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Absorbing boundary conditions and perfectly
matched layers in wave propagation problems

Frédéric Nataf

Abstract. In this article we discuss different techniques to solve numerically wave propagation
phenomena in unbounded domains. We present in a unified and simple way the two ways to
restrict the computation to a finite domain: absorbing (or artificial) boundary conditions (ABC)
and perfectly matched layers (PML). The intent is to give the possibility to the reader to grasp
easily similarities and differences between these two truncation techniques. It should also
allow the reader to adapt a truncation technique to the peculiarities of his physical modeling.

Keywords. artificial boundary condition, perfectly matched layer.
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1 Introduction
To model numerically a wave propagation phenomena in a domain which extends to
infinity, it is common practice to truncate the computational domain to a finite domain.
The newly formed external boundary is somewhat artificial. To reduce undesired nu-
merical reflections, there is a need for a special treatment at these boundaries. The
solution must be as close as possible to the restriction of the solution that would have
been computed in the original physical infinite domain. The most commonly used grid
truncation techniques are so-called ABC, Artificial (or Absorbing) Boundary Con-
ditions, and perfectly matched layer, PML, formulations. ABC technique was first
formalized by B. Engquist and E. Majda in a seminal 1977 paper in [7]. The PML
concept was introduced by J.-P. Berenger in a 1994 paper, see [13]. ABC techniques
are more general than PML. However, PML (which is an absorbing region rather than
a boundary condition per se) can provide orders-of-magnitude lower reflections. Both
methods are widely used in acoustic, electromagnetic or elastodynamic simulation
software codes. Their precise formulations and efficiency depend strongly on the un-
derlying partial differential equations that are discretized. For example, a stable and
quite efficient PML for the non dissipative wave equation may surprisingly lead to un-
stable computations if used in conjunction with a damped wave equation. We present
in this article, a unified and simple approach to the design and study of both ABC and
PML formulations. The intent is to give the possibility to the reader to grasp easily
similarities and differences between these two techniques. It should also allow the
reader to adapt a truncation technique to the peculiarities of his physical modeling.
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2 ABC

Homogeneous Dirichlet or Neumann boundary conditions for the wave equation lead
to a total reflection of an impinging wave on the artificial boundary of a computational
domain. We present here the method introduced by B. Engquist and A. Majda in 1977
(see [7]) to design absorbing conditions that are easy to implement and yield a small
reflection coefficient on the truncation boundary. The wave equation is solved in a
domain exterior to an open bounded subset Ω of R2 denoted by Ωc:

∂2u

∂t2
− c2

(
∂2u

∂x2 +
∂2u

∂y2

)
= f(t, x, y), (x, y) ∈ Ω

c, t > 0

u(0, x, y) = u0(x, y) in Ωc

∂u

∂t
(0, x, y) = u1(x, y) in Ω

c

u = 0 on ∂Ω

u satisfies a radiation boundary condition at infinity

(2.1)

The origin of the coordinate system is such that Ω is a subset of the half-space of
negative x. We assume that the initial conditions u0 and u1 and the right hand side f
have a compact support in this half space. The computational domain is truncated on
its right by the artificial boundary x = 0, denoted Γ. It is not possible to use as an
ABC a Dirichlet boundary condition on Γ since the solution is not known on Γ. The
idea to design the ABC by finding a relation satisfied by the solution on Γ that does not
depend on the values of the right hand sides. This integrodifferential relation defines
an exact ABC which will be approximated by a partial differential equation.

2.1 Exact ABC

We first study the solution u in the right half space x ≥ 0 independently of the bound-
ary condition satisfied at x = 0. We have:

∂2u

∂t2
− c2

(
∂2u

∂x2 +
∂2u

∂y2

)
= 0, x ≥ 0, y ∈ R, t > 0

u(0, x, y) = 0, x ≥ 0, y ∈ R
∂u
∂t (0, x, y) = 0, x ≥ 0, y ∈ R

In order to use the Fourier transform in time, we first prolongate u by zero for negative
times. Since the initial conditions are zero for x ≥ 0, the prolongated function ũ still
satisfies the homogeneous wave equation

∂2ũ

∂t2
− c2

(
∂2ũ

∂x2 +
∂2ũ

∂y2

)
= 0, x > 0, t, y ∈ R.
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Figure 1. Truncation of the computational domain to a half-plane

We take the Fourier transform in t and y (dual variables are ω and k respectively) of
this equation:

−ω2 ˆ̃u− c2∂
2 ˆ̃u
∂x2 + c2k2 ˆ̃u = 0.

For a given (ω, k), it is an ordinary differential equation whose solution may be sought
in the form ˆ̃u(ω, x, k) =

∑
j αj(ω, k)exp(λj(ω, k)x). We have

λ2 = k2 − ω2

c2 .

We have two possibilities:

• evanescent waves, |k| > ω
c : λ± = ±

√
k2 − ω2

c2

• propagative waves, |k| < ω
c : λ± = ±iω

c

√
1− c2k2

ω2 (i2 = −1)

By using inverse Fourier transform, the general form for ũ is:

ũ(t, x, y) =

∫ ∫
|k|>ω

c

α−(ω, k)e
−
√
k2−ω2

c2 xei(ωt+ky)dk dω (2.2)

+

∫ ∫
|k|<ω

c

α−(ω, k)e
i(ωt−ω

c

√
1− c2k2

ω2 x+ky)
dk dω (2.3)

+

∫ ∫
|k|>ω

c

α+(ω, k)e

√
k2−ω2

c2 xei(ωt+ky)dk dω (2.4)

+

∫ ∫
|k|<ω

c

α+(ω, k)e
i(ωt+ω

c

√
1− c2k2

ω2 x+ky)
dk dω (2.5)

Next, we show that α+(ω, k) ≡ 0 for all (ω, k). In (2.4) indeed, the term e

√
k2−ω2

c2 x

tends to infinity as x tends to infinity. Solution ũ is bounded, we must have α+(ω, k) =
0 for |k| > ω

c . Moreover, integral (2.5) corresponds to a linear combination of waves
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propagating in the direction of negative x. It is impossible that waves originate from
infinity, only the boundary Γ creates waves. As a result, we have α+(ω, k) = 0 for
|k| < ω

c . Thus we have:

ũ(t, x, y) =

∫ ∫
|k|>ω

c

α−(ω, k)e
−
√
k2−ω2

c2 xei(ωt+ky)dk dω

+

∫ ∫
|k|<ω

c

α−(ω, k)e
i(ωt−ω

c

√
1− c2k2

ω2 x+ky)
dk dω

(2.6)

By taking x = 0 in this expression, we see that α−(ω, k) = ˆ̃u(ω, 0, k).
By differentiating (2.6) with respect to x, we have thus at x = 0

∂ũ

∂x
(t, 0, y)−

∫ ∫
ˆ̃u(ω, 0, k)λ−(ω, k)ei(ωt+ky)dk dω = 0. (2.7)

where

λ−(ω, k) =


−
√
k2 − ω2

c2 for |k| > ω

c

−iω
c

√
1− c2k2

ω2 for |k| < ω

c
.

We assume that relation (2.7) can be used as a boundary condition. It is then an exact
ABC since solution u to problem (2.1) has a unique solution and satisfies (2.7) as well.

2.2 Approximation of the exact ABC

The exact ABC (2.7) involves inverse and direct Fourier transforms in both time t and y
through the multiplication by a non polynomial function in the Fourier variables ω and
k. Due to the square root in the formula for λ−, the inverse Fourier transform of (2.7)
is not a differential equation. Its implementation would be thus costly. Moreover, for
a varying velocity field c(x, y) or a curved boundary, the previous computation is not
valid and the analytic form for the exact absorbing boundary condition is not known.
For these reasons, integrodifferential equation (2.7) is approximated by a partial dif-
ferential equation. They are easy to implement and have a straightforward extension
to variable coefficients and/or curved boundaries.

In the Fourier space, (2.7) reads

∂ ˆ̃u
∂x

(ω, 0, k)− λ−(ω, k) ˆ̃u(ω, 0, k) = 0. (2.8)

For reasons that will be given later (see § 3), small values of c kω correspond to waves
whose propagation direction is close to the normal to the artificial boundary, see fig-
ure 2. We approximate (2.8) by a Taylor expansion in c kω of order zero and centered at
zero:

∂ ˆ̃u
∂x

(ω, 0, k) + i
ω

c

√
1− c2k2

ω2
ˆ̃u(ω, 0, k) = 0 ≈ ∂ ˆ̃u

∂x
(ω, 0, k) + i

ω

c
ˆ̃u(ω, 0, k) = 0.
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The inverse Fourier transform yields a zero-order approximation to the exact ABC
(2.7):

∂u

∂t
(t, 0, y) + c

∂u

∂n
(t, 0, y) = 0 (zero-order ABC) (2.9)

where we replaced x by the outward normal to the boundary n in order to have a more
intrinsic form . This is a partial differential equation which enables the dropping of
the superscript .̃ It is easy to check that (2.9) is an exact ABC for the one dimensional
constant coefficient wave equation.

A higher order ABC is obtained with a Taylor expansion of order two (
√

1− ε2 ≈
1− ε2

2 ):

∂ ˆ̃u
∂x

(ω, 0, k) + i
ω

c

√
1− c2k2

ω2
ˆ̃u(ω, 0, k) = 0 (2.10)

≈ ∂ ˆ̃u
∂x

(ω, 0, k) + i
ω

c
ˆ̃u(ω, 0, k) + c

k2

2iω
ˆ̃u(ω, 0, k) = 0. (2.11)

The term c k
2

2iω is not polynomial in ω and thus does not correspond (under inverse
Fourier Transform) to a partial differential equation on the artificial boundary. In or-
der to fix this difficulty, we have two possibilities. The first one consists simply in
multiplying relation (2.11) by iω before taking an inverse Fourier transform:

1
c

∂2u

∂t∂n
+

1
c2
∂2u

∂t2
− 1

2
∂2u

∂τ 2 = 0 (Order 2) (2.12)

where τ is the tangential direction on the artificial boundary. The second possibil-
ity is to introduce an auxiliary function φ̂ = c k

2

2iω
ˆ̃u(ω, 0, k) or equivalently, iωφ̂ =

ck
2

2
ˆ̃u(ω, 0, k). We take the inverse Fourier transform and get:

1
c

∂u

∂t
+
∂u

∂n
+ φ = 0

−1
2
∂2u

∂τ 2 =
1
c

∂φ

∂t

(Order 2) (2.13)

For φ = 0, this is equivalent to condition (2.9). Condition (2.13) is thus an incremental
modification of (2.9) and is easier to implement than (2.12), see [12] for more details.

In order to get higher order ABCs a natural idea consists in using Taylor expansions
of higher and higher orders. For instance, one could use a fourth order expansion√

1− ε2 ≈ 1− ε2

2 −
ε4

8 . The corresponding ABC would read in the Fourier space:

∂ ˆ̃u
∂x

(ω, 0, k) + i
ω

c
ˆ̃u(ω, 0, k) + c

k2

2iω
ˆ̃u(ω, 0, k) +

c3k4

8iω3
ˆ̃u(ω, 0, k) = 0. (2.14)

As a matter of fact, the boundary value problem for the wave equation with the inverse
Fourier transform of this boundary condition is not well-posed. It does not satisfy
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Kreiss condition [14] or Shapiro-Lopatinski condition. In order to write stable high
order ABCs it was proposed in [7] to use Padé approximations:

√
1− ε2 ≈

1− 3ε2

4

1− ε2

4

,

see [12] as well for more details.

3 Plane waves analysis of an ABC
The analysis consists in computing for the various interface conditions the reflection
of a plane wave as a function of its angle of incidence with respect to the normal to
the interface. This gives an intuitive insight into the behavior of the ABCs we have
introduced in the previous section. It enables to quantify the superiority of the ABC of
order 2 (2.12) over the zeroth order one (2.9). It is also justified by the fact that both
the incident wave and the scattered one can be decomposed into a linear combination
of plane waves as in formula (2.2)-(2.5). The same kind of analysis will be performed
in section 5 for the PML method. The incident wave is written as follows:

θ

Artifical boundary

B(u)=0

Onde incidenteIncident wave

Figure 2. Incident wave with an angle θ with respect to the normal to the artificial bound-
ary

uI = e
−i(ωt− ω

c

√
1− c2k2

ω2 x+ ky)
.

The angle of incidence θ with respect to the normal of the artificial boundary is such
that:

tan θ =
ck
ω√

1− c2k2

ω2

and cos θ =

√
1− c2k2

ω2 .
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The reflected wave reads

uR = R(θ)e
−i(ωt+ ω

c

√
1− c2k2

ω2 x+ ky)
.

Function uI +R(θ)uR solves the homogeneous wave equation. The reflection coeffi-
cient R(θ) is computed by inserting the expression of uI +R(θ)uR in conditions (2.9)
or (2.12).

For the zero-th order ABC (2.9), we have

R0(θ) =
cos θ − 1
cos θ + 1

; R < 10−2 for |θ| ≤ 11.45◦

and for the second order ABC (2.12):

R2(θ) = −
(

cos θ − 1
cos θ + 1

)2

; R < 10−2 for |θ| ≤ 35◦ .

The reflection coefficient for the first order ABC is smaller than one percent for a cone
of angle 11.45◦ whereas the reflection of the second order reaches this magnitude for
a larger cone of angle 35◦. The latter ABC is sometimes referred to as a wide angle
ABC.

4 PML
Historically, the first idea was to border the computational by a dissipative zone where
the waves are damped. The dissipative equations were imposed a priori. The problem
with this approach lies in the interface between the physical zone and the “sponge”
layer. It led to reflection. This matching problem was first solved by Berenger in 1994
[5]. He introduced perfectly matched layers (PML) for use with Maxwell’s equations,
and since that time there have been several related reformulations of PML for both
Maxwell’s equations and for other wave equations. Berenger’s original formulation is
based on a splitting of the electromagnetic fields into two unphysical fields in the PML
region. In [6] PMLs were shown to correspond to a coordinate transformation in which
the coordinate normal to the artificial boundary is mapped to complex numbers. This
is actually an analytic continuation of the wave equation into complex coordinates,
replacing propagating (oscillating) waves by exponentially decaying waves. The idea
also consists in imposing the behavior of the solution in the PML and then retrieve the
corresponding equations and interface conditions. In this way, it is possible to design a
reflectionless PML. Thus key property of a PML that distinguishes it from an ordinary
absorbing material is that it is designed so that waves incident upon the PML from
a non-PML medium do not reflect at the interface. This property allows the PML to
strongly absorb outgoing waves from the interior of a computational region without
reflecting them back into the interior.
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4.1 Helmholtz equation

Let f : R2 → C be a function with a compact support in the half-space of negative
x, c > 0 the speed of sound and ω a non zero real number. We start with a Helmholtz
problem defined in the whole space with f as the right hand-side:

(−ω2 − c2
∆)(u) = f in R2

with Sommerfeld radiation condition at infinity. We consider a PML that will be lo-
cated in the positive x half-space. Let u0 be the solution at x = 0, u0(y) := u(0, y).
We know from formula (2.6) that the solution to the Helmholtz equation in the right
half-space x > 0 has the form:

u(x, y) =

∫
R
û0(k) exp(−iω

c

√
1− c2k2

ω2 x) exp(iky) dk (4.1)

The PML must damp the propagative modes of the solution which correspond to
the zone c|k| ≤ |ω|. For this, we first consider an analytic continuation of the solution
with respect to the x coordinate. The complex variable will be denoted by z ∈ C. The
analytic continuation is formally defined as:

ũ(z, y) =

∫
R
û0(k) exp(−iω

c

√
1− c2k2

ω2 z) exp(iky) dk (4.2)

We now make a change of coordinate w.r.t to the first coordinate. Let σ(x) be a func-
tion such that σ(x) ≥ 0 for x ≥ 0. We define a path in the complex plane s : R→ C:

s(x) := x+
c

iω

∫ x

0
σ(a) da (4.3)

and the function U : R2 → C:

U(x, y) :=


u(x, y) if x < 0

ũ(s(x), y) if x > 0

We first investigate the behavior of U(x, y) for positive x. Let

û(x, k) := û0(k) exp(−iω
c

√
1− c2k2

ω2 x) .

We have with this notation:

U(x, y) =

∫
R
û(x, k) exp

(
−
√

1− c2k2

ω2

∫ x

0
σ(a) da

)
exp(iky) dk
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We see that U is exponentially decreasing for c|k| < |ω| as x goes to infinity. The
propagative modes of u have been turned into vanishing modes. As for the vanishing
modes of u (c|k| > |ω|), they are still exponentially decreasing as x goes to infinity
although now with a sinusoidal modulation. In summary, U contains only vanishing
modes as x→∞.

We now have to find out the equations satisfied by U . First of all, since U(x, y) =
u(x, y) for x < 0, we have:

(−ω2 − c2
∆)(U) = f if x < 0 . (4.4)

We now determine the equation satisfied by u in the right half-space x > 0. We have:

∂U

∂x
(x, y) = s′(x)

∂ũ

∂z
(s(x), y) .

This yields:
1

s′(x)

∂U

∂x
(x, y) =

∂ũ

∂z
(s(x), y) .

Derivating again with respect to x, we get:

1
s′(x)

∂

∂x
(

1
s′(x)

∂U

∂x
)(x, y) =

∂2ũ

∂z2 (s(x), y) .

As for the y derivatives, we have for any integer m:

∂mU

∂ym
(x, y) =

∂mũ

∂ym
(s(x), y) .

From formula (4.2), ũ satisfies the equation:

(−ω2 − c2 ∂
2

∂z2 − c
2 ∂

2

∂y2 )(ũ) = 0 .

Therefore, the last three equations yield the equation on U on x > 0:

(−ω2 − c2 1
s′(x)

∂

∂x
(

1
s′(x)

∂

∂x
)− c2 ∂

2

∂y2 )(U) = 0 if x > 0 . (4.5)

We introduce the x-pml derivative:

∂pmlx :=
1

s′(x)

∂

∂x
=

iω

iω + cσ(x)

∂

∂x
.

We now turn to the interface conditions at x = 0. Since U satisfies a second order
equation both half-spaces, we need two matching conditions on the interface x = 0.
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By definition ofU and since s(0) = 0, we have thatU is continuous along the interface
x = 0:

U(0−, y) = U(0+, y) . (4.6)

We consider now the derivative with respect to x. We know that

∂pmlx U(0, y) =
∂ũ

∂z
(s(0), y) .

By formula (4.2), we have ∂ũ
∂z (s(0), y) =

∂u
∂x(0, y). Finally, since s(0) = 0, we get:

∂u

∂x
(0, y) = ∂pmlx U(0, y) ,

which yields the interface condition at x = 0 for U

∂xU(0−, y) = ∂pmlx U(0+, y) . (4.7)

In practice, it is necessary to consider a bounded PML zone, for instance a vertical
slab (0, δ) ×R. On the new boundary x = δ, we have to impose a boundary condi-
tion, for instance a homogeneous boundary condition. Finally, we get the following
boundary value problem:

(−ω2 − c2
∆)(v) = f in R− ×R

(−ω2 − c2 iω

iω + cσ(x)

∂

∂x
(

iω

iω + cσ(x)

∂

∂x
.)− c2 ∂

2

∂y2 )(v) = 0, 0 < x < δ

v(0−, y) = v(0+, y) ∀y ∈ R

∂x(v)(0−, y) =
iω

iω + cσ(x)

∂

∂x
(v)(0+, y) ∀y ∈ R

v(δ, y) = 0 ∀y ∈ R

(4.8)

4.2 The wave equation

In order to design a PML for the wave equation, we should take the inverse Fourier
transform of the PML of the Helmholtz equation (4.8). The terms in (iω + cσ(x))−1

correspond to non differential operators. The way to bypass this difficulty is, similarly
to what is done in (2.13), to introduce two auxiliary unknowns in the PML region:
ŵ(ω, x, y) and φ̂(ω, x, y) defined as:

ŵ(ω, x, y) =
iω

iω + cσ(x)

∂û

∂x
(ω, x, y)

φ̂(ω, x, y) =
iω

iω + cσ(x)

∂ŵ

∂x
(ω, x, y)

(4.9)

or equivalently:

(iω + cσ(x))ŵ(ω, x, y) = iω
∂û

∂x
(ω, x, y)

(iω + cσ)φ̂(ω, x, y) = iω
∂ŵ

∂x
(ω, x, y)

(4.10)
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At this point, an inverse Fourier transform in time yields partial differential equations.
The time dependent counterpart of equation (4.8) reads:

∂2v

∂t2
− c2(x, y)∆v = f(t, x, y), t > 0, x < 0, y ∈ R

∂w

∂t
+ cσ(x)w =

∂2v

∂t∂x
, t > 0, 0 < x < δ, y ∈ R

∂φ

∂t
+ cσ(x)φ =

∂2w

∂t∂x
, t > 0, 0 < x < δ, y ∈ R

− 1
c2(x, y)

∂2v

∂t2
+ φ− ∂2v

∂y2 = 0, t > 0, 0 < x < δ, y ∈ R

v(t, 0−, y) = v(t, 0−, y) t > 0, y ∈ R
∂v

∂x
(t, 0−, y) = w(t, 0+, y) t > 0, y ∈ R

(4.11)

together with initial conditions at t = 0: v(0, x, y) = u0(x, y), ∂v/∂t(0, x, y) =
u1(x, y) and since u0 has compact support in R− ×R, we can take zero initial condi-
tions on the auxiliary unknowns in the PML region w and φ.

5 Computation of the reflection coefficient of a PML

The analysis consists in computing the reflection of a plane wave as a function of its
angle of incidence with respect to the normal to the interface. This gives an intuitive
insight into the behavior of the PML and the impact of the damping parameter σ and
the thickness of the PML. It is also justified by the fact that both the incident wave
and the scattered one can be decomposed into a linear combination of plane waves as
in formula (2.2)-(2.5). The same kind of analysis was performed in section 3 for the
ABCs. It enables thus to compare quantitatively ABCs with the PML technique.
In this section, the function σ takes a constant value still denoted by σ. As in (4.8), the
Helmholtz domain is the left half-space x < 0. The PML is a band of width δ, (0, δ)×
R. We compute the reflection coefficient for a PML with a homogeneous Dirichlet
at the boundary x = δ of the PML. We make a planar wave analysis by considering
homogeneous equations but instead of having a radiation condition at minus infinity,
we consider a planar wave “coming” from minus infinity.

Let

λH = iω
c

√
1− c2k2

ω2

λpmlH = (1 +
cσ

iω
)λH

It can be checked that the functions e±λHx are solutions to the homogeneous Helmholtz
equations and e±λ

pml
H x are solutions to the homogeneous PML equations. We shall
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make use of the following formulas: ∂x(e
λHx) = λHe

λHx

∂pmlx (eλ
pml
H x) =

iω

iω + cσ
λpmlH eλ

pml
H x = λHe

λpml
H x

(5.1)

The solution uH to the homogeneous Helmholtz equation in the left domain has the
form

ûH = αHe
λHx + βHe

−λHx

and in the PML zone:

ûpml = αpmle
λpml
H x + βpmle

−λpml
H x

Using (5.1), the coupling conditions (4.6)-(4.7) at the interface between the Helmholtz
and the PML yield: {

αH + βH = αpml + βpml

λH(αH − βH) = λH(αpml − βpml)
(5.2)

The homogeneous Dirichlet boundary condition in the PML at x = δ yields:

αpmle
λpml
H δ + βpmle

−λpml
H δ = 0 (5.3)

We study the damping of the PML by considering βH to be given. This corresponds
to an ingoing wave from the physical (in space) medium and moving towards the in-
terface between the physical medium and the PML medium. The three other quantities
(αH , αpml, βpml) are determined by the interface conditions. The reflection caused by
a finite width PML is given by the ratio R := |αH/βH |. A direct computation shows
that:

R = e
−2

√
1− c2k2

ω2 σδ (5.4)

Using the physical meaning of
√

1− c2k2

ω2 as the cosine of the angle θ between the
ingoing wave and the normal to the boundary, R reads:

R = (e−2σδ)cos(θ) (5.5)

We see here the main advantage of the PML approach over the ABC approach. In
order to decrease the reflection coefficient, it is sufficient to increase the width of the
PML and/or to take a large damping coefficient σ whereas for the ABC approach, it is
necessary to implement more and more complex absorbing boundary conditions. At
this point, one could think that it is enough to take a very large damping parameter
σ. Actually, it creates a numerical reflection that is proportional to σ∆x. A remedy
consists in taking a variable damping σ(x) = Cx2/δ and tune the parameters C and
δ. In practice, δ is roughly a wavelength 2πc/ω and C is 20 − 40. Of course, taking
a smaller ∆x (finer mesh) will improve the results as well since we come closer to the
continuous limit.
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6 Conclusion
We have designed absorbing boundary conditions and perfectly matched layers for
some scalar second order partial differential operators: the Helmholtz equation and
the wave equation. The construction of the ABC is based on Fourier symbol compu-
tations of an exact ABC which is then approximated by a rational fraction. By intro-
ducing auxiliary unknowns, this approximation yields, in the physical space, a system
of partial differential equations. This technique is quite general and can be applied to
systems of partial differential equations, like the isotropic or anisotropic elasticity sys-
tem with or without anisotropy, Oseen equations (linearized Navier-Stokes equations),
Maxwell system, . . .. As for PML, their designs rely on a complex coordinate coor-
dinate change that will be stable in the sense that propagative modes are turned into
evanescent ones and that evanescent modes remain evanescent. For complex systems
of PDEs with anisotropy, it is not always easy to find such a change of coordinates.
Thus, although PMLs are usually better fitted to numerical computations than ABCs,
their designs are not always feasible and are still an active area of research.

We have considered the design of absorbing boundary conditions and perfectly
matched layers in a common Fourier framework and thus restricted ourselves to rec-
tilinear boundaries for scalar equations. Actually, these concepts are also valid for
curved boundaries and/or systems of partial differential equations, see for example
[3, 9, 2, 15, 11, 10] and references therein.

An appealing feature of ABCs and PMLs is that these notions are building blocks
for apparently unrelated applications such as domain decomposition methods [4], ap-
proximate factorizations preconditioners for Helmholtz type problems [8] or inverse
problems via time reversal techniques [1]. From a general point of view, it is due to
the fact that ABCs or PMLs are cheap approximations to non local operators.
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