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Introduction:

The development of biologically inspired neuromorphic circuits, in order to achieve low power, highly parallel, and fault-tolerant systems, has gained a lot of interest over the last few years [1]. Emergence of new resistive memories, suitable for synapse realization, owing to their simple integration scheme and analog memory capabilities, suggests that the fabrication of neuromorphic chips with a synapse density close to that of the human brain could be achievable. Nevertheless, up to now, substantial work has consisted in demonstrating biologically plausible learning rules, such as spike-time dependent plasticity (STDP), just on individual memristive devices [2][3][START_REF] Oblea | IJCNN[END_REF][START_REF] Yu | [END_REF][6]. Still there lies a considerable gap between the fields of semiconductor devices, computational neuroscience and system-design before a fully functional large scale hardware neuromorphic system will be realized [7].We choose PCM technology because of the advantages it offers compared to the other resistive memory technologies, such as maturity, scaling capability, high endurance, and good reliability [8]. Experiments: Fig. 1 shows the biological synapse and the basic concept of emulating it with PCM. An electronic device emulating the biological synapse should be able to gradually increase (long term potentiation, LTP) or decrease (long term depression, LTD) its conductance in response to neuron spikes [9]. To demonstrate these features, lance-type PCM test devices, with a 100nm-thick phase change layer and 300nm-diameter tungsten plug, were fabricated and characterized. Two different chalcogenide materials were integrated: nucleation-dominated GST and growthdominated GeTe. The R-I characteristics of GST PCM devices are shown in Fig. 2. Fig. 3 and Fig. 4 show LTP-like conductance variation of PCM devices with GST and GeTe phase change layers, respectively. Nucleation dominated behavior leads to more gradual conductance change in GST, compared to GeTe which shows abrupt conductance change due to growth dominated behavior. The saturation of the conductance programming window in GeTe occurs in less than 1/3 rd the total number of potentiating pulses required for GST. Fig. 5 shows that a gradual decrease in conductance (or LTD) cannot be obtained with the application of identical pulses to PCM. To this aim, the amplitude of the consecutive pulses should increase progressively (Fig. 2). Nevertheless, implementing such pulses with varying amplitudes can lead to practical problems, such as capacitive line charging and high power dissipation in large scale neuromorphic systems involving crossbar arrays. We propose an original solution to such problems in the following sections. Physical simulations: A 2D axi-symmetrical simulator developed in MATLAB and C++ was used to study the LTP, LTD behavior of the PCM devices. Phase change crystallization physics of the devices were modeled using Eqs.1-2 and a level set numerical method [10]. The first few points in the LTP curves (Fig. 3,4) are crucial in determining the number of intermediate conductance states within a given programming window. In Figs. 6,7, we simulate the sensitivity of conductance variation with respect to changes in nucleation and growth rates. The maximum value of conductance is attained in fewer pulses if the growth or nucleation rate is higher. The shape of the bulk amorphous region created after the initial reset pulse depends upon the values of growth and nucleation rates. A high growth rate (GR=10) leads to strong crystal growth from the amorphouscrystalline interface during the falling edge of the reset pulse, thus distorting the shape of the amorphous mushroom. A low growth rate (GR=0.1) leads to much symmetric mushroom shape of the amorphous region after the reset pulse. After the application of the 1 st pulse, conductance is more sensitive to changes in the nucleation rate compared to growth. The 2-PCM synapse: To overcome the problem of abrupt LTD (Fig. 5). We propose a new energy efficient synapse circuit consisting of two identical PCM devices ("The 2-PCM synapse") with a realistic and simplified programming pulse scheme (Fig. 9). One PCM device (LTP) has a positive current contribution, while the other PCM device (LTD) contributes negatively towards the output CMOS neuron current. In the "2-PCM synapse", crystallizing the LTP PCM device produces synaptic LTP-like effect, while crystallizing the LTD PCM device produces synaptic LTDlike effect. Since gradual crystallization can be obtained by applying simple identical pulses (Fig. 3,4) our approach simplifies the pulse schemes for implementing learning in large scale neuromorphic systems. Moreover, unlike previously demonstrated PCM synapse [6] our "2-PCM synapse" is highly energy efficient, as majority synaptic conductance changes (or weight update) events are based on crystallization and not on amorphization of the PCM devices. As shown in Fig. 2 and Fig. 17, the set (or potentiating) events would consume considerably less amount of energy compared to reset (or depressing) events in PCM technology.

Neural Network & PCM Behavioral Model:

To demonstrate complex pattern extraction from real world data a two layer feed-forward spiking neural network (Fig. 9) was simulated using a special purpose C++ event-based simulator. The neuron model used is the standard leaky integrate and fire (LIF) [11]. The PCM synapses in the network were modeled using Eq.3 with the parameters extracted from the fitting of LTP curves in Fig. 3,4. Address-Event Representation (AER) data (Fig. 10) recorded with 128x128 pixel silicon retina [START_REF] Lichtsteiner | [END_REF] was used as the input for our PCM neural network. Each of the 128 x 128 pixels in Fig. 9 is connected through two synapses to every neuron in layer 1. Likewise each neuron in layer 1 is connected to every neuron in layer 2 with a single synapse, leading to a total of 1,966,680 synapses and thus 3,933,360 PCM devices (2 PCM/synapse). The goal of the neural network is to detect cars passing in different lanes on a freeway in an unsupervised way. Learning Rule & Programming Scheme: W e u s e d a modified form of the biological STDP learning rule (Fig. 11). The modified STDP enhances simplicity in programming the synapses. The learning is competitive and lateral inhibition is implemented [START_REF] Bichler | IEEE IJCNN[END_REF]. When read with a voltage pulse, the two PCM devices have an opposite contribution to the neuron integration (Fig. 12). When the integration of an output neuron reaches the firing threshold, the neuron transmits an event to the next layer and a feedback pulse on each of its two input lines corresponding to LTP and LTD devices (Fig. 13). A write mode signal is propagated to all the input neurons such that if the input neuron was activated during the LTP time window (Fig. 11), a write pulse is emitted and its interaction with the feedback pulse increases the conductivity of the LTP device, resulting in the potentiation of the equivalent synapse. The feedback pulse alone only increases the conductivity of the LTD device, thus depressing the equivalent synapse. A systematic reset scheme (Fig. 14), allows reducing the conductivity of the PCM devices by retaining the weight of the synapse (Fig. 15). Results & Discussion: Fig. 17 shows the learning results for the AER dataset. To demonstrate the variability robustness of our neuromorphic system we implemented 20% dispersion on standard deviation of all the parameters in Eq.3. Output neurons in the 2 nd layer are able to detect cars in 4 traffic lanes out of 6 for systems based on GST-PCM synapses, and 5 out of 6 lanes for systems based on GeTe-PCM synapses, respectively. The frequency of potentiating pulses per device was about 25 times higher than the frequency of reset pulses for GST-PCM based system, and about 10 times higher for GeTe-PCM based system. Indeed, this result suggests that the efficiency of the system can be further increased by choosing the right phase-change material with the optimum conductance window. Finally, note that the proposed approach of storing maximum synaptic information by crystallization of PCM, with a write frequency of about 2Hz per PCM device, reduces the impact of the PCM resistance-drift [8], widely ascribed to be a limitation for multilevel PCM programming. Conclusions: We have developed a unique methodology to use PCM devices as energy-efficient synapses in large scale neuromorphic systems. Advanced electrical characterization, behavioral modeling and circuit level simulations allow us to show a spiking neural network with about 4 million synapses, capable of complex visual pattern extraction with an average detection rate of 92%, and a system power consumption of 112μW for learning. Fig. 12 Read circuit scheme. Current from both LTP and LTD PCM devices is integrated in the output neuron, with a positive and negative contribution, respectively. 
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 123 Fig.1Illustration of biological synapse and concept of using PCM as synapse in neural circuits.

Fig. 4

 4 Fig.[START_REF] Oblea | IJCNN[END_REF] Experimental LTP characteristics of GeTe PCM. For each curve, first a reset pulse (7V, 100ns) is applied followed by 10 consecutive identical potentiating pulses.
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 56 Fig.5 Experimental LTD characteristics of GST and GeTe PCM. Simulations of the GST PC layer morphology with consecutive identical reset pulses shown.
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 7 Fig.7 Simulated LTP curves while fixing the growth rate (GR=1) and varying the nucleation rate (NR) compared to GST (reference: NR=1, GR=1).
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 108911 Fig.10 AER dataset for pattern recognition. Represents 6 car lanes [14].

Fig. 13

 13 Fig.[START_REF] Lichtsteiner | [END_REF] Write circuit scheme based on the simple STDP rule. For a specific PCM, G ↗ denotes an increase while G → denotes no change in conductance.

Fig. 14 Fig. 15

 1415 Fig.14 Reset circuit scheme. For a specific PCM resistor, G ↓ denotes a decrease in conductance.

Fig. 16

 16 Fig.16 Left: Cars detection for the 6 different lanes by the 2 nd layer 10 output neurons. Each block shows the sensitive map of one output neuron. Up to down the detection rate increases. Lane 2 and 5 are learnt by 3 neurons each, while lane 6 is not learnt by any neuron. Right: Detection % of 5 best neurons for each lane.

Fig. 17

 17 Fig.17 Scaling trend of Reset and Set current for different PCM technologies. Set current values are extracted from literature. Interpolations are also shown Energy Calculation Equations Eset ~ Vset * Iset * tpulse (tpulse=30ns); Ereset ~ Vreset * Ireset * tpulse (tpulse =50ns). Etotal =(Eset * total set pulses) + (E reset * total reset pulses) System power = Etotal / total duration of learning
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  Statistics for the PCM-based Neuromorphic Circuit Total Synapses: 1,966,680 [= 1st Layer (2*128*128*60) 2 nd (60*10)] Total PCM cells: 3,933,360 [= 2* Total Synapses (LTP and LTD)] Total learning duration = 680 s (same for both GST/GeTe PCM) Statistics for the PCM-based Neuromorphic Circuit Total Synapses: 1,966,680 [= 1st Layer (2*128*128*60) 2 nd (60*10)] Total PCM cells: 3,933,360 [= 2* Total Synapses (LTP and LTD)]Total learning duration = 680 s (same for both GST/GeTe PCM)

Table 1

 1 Pulse statistics for the learning test case shown in Fig 16.

Table 2

 2 Energy statistics for the test case described in Table1, by using voltage (V)and current (I) values extracted from literature and the energy equations.