RMSEs shown in Fig. 5(b), (d), and
(f) correspond to the Brown model where few parameters are



Fig. 5. Parameter RMSEs for Brown waveforms with (left) NM and (right)
NR algorithms when using (blue) Brown, (red) BGP, and (green) BAGP
models.

estimated. However, the estimates obtained using the other two
models (BGP and BAGP) are satisfactory even if these models
are not needed for Brown waveforms. Note finally that the NM
method always provides better results than the NR method at
the price of a higher computational time.

The second set of simulations has been obtained with syn-
thetic waveforms similar to signals belonging to Class 13 of
Fig. 2. More precisely, we have simulated Brown waveforms
corrupted by a symmetric peak located in the trailing edge
with the parameters Pu = 130, τ = 31Ts and A = 200, T =
75Ts, σ = 3Ts, γ = 0 (as displayed in Fig. 6(a) which shows
a typical waveform of Class 13 with SWH = 2 m). Fig. 6
shows the RMSEs obtained by using the NM algorithm with the
Brown and BGP models (for clarity, the RMSEs of the BAGP
have not been presented here since they are very similar to those
obtained with the BGP). The Brown model provides larger
RMSEs since it does not take into account the peak corrupting
the altimetric signal. Conversely, the BGP model shows good
performance (note again that the BAGP provides very similar
performance for this example). It is interesting to note that
the RMSEs for the BGP model are close to the corresponding
CRBs when applying the NM algorithm (see Section VI-C).
Fig. 7 shows results obtained with the NR method (note that
the scales are different in Figs. 6 and 7) confirming the superi-
ority of the BGP model with respect to the Brown model for

Fig. 6. Parameter RMSEs for waveforms of Class 13 with NM algorithm
when using (blue) Brown and (red) BGP models. (Black) CRBs of the BGP
model parameters are also shown for comparison.

Fig. 7. Parameter RMSEs for waveforms of Class 13 with NR algorithm when
using (blue) Brown and (red) BGP models. (Black) CRBs of the BGP model
parameters are also shown for comparison.

peaky altimetric signals. Simulations conducted for different
values of T show that the estimation performance is not very
sensitive to the peak location as shown in Table II for the NR
algorithm. Finally, it is of increasing interest to consider the
BGP and BAGP models when the peak amplitude exceeds 30%
of the amplitude of the Brown model. Indeed, the traditional
Brown model provides very poor performance for these values
of the peak amplitude (the reader is invited to consult [22]
for additional simulation results). Note that the Brown model
still provides satisfactory results for small values of the peak
amplitude.



TABLE II
RMSES VERSUS PEAK LOCATION T (NR ALGORITHM)

Fig. 8. Parameter RMSEs for waveforms of Class 7 with NM algorithm when
using (blue) Brown, (red) BGP, and (green) BAGP models.

The third set of simulations has been conducted using syn-
thetic waveforms with a peak located at the end of the leading
edge (T is located at the maximum of the Brown model)
as shown in Fig. 8(a) where SWH = 2 m. The Brown and
peak parameters are Pu = 130, τ = 31Ts and A = 200, σ =
3Ts, γ = 1/Ts. Fig. 8 shows the RMSEs obtained with the NM
algorithm for the Brown, BGP, and BAGP models. The BGP
model cannot always handle the asymmetric nature of the peak,
resulting in poor estimation performance for SWH < 4 m when
applying the NM algorithm and for all SWHs when applying
the NR algorithm (see Fig. 9). For small values of SWH, the
Brown model is able to capture the leading edge [see Fig. 1(a)],
leading to relatively small RMSEs for parameters τ and SWH.
However, the amplitude of the echo cannot be estimated ac-
curately as shown in Fig. 8(c). For larger values of SWH, the
performance of the Brown model decreases significantly. The
BAGP model is able to model accurately the altimetric wave-
forms in all scenarios except for very small values of SWH.
The application of the NR method confirms the superiority of
the BAGP model for this class of waveforms as shown in Fig. 9
(note that the scales are different in Figs. 8 and 9). Table III
shows the AREs obtained for synthetic signals from Classes 7
and 13 with the different algorithms investigated in Section IV.
Note that the waveforms from Classes 7 and 13 have been
generated by varying SWH and keeping the other parameters
unchanged with respect to the previous experiment. It can be
noticed that the proposed BAGP is very robust to different
shapes of altimetric waveforms and provides very satisfactory
AREs for all models. Table IV shows the corresponding exe-

Fig. 9. Parameter RMSEs for waveforms of Class 7 with NR algorithm when
using (blue) Brown, (red) BGP, and (green) BAGP models.

TABLE III
AVERAGED RECONSTRUCTION ERRORS (SYNTHETIC DATA)

TABLE IV
AVERAGED EXECUTION TIMES IN SECONDS (SYNTHETIC DATA)

cution times of MATLAB implementations with a 2.93-GHz i7
CPU for one altimetric waveform. These results indicate that
the computational time of the BAGP estimation algorithm is
reasonable even if it exceeds the one obtained with the other
algorithms. From these results, we conclude that the BGP has
good properties for signals corrupted by a symmetric peak
located on the trailing edge of the Brown’s echo (Class 13 of
Fig. 2). However, it is not appropriate for waveforms of Class 7.
The introduction of an asymmetric peak characterized by the
asymmetry coefficient γ allows the BAGP to better approximate
signals from Class 7. Note finally that the effects of the peak



TABLE V
SIMULATION SCENARIO

Fig. 10. RCRBs for the Brown, BGP, and BAGP models with para-
meter vectors θBrown=(Pu, τ, SWH)T =(130, 31Ts, 5)T , θBGP=(Pu,
τ, SWH, A, T, σ)T =(130, 31Ts, 5, 200, 75Ts, 3Ts)T , and θBAGP=(Pu,
τ, SWH, A, T, σ, γ)T = (130, 31Ts, 5, 200, 75Ts, 3Ts, 0)T . The left and
right columns are associated with parameters τ and SWH, respectively. The
top, middle, and bottom figures have been obtained by varying SWH, Pu, and
τ , respectively.

is more pronounced for waveforms of Class 7 since it directly
affects the leading edge of the altimetric echo.

C. Cramér-Rao Bounds

This section studies the CRBs for the Brown, BGP, and
BAGP models. We consider waveforms characterized by the
peak parameters A = 200, T = 75Ts, σ = 3Ts, a number of
looks L = 90, and different values for the parameters Pu, τ ,
and SWH as shown in Table V (see [22] for the case of CRBs
evaluated with other parameters). Fig. 10(a) and (b) shows the
BAGP, BGP, and Brown CRBs as a function of SWH varying
from 0 to 12 m. Note that varying SWH leads to a variation of
the slope of the leading edge. For too small values of SWH, the
slope of the leading edge is very abrupt and thus contains few

Fig. 11. REs for 150 waveforms from Class 1 with (top) NM and (bottom)
NR methods.

samples, resulting in poor estimation. This corresponds to the
range SWH ∈ [0, 2] m in Fig. 10(b). For larger values of SWH,
the CRB of SWH is an increasing function of this parameter (as
shown in Fig. 10(b) for SWH > 2 m) since the absolute error is
directly related to the value of the parameter. Fig. 10(c) and (d)
shows the BAGP, BGP, and Brown CRBs as a function of Pu.
Increasing Pu implies a larger impact of the Brown echo with
respect to the Gaussian peak. Thus, CRB(τ) and CRB(SWH)
are decreasing functions of Pu. Fig. 10(e) and (f) shows the
slight influence of τ on the CRBs of τ and SWH. Note that the
square roots of the CRBs (RCRBs) have been displayed in order
to compare them with the corresponding RMSEs. Note finally
that the CRBs of BGP and BAGP model parameters are larger
than those of the Brown model because BGP and BAGP involve
additional unknown parameters (see [22] for more results about
the CRBs).

VII. REAL JASON-2 WAVEFORMS

This section evaluates the performance of the proposed
model for real JASON-2 waveforms. The classifier developed
within the PISTACH project [16] was used to isolate wave-
forms from Classes 1 (Brown), 13 (peak on the trailing edge),
and 7 (peak at the end of the leading edge). We have first
considered Jason-2 waveforms. The REs obtained with these
waveforms are shown in Figs. 11–13 for the different models.
These results confirm that the BAGP model provides better REs
than the other models. Table VI shows the averaged execution
times of the different estimation algorithms for real Jason-2
waveforms. This table shows that the NM method requires
more computational time than the NR method. Table VI also
shows that the computational time is directly related to the
number of parameters to be estimated (as expected). Fig. 1
shows typical estimated waveforms for signals of Classes 7 and
13 which allow the estimation quality to be appreciated. The
BGP and BAGP provide very similar results for the signal of
Class 13 since the associated peak is symmetric. However, the
signal from Class 7 is better approximated by the BAGP (see,



Fig. 12. REs for 150 waveforms from Class 7 with (top) NM and (bottom)
NR methods.

Fig. 13. REs for 100 waveforms from Class 13 with (top) NM and (bottom)
NR methods.

TABLE VI
AVERAGED EXECUTION TIMES FOR THE ESTIMATION ALGORITHMS

IN SECONDS (REAL JASON-2 WAVEFORMS)

in particular, the zoom on the leading edge) which allows the
asymmetric peak to be estimated more accurately.

In a second step, we have considered a set of Jason-2 data
obtained around Ibiza island. The Jason-2 data were extracted
from the pass 187 of cycle 8 and are represented in Fig. 14 (top
left). This data set shows an elliptical behavior (from latitude
gate 65 to 110) which is due to the movement of the peak in
the trailing edge (Class 13). Note also the presence of Class 7

Fig. 14. Jason-2 waveforms estimated by using (top right) Brown, (bottom
left) BGP, and (bottom right) BAGP models.

waveforms (from latitude gate 40 to 65) which present a high
power at the end of the leading edge. The altimetric parameters
of these waveforms have been estimated by using the Brown,
BGP, and BAGP models. Fig. 14 shows the reconstructed wave-
forms for each model by using the corresponding estimated
parameters. This figure shows that we get a better fit by using
the BGP and BAGP models than the Brown model (see [22] for
more simulation results).

VIII. CONCLUSION

This paper studied a new model for altimetric waveforms
referred to as the “BAGP” model. The parameters of this model
were estimated by using the ML method. The determination
of the MLE was investigated by two methods based on NR
recursion and an NM algorithm, respectively. Estimations ob-
tained with the NM method were better in terms of MSE than
those obtained with the NR algorithm. However, the price to
pay with the NM algorithm is a higher computational cost.
Results obtained in this study showed that the proposed model
can be used to retrack efficiently standard oceanic Brown
echoes as well as coastal echoes corrupted by a symmetric or
asymmetric Gaussian peak. This paper also derived CRBs for
the parameters of the BAGP model. These bounds were used
as references to which MSEs were compared. The mses of the
model parameter estimates obtained using the ML principle
were shown to be very close to the corresponding CRBs,
illustrating the asymptotic MLE efficiency. The bounds were
also used to evaluate the loss of performance for estimating
the Brown parameters in the presence of a Gaussian peak. This
loss of performance is mainly due to more parameters to be
estimated when the model contains a symmetric or asymmetric
Gaussian peak. Extending the results obtained in this paper to
the four-parameter Brown model (including the mispointing as
a fourth parameter) is an interesting issue. The proposed BAGP
model could also be of interest for retracking echoes affected
by σ-blooms or rain cells. These points are currently under
investigation.
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