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The Wadge Hierarchy of Petri Nets ω-Languages

We describe the Wadge hierarchy of the ω-languages recognized by deterministic Petri nets. This is an extension of the celebrated Wagner hierarchy which turned out to be the Wadge hierarchy of the ωregular languages. Petri nets are an improvement of automata. They may be defined as partially blind multi-counter automata. We show that the whole hierarchy has height ω ω 2 , and give a description of the restrictions of this hierarchy to every fixed number of partially blind counters.

Introduction

The languages of infinite words -also called ω-languages -that are accepted by finite automata were first studied by Büchi in order to prove the decidability of the monadic second order theory of one successor over the integers. Since then, the regular ω-languages have been intensively studied, mostly for applications to specification and verification of non-terminating systems. See [START_REF] Perrin | Infinite words, automata, semigroups, logic and games[END_REF][START_REF] Staiger | ω-languages[END_REF][START_REF] Thomas | Automata on infinite objects[END_REF] for many results and references. Following this trend, the acceptance of infinite words by other types of finite machines, such as pushdown automata, multicounter automata, Petri nets, or even Turing machines, were later considered [START_REF] Cohen | ω-computations on Turing machines[END_REF][START_REF] Engelfriet | X-automata on ω-words[END_REF][START_REF] Finkel | Topological complexity of context free ω-languages: A survey[END_REF][START_REF] Selivanov | Wadge degrees of ω-languages of deterministic Turing machines[END_REF][START_REF] Staiger | ω-languages[END_REF]. Since the set of infinite words over a finite alphabet becomes a topological space once equipped with the Cantor topology, a way to study the complexity of the languages of infinite words accepted by finite machines is to study their topological complexity. This consists in providing their precise localization inside the projective hierarchy, the Borel hierarchy, or even the Wadge hierarchy (a great refinement of the Borel hierarchy). This work was conducted through [START_REF] Engelfriet | X-automata on ω-words[END_REF][START_REF] Lescow | Logical specifications of infinite computations[END_REF][START_REF] Selivanov | Fine hierarchies and m-reducibilities in theoretical computer science[END_REF][START_REF] Selivanov | Semantics in honour of Bill Wadge on the occasion of his 60th cycle[END_REF][START_REF] Simonnet | Automates et théorie descriptive[END_REF][START_REF] Staiger | Hierarchies of recursive ω-languages[END_REF][START_REF] Staiger | Research in the theory of ω-languages[END_REF][START_REF] Staiger | ω-languages[END_REF][START_REF] Thomas | Automata on infinite objects[END_REF]. It is well known that every ω-language accepted by a deterministic Büchi automaton is a Π 0 2 -set, and that an ω-language accepted by a non-deterministic Büchi (or Muller) automaton is a ∆ 0 3 -set. The Borel hierarchy of regular ωlanguages is then determined. Moreover, Landweber proved that one can effectively determine the Borel complexity of a regular ω-language accepted by a given Muller or Büchi automaton, see [START_REF] Landweber | Decision problems for ω-automata[END_REF][START_REF] Perrin | Infinite words, automata, semigroups, logic and games[END_REF][START_REF] Staiger | ω-languages[END_REF][START_REF] Thomas | Automata on infinite objects[END_REF]. Elaborating on this result, Klaus Wagner completely described the Wadge hierarchy of the ω-regular languages [START_REF] Wagner | On ω-regular sets[END_REF]. It is nowadays called the Wagner hierarchy, and its length is the ordinal ω ω . Wagner gave an automaton-like characterization of this hierarchy, based on the notions of chain and superchain, together with an algorithm to compute the Wadge (Wagner) degree of any given ω-regular language. Later, Wilke and Yoo proved that the Wadge degree of an ω-regular language may be computed in polynomial time [START_REF] Wilke | Computing the Wadge degree, the Lifschitz degree, and the Rabin index of a regular language of infinite words in polynomial time[END_REF]. This hierarchy was thouroughly studied by Carton and Perrin in [START_REF] Carton | Chains and superchains for ω-rational sets, automata and semigroups[END_REF][START_REF] Carton | The Wagner hierarchy of ω-rational sets[END_REF], and by Victor Selivanov in [START_REF] Selivanov | Fine hierarchy of regular ω-languages[END_REF][START_REF] Selivanov | Fine hierarchy of regular aperiodic omega-languages[END_REF]. Since there are various classes of finite machines recognizing ω-languages, each of them yields a countable sub-hierarchy of the Wadge hierarchy. Since the 1980's it has been an endeavor to describe these sub-hierarchies. It started with the work of Klaus Wagner on the ω-regular languages -although Wagner was unaware at the time of the connections between the Wadge hierarchy and his own work. The Wadge hierarchy of deterministic context-free ω-languages was determined, together with its length: ω (ω 2 ) [START_REF] Duparc | A hierarchy of deterministic context free ω-languages[END_REF][START_REF] Duparc | Computer science and the fine structure of Borel sets[END_REF]. The problem whether this hierarchy is decidable remains open. The Wadge hierarchy induced by the subclass of deterministic one blind counter automata was determined in an effective way [START_REF] Finkel | An effective extension of the Wagner hierarchy to blind counter automata[END_REF], and other partial decidability results were obtained [START_REF] Finkel | Topological properties of omega context free languages[END_REF]. It was then proved that the Wadge hierarchy of context-free ω-languages is the same as the one of effective analytic sets3 [START_REF] Finkel | Borel ranks and Wadge degrees of context free omega languages[END_REF][START_REF] Finkel | Topological complexity of context free ω-languages: A survey[END_REF]. Intriguingly, the only Wadge class for which one can decide whether a given context-free ω-language belongs to or not, is the rudimentary singleton {∅}, see [START_REF] Finkel | Topological properties of omega context free languages[END_REF][START_REF] Finkel | Wadge hierarchy of omega context free languages[END_REF][START_REF] Finkel | Borel hierarchy and omega context free languages[END_REF]. In particular, one cannot decide whether a non-deterministic pushdown automaton is universal or not. This latter decision problem is actually Π 1 2 -complete, hence located at the second level of the analytical hierarchy and "highly undecidable", [START_REF] Finkel | Highly undecidable problems for infinite computations[END_REF]. Moreover the second author proved that the topological complexity of some context-free ω-languages may be subject to change from one model of set theory to another [START_REF] Finkel | The complexity of infinite computations in models of set theory[END_REF]. (Similar results hold for ω-languages accepted by 2-tape Büchi automata [START_REF] Finkel | in honour of Bill Wadge on the occasion of his 60th cycle[END_REF][START_REF] Finkel | The complexity of infinite computations in models of set theory[END_REF].) Finally, the Wadge hierarchy of ω-languages of deterministic Turing machines was determined by Victor Selivanov, [START_REF] Selivanov | Wadge degrees of ω-languages of deterministic Turing machines[END_REF]. Petri nets are among the many accepting devices that are more powerful than finite automata in that they recognize more ω-languages that finite automata. They apply to the description of distributed systems. A Petri net is a directed bipartite graph, in which the nodes represent transitions and places. The distributions of tokens over the places define the configurations of the net. Petri nets work as an improvement of automata, since they may be defined as partially blind multicounter automata [START_REF] Greibach | Remarks on blind and partially blind one way multicounter machines[END_REF]. Petri nets have been extensively examined, particularly in concurrency theory (see for instance [START_REF] Esparza | Decidability and complexity of Petri net problems, an introduction[END_REF][START_REF] Rozenberg | Lectures on concurrency and Petri nets: advances in Petri nets[END_REF]). The infinite behavior of Petri nets was first studied by Valk [START_REF] Valk | Infinite behaviour of Petri nets[END_REF], and the one of deterministic Petri nets, by Carstensen [START_REF] Carstensen | Infinite behaviour of deterministic Petri nets[END_REF]. In this paper, we first consider deterministic blind multicounter automata (corresponding to deterministic Petri nets) and the ω-languages that they accept when they are equipped with a Muller acceptance condition. This forms the class of deterministic Petri net ω-languages denoted L 3 ωdt in [START_REF] Carstensen | Infinite behaviour of deterministic Petri nets[END_REF].

We describe the Wadge hierarchy of the ω-languages recognized by deterministic Petri nets. This is an extension of the celebrated Wagner hierarchy of the ωregular languages. We show that the whole hierarchy has height ω ω 2 , and give a description of the restrictions of this hierarchy to some fixed number of partially blind counters.

2 Recalls on ω-languages, automata and Petri nets

We assume the reader to be familiar with the theories of formal languages and ω-regular languages (see [START_REF] Hopcroft | Introduction to automata theory, languages, and computation[END_REF][START_REF] Perrin | Infinite words, automata, semigroups, logic and games[END_REF][START_REF] Thomas | Automata on infinite objects[END_REF]).

Through along the paper, we assume Σ to be any finite set, called the alphabet.

A finite word (string) over Σ is any sequence of the form u = a 1 . . . a k , where k ∈ IN and a i ∈ Σ holds for each i ≤ k. Notice that when k = 0, u is the empty word denoted by ε. We denote by |u| the length of the word u (here |u| = k).

We write u(i) = a i and u[i] = u(1) . . . u(i) for i ≤ k and u[0] = ε. The set of all finite words over Σ is denoted Σ * . An infinite word over Σ is some sequence of the form x = a 1 a 2 . . . a n . . . where a i ∈ Σ holds for all non-zero integers i. These infinite words are called ω-words for their length corresponds to ω: the first infinite ordinal. An infinite word x over Σ can be viewed as a mapping x : IN -→ Σ, so we write x = x(1)x(2) . . . and x[n] = x(1)x(2) . . . x(n) for its prefix of length n4 . We write Σ ω for the set of all ω-words over the alphabet Σ, so that an ω-language over the alphabet Σ is nothing but a subset of Σ ω . As usual, the concatenation of two finite words u and v is denoted uv. It naturally extends to the concatenation of a finite word u and an ω-word x to give the ωwords y = ux defined by: y

(k) = u(k) if k ≤ |u| , and y(k) = x(k -|u|) if k > |u|.
Given any finite word u, and any finite or infinite word x, u is a prefix of x (denoted u ⊑ x) if u(i) = x(i) holds for every non-zero integer i ≤ |u|. Finally, for

V ⊆ Σ * , V ω = {σ = u 1 . . . u n . . . ∈ Σ ω | u i ∈ V, ∀i ≥ 1}.
A finite state machine (FSM) is a quadruple M = (Q, Σ, δ, q 0 ), where Q is a finite set of states, Σ is a finite input alphabet, q 0 ∈ Q is the initial state and δ is a mapping from

Q × Σ into 2 Q . It is deterministic (DFSM) if δ : Q × Σ -→ Q.
Given an infinite word x, the infinite sequence of states ρ = q 1 q 2 q 3 . . . is called an (infinite) run of M on x starting in state p, if both q 1 = p and q i+1 ∈ δ(q i , a i ) (∀i ≥ 1) hold. In case p is the initial state of M (p = q 0 ), then ρ is simply called an infinite run of M on x. We denote by In(ρ) = {q ∈ Q | ∀m ∃n > m q n = q} the set of states that appear infinitely often in ρ.

Equipped with an acceptance condition F , a finite state machine becomes a finite state automaton M = (Q, Σ, δ, q 0 , F ). It is a Büchi automaton (BA) when F ⊆ Q, and a Muller automaton (MA) when F ⊆ 2 Q . A Büchi automaton (respectively a Muller automaton) accepts x if for some infinite run of M on x, In(ρ) ∩ F is not empty (respectively In(ρ) ∈ F holds). The ω-language accepted by an automaton is the set of all the infinite words it accepts. The classical result of R. Mc Naughton [START_REF] Naughton | Testing and generating infinite sequences by a finite automaton[END_REF] establishes that non-deterministic Büchi automata, and both deterministic and non-deterministic Muller automata recognize the exact same ω-languages known as the ω-regular languages5 .

A partially blind multicounter automaton is a finite automaton equipped with a finite number (k) of partially blind counters. The content of any such counter is a non-negative integer. A counter is said to be partially blind when the multicounter automaton cannot test whether the content of the counter is zero. This means that if a transition of the machine is enabled when the content of a counter is zero then the same transition is also enabled when the content of the same counter is a non-zero integer. In order to get a partially blind multicounter automaton -simply called a blind multicounter automaton -which accepts the same language as a given Petri net, one can distinguish between the places of a Petri net by dividing them into the bounded ones (the number of tokens in such a place at any time is uniformly bounded) and the unbounded ones. Then each unbounded place may be seen as a blind counter, and the tokens in the bounded places determine the state of the blind multicounter automaton. The transitions of the Petri net may then be seen as the finite control of the blind multicounter automaton and the labels of these transitions are then the input symbols.

Contrary to what happens with non-deterministic Petri nets, allowing ε-transitions does not increase the expressive power of deterministic Petri nets which read ω-words [START_REF] Carstensen | Infinite behaviour of deterministic Petri nets[END_REF]. For this reason, we restrict ourselves to the sole real time -i.e., ε-transition free -blind multicounter automata. Also, without loss of generality we may assume that every transition, for every counter, either increases or decreases its content by 1 or leaves it untouched.

Definition 1. For k any non-zero integer, A (real time) deterministic k-blindcounter machine (k-BCM) is of the form M = (Q, Σ, δ, q 0 ) where Q is a finite set of states, Σ is a finite input alphabet, q 0 ∈ Q is the initial state, and the transition relation δ is a partial mapping from

Q × Σ × {0, 1} k into Q × {0, 1, -1} k .
If the machine M is in state q, and for each i, c i ∈ N is the content of the counter C i , then the configuration (or global state) of M is the (k + 1)-tuple (q, c 1 , . . . , c k ).

Given any a ∈ Σ, q, q ′ ∈ Q, and

(c 1 , . . . , c k ) ∈ N k , if both δ(q, a, i 1 , . . . , i k ) = (q ′ , j 1 , . . . , j k ), and 
j l ∈ E = {l ∈ {1, . . . , k} | c l = 0} ⇒ j l ∈ {0, 1} hold, then we write a : (q, c 1 , . . . , c k ) → M (q ′ , c 1 + j 1 , . . . , c k + j k ).
Thus the transition relation must verify: if δ(q, a, i 1 , . . . , i k ) = (q ′ , j 1 , . . . , j k ), and i m = 0 holds for some m ∈ {1, . . . , k}, then we must have j m = 0 or j m = 1 (but j m = -1 is prohibited).

Moreover the k counters of M are blind, i.e., if δ(q, a, i 1 , . . . , i k ) = (q ′ , j 1 , . . . , j k ) holds, and i m = 0 for m ∈ E ⊆ {1, . . . , k}, then δ(q, a, i ′ 1 , . . . , i ′ k ) = (q ′ , j 1 , . . . , j k ) holds also whenever

i m = i ′ m for m / ∈ E, and i ′ m = 0 or i ′ m = 1 for m ∈ E. For any finite word u = a 1 a 2 . . . a n over Σ, a sequence of configurations ρ = (q i , c i 1 , . . . c i k ) 1≤i≤n+1 is a run of M on u, starting in configuration (p, c 1 , . . . , c k ) iff (q 1 , c 1 1 , . . . , c 1 k ) = (p, c 1 , . . . , c k ), and 
a i : (q i , c i 1 , . . . c i k ) → M (q i+1 , c i+1 1 , . . . c i+1 k ) (all 1 ≤ i ≤ n).
This notion extends naturally to infinite words: for x = a 1 a 2 . . . a n . . . any ω-word over Σ, an ω-sequence of configurations

(q i , c i 1 , . . . c i k ) i≥1 is called a complete run of M on x, starting in configuration (p, c 1 , . . . , c k ) iff (q 1 , c 1 1 , . . . c 1 k ) = (p, c 1 , . . . , c k ), and 
a i : (q i , c i 1 , . . . c i k ) → M (q i+1 , c i+1 1 , . . . c i+1 k ) (for all 1 ≤ i).
A complete run ρ of M on x, starting in configuration (q 0 , 0, . . . , 0), is simply called "a run of M on x". Definition 2. A Büchi (resp. Muller) deterministic k-blind-counter automaton is some k-BCM M ′ = (Q, Σ, δ, q 0 ), equipped with an acceptance condition F :

M = (Q, Σ, δ, q 0 , F ). It is a Büchi (resp. Muller 6 ) k-blind-counter automaton when F ⊆ Q (resp. F ⊆ 2 Q ), and it accepts x if the infinite run of M ′ on x verifies In(ρ) ∩ F = ∅ (respectively In(ρ) ∈ F ).
We write L(M) for the ω-language accepted by M, and BC(k) for the class of ω-languages accepted by Muller deterministic k-blind-counter automata.

Borel and Wadge hierarchies

We assume the reader to be familiar with basic notions of topology that may be found in [START_REF] Kechris | Classical descriptive set theory[END_REF][START_REF] Lescow | Logical specifications of infinite computations[END_REF][START_REF] Moschovakis | Descriptive set theory[END_REF], and of ordinals (in particular the operations of multiplication and exponentiation) that may be found in [START_REF] Sierpiǹski | Cardinal and ordinal numbers[END_REF]. For any given finite alphabet X -that contains at least two letters -we consider X ω as the topological space equipped with the Cantor topology 7 . The open sets of X ω are those of the form W X ω , for some W ⊆ X * . The closed sets are the complements of the open sets. The class that contains both the open sets and the closed sets, and is closed under countable union and intersection is the class of Borel sets. It is nicely set up in a hierarchy but counting how many times these latter operations are needed. This defines the Borel Hierarchy: Σ 0 1 is the class of open sets , and Π 0 1 is the class of closed sets. For any non-zero integer n, Σ 0 n+1 is the class of countable unions of sets inside Π 0 n , while Π 0 n+1 is the class of countable intersections of sets inside Σ 0 n . More generally, for any non-zero countable ordinal α, Σ 0 α is the class of countable unions of sets in ∪ γ<α Π 0 γ , and Π 0 α is the class of countable intersections of sets in ∪ γ<α Σ 0 γ .

The Borel rank of a subset A of X ω is the least ordinal α ≥ 1 such that A belongs to Σ 0 α ∪ Π 0 α . By ways of continuous pre-image, the Borel hierarchy turns into the refined Wadge Hierarchy.

Definition 3 (≤ w , ≡ w , < w ). We let X, Y be two finite alphabets, and A ⊆ X ω , B ⊆ Y ω , A is said Wadge reducible to B (denoted A ≤ W B) iff there exists some continuous function f :

X ω -→ Y ω that satisfies ∀x ∈ X ω (x ∈ A ⇔ f (x) ∈ B).
We write A ≡ w B for A ≤ w B ≤ w A, and

A < w B for A ≤ w B ≤ w A. A set A ⊆ X ω is self dual if A ≡ w X ω A (denoted A ∁ ) is verified. It is non-self dual otherwise 8 .
It is easy to verify that the relation ≤ w is both reflexive and transitive, and that ≡ w is an equivalence relation. Given any set A, the class of all its continuous pre-images forms a topological9 class Γ called a Wadge class. A set is Γ-complete if it both belongs to Γ, and (Wadge) reduces every element in it 10 . It turns out that Σ 0 α (resp. Π 0 α ) is a Wadge class and any set in

Σ 0 α Π 0 α (resp. Π 0 α Σ 0 α ) is Σ 0 α -complete (resp. Π 0 α -complete).
Both Σ 0 n -complete and Π 0 n -complete sets (any 0 < n < ω) are examined in [START_REF] Staiger | Hierarchies of recursive ω-languages[END_REF].

Wadge reducibility participates in game theory for continuous functions may be regarded as strategies for a player in a two-player game of perfect information and infinite length: Definition 4. Given any mapping f : X ω -→ Y ω , the game G(f ) is the twoplayer game where players take turn picking letters in X for I and Y for II, player I starting the game, and player II being allowed in addition to pass her turn, while player I is not. So, in the game G(f ), a strategy for player I is a mapping σ : (Y ∪ {s}) ⋆ -→ X, where s is a new letter not in Y that stands for II 's moves when she passes her turn 11 . A strategy for player II is a mapping f : X + -→ Y ∪ {s}. A strategy is called winning if it ensures a win whatever the opponent does. This game was designed to characterize the continuous functions. Wadge found out that given f : X ω -→ Y ω , f is continuous ⇐⇒ II has a winning strategy in G(f ). This is an easy exercise (see [START_REF] Kechris | Classical descriptive set theory[END_REF][START_REF] Moschovakis | Descriptive set theory[END_REF]). Definition 5. For A ⊆ X ω and B ⊆ Y ω , the Wadge game W (A, B) is the same as G(f ), except that II wins iff y ∈ Y ω and (x ∈ A ⇐⇒ y ∈ B) hold. 12 In 1975, Martin proved Borel determinacy [START_REF] Kechris | Classical descriptive set theory[END_REF][START_REF] Martin | Borel determinacy[END_REF], whose consequence is that for every Wadge game W (A, B), either player I or II has a winning strategy as long as both A and B are Borel. As immediate consequences, Wadge obtained that for any Borel A, B ⊆ X ω , there are no three ≤ w -incomparable Borel sets. Moreover, if A ≤ w B and B ≤ w A, then A ≡ w B ∁ . Later on, Martin and Monk proved that there is no sequence (A i ) i∈ω of Borel subsets of X ω such that [START_REF] Kechris | Classical descriptive set theory[END_REF][START_REF] Wadge | Reducibility and determinateness in the Baire space[END_REF]. We recall that a set S is well ordered by the binary relation < on S iff < is a linear order on S such that there is no strictly infinite <-decreasing sequence of elements from S. It follows that up to complementation and ≡ w , the class of Borel subsets of X ω , is well-ordered by < w . Therefore, there is a unique ordinal |W H| isomorphic to this well-ordering, together with a mapping d 0 W from the Borel subsets of X ω onto |W H|, such that for all Borel subsets A, B:

A 0 > w A 1 > w A 2 > w . . . A n > w A n+1 > w . . . holds
d 0 W A < d 0 W B ⇔ A < w B, and 
d 0 W A = d 0 W B ⇔ (A ≡ w B or A ≡ w B ∁
). This well-ordering restricted to the Borel sets of finite ranks 13 has length the first ordinal that is a fixpoint of the operation α -→ ω 1 α [START_REF] Duparc | Wadge hierarchy and Veblen hierarchy: Part 1: Borel sets of finite rank[END_REF][START_REF] Wadge | Reducibility and determinateness in the Baire space[END_REF], where ω 1 is the first uncountable ordinal.

In order to study the Wadge hierarchy of the class BC(k) of ω-languages accepted by Muller deterministic k-blind-counter automata, we concentrate on the non-self dual sets as in [START_REF] Duparc | Wadge hierarchy and Veblen hierarchy: Part 1: Borel sets of finite rank[END_REF], and slightly modify the definition of the Wadge degree. For A ⊆ X ω , such that A > w ∅, we set d w (∅) = d w (∅ ∁ ) = 1, d w (A) = sup{d w (B) + 1 | B non-self dual and B < W A}.

Every ω-language which is accepted by a deterministic Petri net -more generally by a deterministic X-automaton in the sense of [START_REF] Engelfriet | X-automata on ω-words[END_REF] or by a deterministic Turing machine -is a boolean combination of Σ 0 2 -sets thus its Wadge degree inside the whole Wadge hierarchy of Borel sets is located below ω ω 1 . Moreover, every ordinal 0 < α < ω ω 1 admits a unique Cantor normal form of base ω 1 [START_REF] Sierpiǹski | Cardinal and ordinal numbers[END_REF], i.e., it can be written as

α = ω nj 1 .δ j + ω nj-1 1 .δ j-1 + • • • + ω n1
1 .δ 1 where 0 < j < ω, 0 ≤ n 1 < . . . < n j < ω, and δ j , δ j-1 , . . . , δ 1 are non-zero countable ordinals. From Wagner's study, such an ordinal is the Wadge degree of an ω-regular language iff δ j , δ j-1 , . . . , δ 1 are all integers. It is also known that such an ordinal 12 One sees immediately that a winning strategy for II in W (A, B) yields a continuous mapping f : X ω -→ Y ω that guaranties that A ≤w B holds, whereas any continuous function f that witnesses the reduction relation A ≤w B gives rise to some winning strategy for II in G(f ) which is also winning for II in W (A, B). This shows that for A ⊆ X ω and B ⊆ Y ω , A ≤w B ⇐⇒ II has a winning strategy in W (A, B) . 13 The Borel sets of finite ranks are those in

[ n∈IN Σ 0 n = [ n∈IN Π 0 n .
is the Wadge degree of a deterministic context-free ω-language if and only if these multiplicative coefficients are all below ω ω [START_REF] Duparc | A hierarchy of deterministic context free ω-languages[END_REF]. We add to this picture the following results that exhibits the Wadge hierarchy of BC(k):

1. for every non-null ordinal α whose Cantor normal form of base ω 1 is

α = ω nj 1 .δ j + ω nj-1 1 .δ j-1 + • • • + ω n1 1 .δ 1
where, for some integer k ≥ 1, δ 1 , . . . , δ j are (non-null) ordinals < ω k+1 , there exists some ω-language L ∈ BC(k) whose Wadge degree is α. 2. Non-self dual ω-languages in BC(k) have Wadge degrees of the above form.

Next section is dedicated to operations that will be needed in the proof.

4 Operations over sets of ω-words

4.1 The sum Definition 6. For {X + , X -} a partition in non-empty sets of X B X A with X A ⊆ X B , A ⊆ X ω A , and B ⊆ X ω B , B + A = A ∪ X * A X + B ∪ X * A X -B ∁ .
A player in charge of B + A in a Wadge game is like a player who begins the play in charge of A, and at any moment may also decide to start anew but being in charge this time of either B or of B ∁ 14 .

Proposition 7 (Wadge). For non-self dual Borel sets A and B,

d w (B + A) = d w (B) + d w (A).
Notice that for any non-self dual Borel sets A, B, C, we have both A+(B+C) ≡ w (A + B) + C, and (B + A) ∁ ≡ w B + A ∁ . Although the class BC(k) is not closed under complementation, and B + A was defined as A ∪ X * A X + B ∪ X * A X -B ∁ , we may however use of the formulation

B + A ∈ BC(k) for A, B ∈ BC(k) if some C ∈ BC(k) verifies C ≡ w B ∁ .

The countable multiplication

We first need to define the supremum of a countable family of sets. 14 The first letter in XB XA that is played decides the choice of B or B ∁ . Notice that given any finite alphabets X, Y which contain at least two letters, and any B ⊆ X ω , there exists B ′ ⊆ Y ω such that B ≡w B ′ . Moreover, if for some integer k ≥ 0 we have B ∈ BC(k), then B ′ can be taken in BC(k). So that we may write B + A whatever space B is a subset of, simply meaning B ′ + A where B ′ is any set that satisfies both B ′ ≡w B and B ′ ⊆ X ω for some X that contains the alphabet from which A is taken from, and strictly extends it with at least two new letters.

Definition 8. For any bijection f : IN -→ I, any family (A i ) i∈I of non-self dual Borel subsets of X ω , we fix some letter e ∈ X to define

sup i∈I A i = n∈IN (X {e}) n eA f (n) .
Proposition 9. (See [START_REF] Duparc | Wadge hierarchy and Veblen hierarchy: Part 1: Borel sets of finite rank[END_REF][START_REF] Duparc | A hierarchy of deterministic context free ω-languages[END_REF].) For (A i ) i∈I any countable family of non-self dual Borel subsets of X ω such that ∀i ∈ I ∃j ∈ I A i < w A j , then

1. sup i∈I A i is a non-self dual Borel subset of X ω , and 2. d w (sup i∈I A i ) = sup{d w (A i ) | i ∈ I}.
By combining sum and supremum, we get multiplication by countable ordinals.

Definition 10. For A ⊆ X ω , and

0 < α < ω 1 , A • α is inductively defined by A • 1 = A, A • (ν + 1) = (A • ν) + A, and A • β = sup δ∈β A • δ, for β limit.
By Propositions 7 and 9, this operation verifies the following.

Proposition 11. Let A ⊆ X ω be some non-self dual Borel set, and 0 < α < ω 1 ,

d w (A • α) = d w (A) • α.
For a player in charge of A•α in a Wadge game, everything goes as if (s)he could switch again and again between being in charge of A or A ∁ -starting anew every time (s)he does so -but restrained from doing so infinitely often by having to construct a decreasing sequence of ordinals < α on the side every time (s)he switches.

The multiplication by ω 1

Definition 12. For A ⊆ X ω , and a, b /

∈ X two different letters, Y = X ∪ {a, b}, A • ω 1 ⊆ (X ∪ {a, b}) ω is defined 15 by A • ω 1 = A ∪ Y * aA ∪ Y * bA ∁ .
Inside a Wadge game, a player in charge of A•ω 1 may switch indefinitely between being in charge of A or its complement, deleting what (s)he has already played each time.

Proposition 13. (See [5].) For any non-self dual Borel

A ⊆ X ω , A • ω 1 is non-self dual Borel, and d w (A • ω 1 ) = d w (A) • ω 1 .
The following property will be very useful.

Proposition 14. If A ⊆ X ω is regular, then A • ω 1 is also regular.
Proof. Immediate from the closure of the class REG ω under finite union, complementation, and left concatenation by finitary regular languages [START_REF] Duparc | Computer science and the fine structure of Borel sets[END_REF].

⊓ ⊔

Localisation of BC(k)

This section is dedicated to proving that there is no other Wadge class generated by some non-self dual ω-language in BC(k) than the ones described in Theorem 17. Prior to this we need a technical result about the Wadge hierarchy together with a few others on ordinal combinatorics, and notations.

For some A ⊆ X ω and u ∈ X * , we write u -1 A for the set {x ∈ X ω | ux ∈ A}.

We say that A is initializable if player II has a w.s. in the Wadge game W (A, A) even though she is restricted to positions u ∈ X * that verify u -1 A ≡ w A.

Lemma 18. For A ⊆ X ω any initializable set, B ⊆ Y ω , and δ, θ any countable ordinals,

A • (θ + 1) ≤ w B ≤ w A • δ =⇒ ∃u ∈ Y *    u -1 B ≡ w A • (θ + 1) or u -1 B ≡ w (A • (θ + 1)) ∁ .
Lemma 19. We let B ⊆ Y ω , A ⊆ X ω be any initializable set, and δ, θ be any countable ordinals. We consider any set of the form

C = A • ω n 1 • ν n + • • • + A • ω n-1 1 • ν n-1 + • • • + A • ω 1 • ν 1
for any non-zero integer n, and countable coefficients ν n , ν n-1 , . . . , ν 1 with at least one of them being non-null.

C+A•(θ+1) ≤ w B ≤ w C+A•δ =⇒ ∃u ∈ Y *    u -1 B ≡ w C + A • (θ + 1) or u -1 B ≡ w (C + A • (θ + 1)) ∁ .
We recall that for any set of ordinals O, its order type -denoted ot(O) -is the unique ordinal that is isomorphic to O ordered by membership.

Definition 20. The function H : ω ω × ω ω -→ On is defined by

H(α, β) = ω k • (l k + m k ) + ω k-1 • (l k-1 + m k-1 ) + • • • + ω 0 • (l 0 + m 0 ).
Where (a variation of the) the Cantor normal form of base ω of α (resp.

β) is α = ω k • l k + ω k-1 • l k-1 + • • • + ω 0 • l 0 , β = ω k • m k + ω k-1 • m k-1 + • • • + ω 0 • m 0 , with l k , m k , l k-1 , m k-1 , . . . , l 0 , m 0 ∈ IN.
(Some of these integers may be null17 .)

Lemma 21. Let H : ω ω × ω ω -→ On, 0 < α ′ , α, β ′ β < ω ω with α ′ ≤ α, β ′ ≤ β but either α ′ < α or β ′ < β, then H(α ′ , β ′ ) < H(α, β).
We make use of the mapping H to prove the following combinatorial result.

Lemma 22. Let α, β, γ be non-null ordinals with α, β < ω ω , and f : γ -→ {0, 1}. If both α = ot(f -1 [0]) and β = ot(f -1 [START_REF] Carstensen | Infinite behaviour of deterministic Petri nets[END_REF]) hold, then γ ≤ H(α, β).

Corollary 23. Let k, n be non-null integers, γ be any ordinal, 0 ≤ α 0 , . . . , α k < ω n , and f : γ -→ {0, . . . , k}. If ∀i ≤ k α i = ot(f -1 [i]) holds, then γ < ω n . Lemma 24. Let k be some non-null integer, (IN k , ) be a well-ordering such that for every k-tuples (a 0 , . . . , a k-1 ), (b 0 , . . . , b k-1 ) ∈ IN k the following holds:

(a 0 , . . . , a k-1 ) (b 0 , . . . , b k-1 ) =⇒    ∀i < k a i ≤ b i or ∃i, j < k such that a i < b i and a j > b j .
Then, the order type of (IN k , ) is at most ω k . Lemma 25. We let k be any non-null integer, B ∈ BC(k), A ⊆ X ω be any initializable set, and δ any countable ordinal.

B ≤ w A • δ =⇒ B ≤ w A • α for some α < ω k+1 .
An immediate consequence is that B ≡ w A • δ holds only for ordinals δ < ω k+1 .

Proof. First notice that for every B ⊆ X ω , and every u ∈ X * , if B ∈ BC(k) holds, then u -1 B ∈ BC(k) holds too. Towards a contradiction, we assume that A • α < w B ≤ w A • δ holds for all α < ω k+1 . We let B be a k-blind counter automaton that recognizes B. By Lemma 18, for each successor ordinal α < ω k+1 there exists some

u α ∈ X * such that u -1 α B ≡ w A • α or u -1 α B ≡ w (A • α) ∁ .
For each such u α , we form (q α , c α,0 , c α,1 , . . . , c α,k-1 ) where q α denotes the control state that B is in after having read u α , and c α,i the height of its counter number i (any i < k). Now there exists necessarily some control state q such that the order type of the set S = {α < ω k+1 | α successor and q α = q} is ω k+1 . By Lemma 24 there exist α, α ′ ∈ S such that α ′ < α holds together with c α,i ≤ c ′ α,i (any i < k). (Without loss of generality, we may even assume that ω ≤ α ′ < α holds.) Let us denote B α ′ the k-blind counter automaton B that starts in state (q α ′ , c α ′ ,0 , c α ′ ,1 , . . . , c α ′ ,k-1 ), and B α the one that starts in state (q α , c α,0 , c α,1 , . . . , c α,k-1 ). Notice that since c α,i ≤ c ′ α,i holds for all i < k, B α ′ performs exactly the same as B α except when the latter crashes for it tries to decrease a counter that is already empty. But it is then not difficult to see that given the above assumption -that ω ≤ α

′ < α holds -u -1 α B ≤ w u -1 α ′ B holds which leads to either A•α ≤ w A•α ′ or (A•α) ∁ ≤ w A•α ′ . In both cases, it contradicts α ′ < α. ⊓ ⊔
Notice that ∅ • ω n 1 being initializable, we have in particular the following result. Lemma 26. For k, n any integers, A any non-self dual ω-language in BC(k), and any non-zero countable ordinal α, A or A ∁ ≡ w (∅ • ω n 1 ) • α =⇒ α < ω k+1 . In a similar way, we may now state the following lemma. Lemma 27. We let k be any non-null integer, B ∈ BC(k), A ⊆ X ω be any initializable set, δ be any countable ordinal, and C be any set of the form

C = A • ω n 1 • ν n + • • • + A • ω n-1 1 • ν n-1 + • • • + A • ω 1 • ν 1
for any non-zero integer n, and countable multiplicative coefficients ν n , ν n-1 , . . . , ν 1 with at least one of them being non-null. Then we have

B ≤ w C + A • δ =⇒ B ≤ w C + A • α for some α < ω k+1 .
Theorem 28. Let k be any non-null integer, B ⊆ X ω be non-self dual. If B ∈ BC(k), then either B or B ∁ is Wadge equivalent to some

Ω(α) = (∅ • ω nj 1 ) • δ j + (∅ • ω nj-1 1 ) • δ j-1 + • • • + (∅ • ω n0 1 ) • δ 0 .
where j ∈ IN, n j > n j-1 > . . . > n 0 and ω k+1 > δ j , δ j-1 , . . . , δ 0 > 0.

Proof. This is an almost immediate consequence of Lemmas 25 and 27.

⊓ ⊔

This settles the case of the non-self dual ω-languages in BC(k). For the self-dual ones, it is enough to notice the easy following:

1. Given any A ⊆ X ω , if A ∈ BC(k) is self dual, then there exists two non-self dual sets B, C ⊆ X ω such that both B and C belong to BC(k), B ≡ w C ∁ , and A ≡ w X 0 B ∪ X 1 C, where {X 0 , X 1 } is any partition of X in two nonempty sets. 2. If A ⊆ X ω and B ⊆ X ω are non-self dual, verify A ≡ w B ∁ , and both belong to BC(k), then, given any partition of X in two non-empty sets {X 0 , X 1 }, X 0 A ∪ X 1 B is self-dual, and also belongs to BC(k).

If we set d • (A) = sup{d • (B) + 1 | B < W A}(any A ⊆ X ω ), then we obtain that there exists an ω-language B ⊆ X ω recognized by some deterministic Petri net, such that A ≡ w B holds iff d • A is of the form α = ω n 1 • δ n + • • • + ω 0 1 • δ 0 for some n ∈ IN, and ω ω > δ n , . . . , δ 0 ≥ 0. Finally, an easy computation provides (ω ω ) ω = ω ω 2 as the height of the Wadge hierarchy of ω-languages recognized by deterministic Petri nets.

Conclusions

We provided a description of the extension of the Wagner hierarchy from automata to deterministic Petri Nets with Muller acceptance conditions. The results are rigorously the same if we replace Muller acceptance conditions with parity acceptance conditions. But with Büchi acceptance conditions instead, it becomes even simpler since the ω-languages are no more boolean combinations of Σ 0 2 -sets, but Π 0 2 -sets. So, the whole hierarchy comes down to the following: Corollary 29. For any A ⊆ X ω , there exists an ω-language B ⊆ X ω recognized by some deterministic Petri net with Büchi acceptance conditions, such that A ≡ w B iff either d • A = ω 1 , and A is Π 0 2 -complete, or d • A < ω ω . Deciding the degree of a given ω-language in BC(k), for k ≥ 2, recognized by some deterministic Petri net -either with Büchi or Muller acceptance conditions, remains an open question. Notice that for k = 1 this decision problem has been shown to be decidable by the second author in [START_REF] Finkel | An effective extension of the Wagner hierarchy to blind counter automata[END_REF].

Another rather interesting open direction of research is to go from deterministic to non-deterministic Petri nets. It is clear that this step forward brings new Wadge classes -for instance there exist ω-languages recognized by nondeterministic Petri nets with Büchi acceptance conditions that are not ∆ 0 3 [START_REF] Finkel | On the topological complexity of ω-languages of non-deterministic Petri nets[END_REF] -but the description of this whole hierarchy still requires more investigations.

x2n+3

  After ω-many moves, player I and player II have respectively constructed x ∈ X ω and y ∈ Y * ∪ Y ω . Player II wins the game if y = f (x), otherwise player I wins.

The class of all effective analytic sets (denoted Σ 1 1 ) is the class of all the ω-languages recognized by (non-deterministic) Turing machines.

note that the enumeration x = x(1)x(2) . . . does not start at 0 so that we recover the empty word as x[0].

The class of all the ω-regular languages is also characterized as the "ω-Kleene closure" of the class REG of all the (finitary) regular languages. Where given any class of finitary languages L, the ω-Kleene closure of L is the class of ω-languages { S 1≤i≤n Ui.V ω i | Ui, Vi ∈ L}.

The Muller acceptance condition was denoted 3-acceptance in[START_REF] Landweber | Decision problems for ω-automata[END_REF][START_REF] Carstensen | Infinite behaviour of deterministic Petri nets[END_REF], and (inf, =) in[START_REF] Staiger | ω-languages[END_REF].

The product topology of the discrete topology on X.

Non-self dual sets are precisely those that verify A ≤w A ∁ .

A topological class is a class that is closed under continuous pre-images.

It follows that two sets are complete for the same topological class iff they are Wadge equivalent.

"s" stands for "skips".

This operation was denoted A -→ A.∞ in[START_REF] Duparc | Computer science and the fine structure of Borel sets[END_REF], and A -→ A ♮ in[START_REF] Duparc | A hierarchy of deterministic context free ω-languages[END_REF].

i.e., dw(∅) = dw(X ω ) = 1.

In particular, l k , l k-1 , . . . m k , m k-1 , . . . might be null, but since α, β > 0 holds, at least one of the li's, and one of the mi's are different from zero.

Canonical non-self dual sets

The empty set, considered as an ω-language over a finite alphabet is a Borel set of Wadge degree 1, i.e., d w (∅) = 1. It is a non-self dual set and its complement has the same Wadge degree 16 . On the basis of the emptyset or its complement, the operations defined above provide non-self dual Borel sets for every Wadge degree < ω ω 1 . For notational purposes, given any A ⊆ X ω we define A • ω n 1 by induction on n ∈ IN by: A • ω 0 1 = A, and

where ω > j > 0, ω > n j > n j-1 > . . . > n 1 ≥ 0, and δ j , δ j-1 , . . . , δ 1 are non-zero countable ordinals [START_REF] Sierpiǹski | Cardinal and ordinal numbers[END_REF]. As in [START_REF] Duparc | Wadge hierarchy and Veblen hierarchy: Part 1: Borel sets of finite rank[END_REF][START_REF] Duparc | A hierarchy of deterministic context free ω-languages[END_REF], we set Ω(α

• δ 1 . By Propositions 7, 11, and 13 d w (Ω(α)) = α holds.

A hierarchy of BC(k)

From now on, we restrain ourselves to the sole ordinals α < ω ω 1 whose Cantor normal form of base ω 1 contains only multiplicative coefficients strictly below ω k+1 , and we construct for every such α some Muller deterministic k-blind-counter automata M α and M - α such that both L(M α ) ≡ w Ω(α) and L(M - α ) ≡ w Ω(α) ∁ hold.

To start with, notice that for every integer n since ∅•ω n ∈ REG ω is verified, there exist deterministic Muller automata O n = (Q n , X n , δ n , q 0 n , F n ), where F n ⊆ 2 Qn is the collection of designated state sets, such that L(O n ) = ∅ • ω n . We prove the following results: Proposition 15. For any ω-regular language A, any integer j ≥ 1 there exist ω-languages B, C ∈ BC(j) such that B ≡ w (A • ω j ) and C ≡ w (A • ω j ) ∁ .

A careful generalization of the ideas of the proofs of Proposition 15 leads to: Proposition 16. For any ω-regular A, integer k, and ordinal

1 • δ 0 where ω > j ≥ 0, ω > n j > n j-1 > . . . > n 0 ≥ 0, and ω ω > δ j , δ j-1 , . . . , δ 0 > 0. Let k be the least integer such that ∀i ≤ j δ i < ω k+1 . Then there exist ωlanguages B, C ∈ BC(k) such that B ≡ w Ω(α) and C ≡ w Ω(α) ∁ .

We recall that Ω(α) := (∅ • ω nj