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Abstract We demonstrate a unique energy efficient 
methodology to use Phase Change Memory (PCM) as 
synapse in ultra-dense large scale neuromorphic systems. 
PCM devices with different chalcogenide materials were 
characterized to demonstrate synaptic behavior. Multi-
physical simulations were used to interpret the results. We 
propose special circuit architecture (“the 2-PCM synapse”), 
read, write, and reset programming schemes suitable for the 
use of PCM in neural networks. A versatile behavioral 
model of PCM which can be used for simulating large scale 
neural systems is introduced. First demonstration of 
complex visual pattern extraction from real world data using 
PCM synapses in a 2-layer spiking neural network (SNN) is 
shown. System power analysis for different scaled PCM 
technologies is also provided. 
Introduction: The development of biologically inspired 
neuromorphic circuits, in order to achieve low power, highly 
parallel, and fault-tolerant systems, has gained a lot of 
interest over the last few years [1]. Emergence of new 
resistive memories, suitable for synapse realization, owing 
to their simple integration scheme and analog memory 
capabilities, suggests that the fabrication of neuromorphic 
chips with a synapse density close to that of the human brain 
could be achievable. Nevertheless, up to now, substantial 
work has consisted in demonstrating biologically plausible 
learning rules, such as spike-time dependent plasticity 
(STDP), just on individual memristive devices [2-6]. Still 
there lies a considerable gap between the fields of 
semiconductor devices, computational neuroscience and 
system-design before a fully functional large scale hardware 
neuromorphic system will be realized [7].We choose PCM 
technology because of the advantages it offers compared to 
the other resistive memory technologies, such as maturity, 
scaling capability, high endurance, and good reliability [8]. 
Experiments: Fig.1 shows the biological synapse and the 
basic concept of emulating it with PCM. An electronic 
device emulating the biological synapse should be able to 
gradually increase (long term potentiation, LTP) or decrease 
(long term depression, LTD) its conductance in response to 
neuron spikes [9]. To demonstrate these features, lance-type 
PCM test devices, with a 100nm-thick phase change layer 
and 300nm-diameter tungsten plug, were fabricated and 
characterized. Two different chalcogenide materials were 
integrated: nucleation-dominated GST and growth-
dominated GeTe. The R-I characteristics of GST PCM 
devices are shown in Fig.2. Fig.3 and Fig.4 show LTP-like 
conductance variation of PCM devices with GST and GeTe 
phase change layers, respectively. Nucleation dominated 
behavior leads to more gradual conductance change in GST, 
compared to GeTe which shows abrupt conductance change 
due to growth dominated behavior. The saturation of the 
conductance programming window in GeTe occurs in less 
than 1/3

rd
 the total number of potentiating pulses required 

for GST. Fig.5 shows that a gradual decrease in conductance 
(or LTD) cannot be obtained with the application of identical 

pulses to PCM. To this aim, the amplitude of the consecutive 
pulses should increase progressively (Fig.2). Nevertheless, 
implementing such pulses with varying amplitudes can lead 
to practical problems, such as capacitive line charging and 
high power dissipation in large scale neuromorphic systems 
involving crossbar arrays. We propose an original solution to 
such problems in the following sections. 
Physical simulations: A 2D axi-symmetrical simulator 
developed in MATLAB and C++ was used to study the LTP, 
LTD behavior of the PCM devices. Phase change 
crystallization physics of the devices were modeled using 
Eqs.1-2 and a level set numerical method [10]. The first few 
points in the LTP curves (Fig.3, 4) are crucial in determining 
the number of intermediate conductance states within a 
given programming window. In Figs.6, 7, we simulate the 
sensitivity of conductance variation with respect to changes 
in nucleation and growth rates. The maximum value of 
conductance is attained in fewer pulses if the growth or 
nucleation rate is higher. The shape of the bulk amorphous 
region created after the initial reset pulse depends upon the 
values of growth and nucleation rates. A high growth rate 
(GR=10) leads to strong crystal growth from the amorphous-
crystalline interface during the falling edge of the reset pulse, 
thus distorting the shape of the amorphous mushroom. A low 
growth rate (GR=0.1) leads to much symmetric mushroom 
shape of the amorphous region after the reset pulse. After the 
application of the 1

st
 pulse, conductance is more sensitive to 

changes in the nucleation rate compared to growth.  
The 2-PCM synapse: To overcome the problem of abrupt 
LTD (Fig.5). We propose a new energy efficient synapse 
circuit consisting of two identical PCM devices (“The 2-
PCM synapse”) with a realistic and simplified programming 
pulse scheme (Fig.9). One PCM device (LTP) has a positive 
current contribution, while the other PCM device (LTD) 
contributes negatively towards the output CMOS neuron 
current. In the “2-PCM synapse”, crystallizing the LTP 
PCM device produces synaptic LTP-like effect, while 
crystallizing the LTD PCM device produces synaptic LTD-
like effect. Since gradual crystallization can be obtained by 
applying simple identical pulses (Fig.3, 4) our approach 
simplifies the pulse schemes for implementing learning in 
large scale neuromorphic systems. Moreover, unlike 
previously demonstrated PCM synapse [6] our “2-PCM 
synapse” is highly energy efficient, as majority synaptic 
conductance changes (or weight update) events are based on 
crystallization and not on amorphization of the PCM devices. 
As shown in Fig.2 and Fig.17, the set (or potentiating) 
events would consume considerably less amount of energy 
compared to reset (or depressing) events in PCM technology. 
Neural Network & PCM Behavioral Model: To 
demonstrate complex pattern extraction from real world data 
a two layer feed-forward spiking neural network (Fig.9) was 
simulated using a special purpose C++ event-based 
simulator. The neuron model used is the standard leaky 
integrate and fire (LIF) [11]. The PCM synapses in the 
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network were modeled using Eq.3 with the parameters 
extracted from the fitting of LTP curves in Fig.3, 4. Address-
Event Representation (AER) data (Fig.10) recorded with 
128x128 pixel silicon retina [13] was used as the input for 
our PCM neural network. Each of the 128 x 128 pixels in 
Fig.9 is connected through two synapses to every neuron in 
layer 1. Likewise each neuron in layer 1 is connected to 
every neuron in layer 2 with a single synapse, leading to a 
total of 1,966,680 synapses and thus 3,933,360 PCM devices 
(2 PCM/synapse). The goal of the neural network is to detect 
cars passing in different lanes on a freeway in an 
unsupervised way.  
Learning Rule & Programming Scheme: We used a 
modified form of the biological STDP learning rule (Fig.11). 
The modified STDP enhances simplicity in programming 
the synapses. The learning is competitive and lateral 
inhibition is implemented [12]. When read with a voltage 
pulse, the two PCM devices have an opposite contribution to 
the neuron integration (Fig.12). When the integration of an 
output neuron reaches the firing threshold, the neuron 
transmits an event to the next layer and a feedback pulse on 
each of its two input lines corresponding to LTP and LTD 
devices (Fig.13). A write mode signal is propagated to all the 
input neurons such that if the input neuron was activated 
during the LTP time window (Fig.11), a write pulse is 
emitted and its interaction with the feedback pulse increases 
the conductivity of the LTP device, resulting in the 
potentiation of the equivalent synapse. The feedback pulse 
alone only increases the conductivity of the LTD device, 
thus depressing the equivalent synapse. A systematic reset 
scheme (Fig.14), allows reducing the conductivity of the 
PCM devices by retaining the weight of the synapse (Fig.15). 

Results & Discussion: Fig.17 shows the learning results for 
the AER dataset. To demonstrate the variability robustness 
of our neuromorphic system we implemented 20% 
dispersion on standard deviation of all the parameters in 
Eq.3. Output neurons in the 2

nd
 layer are able to detect cars 

in 4 traffic lanes out of 6 for systems based on GST-PCM 
synapses, and 5 out of 6 lanes for systems based on GeTe-
PCM synapses, respectively. The frequency of potentiating 
pulses per device was about 25 times higher than the 
frequency of reset pulses for GST-PCM based system, and 
about 10 times higher for GeTe-PCM based system. Indeed, 
this result suggests that the efficiency of the system can be 
further increased by choosing the right phase-change 
material with the optimum conductance window. Finally, 
note that the proposed approach of storing maximum 
synaptic information by crystallization of PCM, with a write 
frequency of about 2Hz per PCM device, reduces the impact 
of the PCM resistance-drift [8], widely ascribed to be a 
limitation for multilevel PCM programming. 

Conclusions: We have developed a unique methodology to 
use PCM devices as energy-efficient synapses in large scale 
neuromorphic systems. Advanced electrical characterization, 
behavioral modeling and circuit level simulations allow us 
to show a spiking neural network with about 4 million 
synapses, capable of complex visual pattern extraction with 
an average detection rate of 92%, and a system power 
consumption of 112μW for learning. 
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Fig.1 Illustration of biological synapse and concept of using PCM as 

synapse in neural circuits. 
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Fig.2 R-I characteristic of GST PCM cell. Potentiated, Set and Reset 

states with corresponding morphology of the Phase Change layer are 

shown. 

  Fig.3 Experimental Long Term Potentiation (LTP) characteristics of GST 

PCM. For each curve, first a reset pulse (7V, 100ns) is applied followed 

by 30 consecutive identical potentiating pulses. 
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Fig.4 Experimental LTP characteristics of GeTe 

PCM. For each curve, first a reset pulse (7V, 

100ns) is applied followed by 10 consecutive 

identical potentiating pulses.

Fig.5 Experimental LTD characteristics of GST 

 and GeTe PCM. Simulations of the GST PC layer 

morphology with consecutive identical reset pulses 

shown. 

Equations for Physical Simulations 

(1) Growth Velocity “V” 

 

(2) Overall Nucleation Rate “I” 

Na: Nucleation sites/m3, γ: atomic vibration freq. 

∆G: Free Energy, Z: Zeldovitch parameter 

On: Number of atoms at critical nucleus surface 

M: molar mass d: Inter-atomic distance 

ρ: Volumic mass, ∆Gv: Diff. in Gibbs free energy  

of the amorph. and crystalline phase 

α, β: fitting parameters 
Behavioral Model Equation 

(3) Conductance “G” Change: 
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  Fig.6 Simulated LTP curves while fixing the nucleation rate (NR) and varying the 

growth rate GR compared to GST (reference: GR=1, NR=1). Corresponding 

simulations of PC layer morphology is shown (0th pulse: reset; 1st-5th: 

potentiating). 

Fig.7 Simulated LTP curves while fixing the growth rate (GR=1)  

and varying the nucleation rate (NR) compared to GST  

(reference: NR=1, GR=1).  
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Fig.10 AER dataset for pattern  

recognition. Represents 6 car lanes [14]. 
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Fig.8 Circuit schematic of the “2-PCM synapse”. Fig.9 Topological overview of the spiking neural network  
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Fig.11 Left: Biological STDP and simplified STDP. In the simplified rule, a synapse 

receiving a post-synaptic spike with no pre-synaptic spike in the LTP window 

undergoes a LTD regardless of the existence of a pre-synaptic spike. Right: Write, 

reset and read pulses used in Figs. 12, 13, 14.

Fig.12 Read circuit scheme. Current from both LTP and LTD PCM  

devices is integrated in the output neuron, with a positive and negative  

contribution, respectively. 
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Fig.13 Write circuit scheme based on the simple STDP rule. For a specific PCM, 

G ↗ denotes an increase while G → denotes no change in conductance. 

Fig.14 Reset circuit scheme. For a specific PCM resistor,  

G ↓ denotes a decrease in conductance.  
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Fig.15 Left: Reset methodology. Right: Conductance G variation of PCM 

devices before and after a reset sequence. 

Table 1 Pulse statistics for the learning test case shown in Fig 16. 

Fig.16 Left: Cars detection for the 6 different lanes by the 2nd 

layer 10 output neurons. Each block shows the sensitive map of 

one output neuron. Up to down the detection rate increases. Lane 2 

and 5 are learnt by 3 neurons each, while lane 6 is not learnt by any neuron. 

Right: Detection % of 5 best neurons for each lane. 

 

Fig.17 Scaling trend of Reset and Set current for different PCM 

technologies. Set current values are extracted from literature. 

Interpolations are also shown 

Energy Calculation Equations 

Eset ~ Vset * Iset * tpulse  (tpulse=30ns); 

Ereset ~ Vreset * Ireset * tpulse (tpulse =50ns).  

Etotal =(Eset * total set pulses) + (E reset * total reset pulses) 

System power = Etotal / total duration of learning 

Table 2 Energy statistics for the test case described in Table 1, by using voltage 

(V)and current (I) values extracted from literature and the energy equations. 

PCM Technology Ereset (pJ) Eset (pJ) System power (µW)

This paper (GST-PCM) 1552 121 112 

Jiale,VLSI-2011 1.2 0.045 0.056 

F.Xiong, Science-2011 0.1 0.03 0.02 

Pirovano, ESSDERC-07 24 4.9 3.6 

D.H.Im, IEDM-2008 5.6 0.9 0.68 

Learning Statistics for the PCM-based Neuromorphic Circuit

Total Synapses: 1,966,680   [= 1st Layer (2*128*128*60) 2nd (60*10)]

Total PCM cells:      3,933,360       [= 2* Total Synapses (LTP and LTD)]

Total learning duration = 680 s (same for both GST/GeTe PCM)

Quantity Values for 

GST-PCM GeTe-PCM 

Total read pulses 4,975,830,080 4,975,848,000

Total set pulses 416,334,080 748,120,539

Total reset pulses 16,585,048 79,971,200

Read pulses frequency per PCM [/sec] 1.9 1.86

Set pulses frequency per PCM [/sec] 0.16 0.28

Reset pulses frequency per PCM (/sec] 0.0062 0.030
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