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Abstract

A quick evaluation of the forces involved in nanoimprint would be
very helpful in the prevention of mold deflection. Unfortunately, it
is shown here that assuming simplified flows may lead to quite incor-
rect evaluations of these forces, even for simple periodic patterns and a
Newtonian behavior. The mere use of the classical result of the lubrica-
tion theory does not account for the range of thickness-to-width ratios
that may be involved, especially at the beginning of the process. An
improved squeeze model includes this effect, but still underestimates
the imprint force. Moreover, finite element simulations demonstrate
limitations of two more elaborate models that are found in the litera-
ture. These simulations also show that two flow modes can be defined,
according to whether or not the polymer touches the mold sidewalls.
A deeper analysis of these two modes may help the definition of a more
appropriate simplified model in the future.

Keywords nanoimprint; finite elements; simplified models.

1 Introduction

Nanoimprint lithography is a process introduced by Chou et al. (1995),

where nanometric patterns are engraved into a very thin polymer film. In the

variant considered here, thermal nanoimprint, the polymer is spin coated on

a substrate before impression at high temperature. The surfaces involved are

of the order of hundreds of square centimeters to allow for the simultaneous
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l’Hôpital, 75013 Paris, France (pierre.gilormini@ensam.eu).
Published in: International Polymer Processing, vol. 28, pp. 72-78 (2013).

1



impression of a very large number of patterns, and defects may arise from

mold deflection over relatively long distances. This motivates the study of

the force that the flowing polymer applies on a single protrusion of a rigid

periodic mold, in a first step. In further developments, a quick evaluation

of this force may be useful to study mold deflection at length scales larger

than the pattern period, with each protrusion replaced by a time-varying

point force, for instance.

Two approaches are possible to evaluate this force. The first one relies on

analytical expressions which allow putting more computational resource at

the upper level of mold deflection. The risk is a too crude evaluation of the

imprint force involved in the many configurations that may arise. Basically,

results taken from the lubrication theory are employed in this context. For

instance, Schultz et al. (2006) adapted this theory to model the flow below

an elementary periodic pattern, and Leveder et al. (2007) used it in a

reverse manner to deduce the polymer viscosity from the applied force. The

other approach, which allows especially to overcome the limitation of the

lubrication theory to small thickness-to-width aspect ratios below patterns,

performs a full numerical simulation of the polymer flow like in Jeong et al.

(2002), or Rowland et al. (2005), for example. These authors put emphasis

on polymer flow but did not provide the corresponding imprint force, though,

whereas Young (2005) did compute it. Of course, this type of approach gives

a precise solution to a given flow problem, provided the discretization is fine

enough, but it requires the availability of a simulation code and involves

much longer computation times than using analytical estimates. It may

also be very useful to validate the latter.

Nanoimprint is a complex process that involves not only fluid-solid cou-

pling, as already mentioned above, but also surface tension phenomena and

nonlinear fluid behavior, among other complexities. This paper considers an

idealized problem where surface tension is neglected and a constant viscosity

can be assumed, and emphasis is put on some simple approximate solutions

2



to that problem, using finite elements as a reference solution. Comparison

with experimental results would allow to discuss the pertinence of the ideal-

ized problem considered but is beyond the present work, which is limited to

simulation. The aim is to guide the development of simple solutions before

more complexity, like a nonlinear behavior for instance, can be included in

a further stage.

This paper addresses the applicability of very simple velocity fields to

evaluate the imprint force when the initial polymer thickness is not nec-

essarily much smaller than the protrusion width. First, nanoimpression is

modeled as a squeeze flow and a velocity field is proposed that extends to

thick films the well-known velocity field that is used in the lubrication theory

for thin films. Then, finite element simulations are performed. They allow to

discuss the validity of the analytical expression obtained and the relevance of

squeeze flows to model nanoimpression. In addition, they demonstrate that

two models of the literature that use simple flows are not satisfactory for

substantial initial polymer thicknesses. This leaves the problem of a simple

evaluation of the imprint force open, except for very limited geometries.

2 Problem Statement

Nanoimprint lithography can be used to reproduce a variety of patterns,

like periodic arrays of pillars or holes with circular or square cross-sections,

among others (see Guo, 2004, for examples), but simple lines are very fre-

quently used to demonstrate the technique, as in the pioneering papers by

Chou et al. (1995, 1996), and to test models (Jeong et al., 2002; Rowland

et al., 2005; Young, 2005, for instance). One advantage of line patterns is

the two-dimensional flow involved, which allows the study of a mere cross

section. Moreover, the study can be limited to a single period when the pat-

tern is periodic, and even to half a period for symmetry reasons, as shown

in Fig. 1c and 1d. Fig. 1a illustrates also another advantage of simple line

patterns, which is a limited number of geometric parameters. The pattern
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Figure 1: Before the mold is moved down, cross section of a single period
for the nanoimpression of a simple line pattern (a) and of the minimal parts
that need being considered (darker gray shades) for the squeeze model (b),
and for deep (c) or shallow (d) patterns. Dashed lines define symmetry axes.

is characterized by its pitch (W ), width (L) and depth (D), and the initial

thickness of the polymer (h0) defines the last geometric parameter of the

problem.

The polymer is defined as a linear viscous fluid in this study, and its

viscosity η is the only material parameter, as in Leveder at al. (2007) or

Jeong et al. (2002), although power-law viscous fluids were considered in

the finite element simulations of Rowland et al. (2005) and in the analyti-

cal approach of Hsin and Young (2008), among others. Actually, as shown
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by Schultz et al. (2006), for instance, the polymer exhibits shear-thinning

above a transition shear rate, but the limitation to a linear behavior may be

acceptable for low strain rates. Moreover, the purpose of the present study

is to explore the applicability of simple models, and this can be limited to

simple behaviors in a first stage. For the same reason, and like in many

other studies, surface tension is neglected here, although it may play an

important role at the nano scale and has been taken into account by Jeong

et al. (2002) and Rowland et al. (2005), among others. A consequence of

these assumptions is that the process parameter can be indifferently either

the downward velocity V of the mold or the force F applied per unit pattern

length, since these two quantities are proportional when the fluid is Newto-

nian. We will prefer a constant V as process parameter, for its convenience

when finite elements are employed.

Finally, inertial effects and gravity can be neglected in microflows and

nanoflows of viscous liquids (Karniadakis et al., 2005, for example), where

extremely low Reynolds numbers are involved, and a Stokes flow without

body forces is considered here, consequently.

3 Squeeze Model

An approximate model for the two-dimensional flow between mold and sub-

strate can be defined by the squeeze process defined in Fig. 1b, like in Lev-

eder et al. (2007) for instance. This amounts to continuously trimming off,

during the mold descent, the polymer volume that is not located beneath

the protrusion. Therefore, the imprint force is likely to be underestimated,

the mold depth D has no effect, and the force will depend on the current

thickness h of the film, without any history effect related to its initial value

h0.

Using a coordinate system with its origin at the symmetry center of

the section considered which, consequently, moves vertically with velocity

V/2, a velocity field can be adapted from the axisymmetric case treated by
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Engmann et al. (2005) as

vx = V

(

3x

2h
−

6xy2

h3

)

and vy = −V

(

3y

2h
−

2y3

h3

)

(1)

which does give vx(y = −h/2) = vx(y = h/2) = 0 and vy(y = −h/2) =

−vy(y = h/2) = V/2 for the no-slip boundary condition, and leads to the

following non-zero strain rate components:

ε̇xx = −ε̇yy = 3V

(

1

2h
−

2y2

h3

)

and ε̇xy = ε̇yx = −6V
xy

h3
(2)

where ε̇xx = −ε̇yy expresses incompressibility. The nonzero in-plane com-

ponents of the stress tensor

σxx = −
ηV

2h3

(

36y2
− 12x2

− 3h2 + 3L2
)

σyy =
ηV

2h3

(

12y2 + 12x2
− 9h2

− 3L2
)

and σxy = σyx = −12ηV
xy

h3
(3)

which result from the combination σij = 2η ε̇ij − p δij of (2) and of the field

of hydrostatic pressure

p =
3ηV

2h3

(

4y2
− 4x2 + h2 + L2

)

(4)

are such that the equations of fluid motion for plane Stokes flow, ∂σxx/∂x+

∂σxy/∂y = 0 and ∂σyy/∂y + ∂σyx/∂x = 0, are checked. The boundary

conditions σxx = 0 and σxy = 0 are not satisfied everywhere on the lateral

free surfaces (at x = ±L/2), but they are satisfied on average, since (3)

leads to
∫ h/2

−h/2

σxx(±L/2, y) dy = 0 and

∫ h/2

−h/2

σxy(±L/2, y) dy = 0 . (5)

These are the only approximations involved in the solution proposed here to

the squeeze problem considered. The force that is applied to the substrate

(opposite to the force applied to the mold) per unit length (normal to the

(x, y) section considered) yields from (3):

F =

∫ L/2

−L/2

σyy(x, h/2) dx = η V

(

L3

h3
+ 3

L

h

)

. (6)
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When h ≪ L, the classical result of the lubrication theory used by Leveder

et al. (2007), for example, is recovered:

FL = η V

(

L

h

)3

. (7)

Taking this expression as a reference, the following normalized expression of

(6) will be employed:

F

FL
= 1 + 3

(

h

L

)2

. (8)

The Abaqus (2009) finite element code offers the possibility, among nu-

merous features, to simulate the flow of quasi-incompressible viscous fluids,

including the Newtonian special case. In the volume of fluid method used,

two parameters must be prescribed that are not listed above: a density and

a velocity for wave propagation, which are of crucial importance for the time

step used. The latter is excessively small if realistic values are taken for the

density and wave speed, because of the length scale involved in nanoimpres-

sion. Therefore, dummy values were defined, which did not alter significantly

the initial problem to solve and allow reasonable computation times. First,

the density was chosen in order to have a Reynolds number of 0.1, since this

was checked to be a good approximation to a Stokes flow (zero Reynolds

number) in our case. Then, the wave speed was adjusted to get both a good

volume preservation and time increments that lead to reasonable compu-

tation times. The necessarily three-dimensional mesh was defined as one

layer of a regular array of identical small cubes, each one being an Eulerian

element with 8 nodes and reduced integration. Two-dimensional flows were

obtained by prescribing suitable symmetry conditions on the front and rear

faces of the one-element thick mesh. The trimming process involved in the

squeeze model was obtained trivially by letting the fluid cross the lateral

sides of the mesh. The mold was defined as a rigid body with a prescribed

downward velocity and no-slip boundary condition.

The results of the finite element simulations are shown in Fig. 2. As

expected, the lubrication theory, which has been developed for thin films,
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Figure 2: Applied force normalized by the lubrication theory result for two-
dimensional squeeze with thickness-to-width aspect ratio h/L. Comparison
between finite element simulations (symbols) and the uncorrected (eqn. (8),
solid line) or corrected (eqn. (9), dashed line) analytical squeeze model.

gives a very bad estimate of the pressing force for thick films, leading to

strongly underestimated values. For instance, a difference by a factor of 5 is

obtained for h/L = 1. This clearly shows that the results of the lubrication

theory are not sufficient for simulating the early stages of nanoimpression,

when h/L is not yet small, and would lead for example to an overestimated

mold velocity for a fixed applied force. Fig. 2 also shows that the above

approximate model for thick films (8) improves very significantly over the

lubrication theory, but still underestimates the force.

In addition to the h/L ≪ 1 case, another simple situation can be con-

sidered where an analytical solution is asymptotically exact, which is the

h/L ≫ 1 case. For such a geometry, the effect of the fluid-solid contact

conditions tends to localize near the top and bottom of the slender fluid col-

umn, with a negligible influence on the overall force. Therefore, the solution

with a uniform strain rate that pertains to perfect slip (zero shear stress

on both the protrusion and the substrate) should provide a good estimate,

which gives F = 4η V L/h trivially. This suggests a very simple empirical
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modification of (8) as

F

FL
= 1 + 4

(

h

L

)2

(9)

which is shown in Fig. 2 to lead actually to a very good agreement with the

finite element results in the h/L range considered.

4 Finite Element Simulation of Nanoimprint

The trimming process involved in the squeeze model described in the previ-

ous section is likely to underestimate the imprint force, but to which extent?

Finite element simulations have been conducted to answer this question, by

considering a deep mold as shown in Fig. 1c. This introduces the pattern

pitch W as a new parameter. Initially, the amount of polymer that opposes

the lateral flow occurring below the protrusion will depend on W and on the

initial polymer thickness h0. Later in the impression process, for a polymer

thickness h < h0 below the protrusion, volume preservation implies that a

fraction of the polymer is located above the protrusion level, and this may

increase the force further. In these conditions, the current force may not be

a function of h only, but also of h0. This dependence was not present in the

squeeze model.

Fortunately, the finite element simulations that we performed demon-

strate that the influence of h0 can be neglected below a value that depends

on the W/L ratio. For a ratio of W/L = 2, for instance, Fig. 3 shows that the

evolution of the applied force is a function of h/L only provided that h0/L

is below a value of about 0.6, since the forces obtained are close to a single

curve (open symbols in Fig. 3). This means that the polymer located above

the protrusion level does not contribute significantly to the force required

for the imprint process to carry on. We will call this situation a “mode

A” flow, for which a simplified model may asssume that Fig. 1c applies for

any h/L below the critical h0/L value. Unfortunately, the modified squeeze

model (9) of the previous section is too crude for this purpose and largely
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Figure 3: Applied force computed by finite elements and normalized by the
lubrication theory result for nanoimpression using a deep pattern with a
W/L ratio of 2 and starting from various h0/L values. Comparison with
the corrected analytical squeeze model (eqn. (9), solid line). The straight
dashed line is just a guide for the eye.

underestimates the nanoimpression force, as can be seen in Fig. 3.

For an initial thickness beyond the critical value (solid symbols in Fig. 3),

the nanoimpression force still starts from an extension of the result for mode

A, which corresponds to such configurations as in Fig. 1c, but then the force

keeps above the curve obtained for mode A and is higher for larger initial

thicknesses, as can be observed in Fig. 3. This corresponds to a change in the

flow mode. Below the critical h0/L value (open symbols in Fig. 3), in mode

A, the velocity of the polymer at the protrusion corner is inclined but not

vertical, and the flow does not contact the mold sidewalls, leading to such

profiles as in Fig. 4a. In contrast, the velocity is found vertical and contact

occurs for larger h0/L values (solid symbols in Fig. 3), which defines a mode

B and leads to Fig. 4b, for instance. The shear induced by this additional

contact increases the imprint force. Moreover, volume preservation implies,

for a given h/L value, a longer contact length if the initial thickness is larger,

which leads to a higher imprint force.
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(a)

(b)

Figure 4: Deformed configurations computed with the finite element method
for a deep mold (solid line) with W/L = 2 and either h0/L = 0.3 (a) or
h0/L = 0.8 (b), for the same mold displacement. These are examples of flow
modes A and B, respectively. Dashed line: initial surface of the polymer.

When h/L becomes extremely small, the force required to squeeze the

very thin film under the protrusion increases without limit, since it is propor-

tional to (L/h)3 as mentioned in section 3, and the additional force induced

by the polymer located beyond the protrusion, with or without contact with

its sidewalls, becomes negligible comparatively. This justifies the plots to

end at the origin in Fig. 3.

A straight line has been obtained for mode A when W/L = 2 with

the axes used in Fig. 3, at least in the h/L range considered, but this was

incidental, since Fig. 5 shows a curved line when W/L = 4, i.e. for a larger

distance between successive protrusions. The other trends are qualitatively

similar to Fig. 3, with the modified squeeze model still underestimating the

force strongly but with the transition between the two flow modes appearing
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Figure 5: Applied force computed by finite elements and normalized by the
lubrication theory result for nanoimpression with a W/L ratio of 4, starting
from various h0/L values and using either a deep mold (open symbols) or
a shallow mold with D/L = 2/3 (solid symbols). Comparison with the
corrected analytical squeeze model for deep mold (eqn. (9), dotted line)
and with the model of Schultz et al. (2006) for shallow mold (solid lines).
The vertical dashed lines define the h values for complete cavity filling. The
curved dashed line is just a guide for the eye.

for a larger h0/L value, about 1.8. Simulations were also carried out, for

W/L = 4, with a shallow pattern (see Fig. 1d) having a depth of D/L = 2/3.

This corresponds to a filled cavity for a mold descent of L/2, since volume

preservation leads to a complete filling for

h = h0 − D

(

1 −
L

W

)

. (10)

Fig. 5 compares the evolutions of the force using a shallow pattern or using a

deep pattern (solid vs. open symbols), for three different initial thicknesses

h0/L. Of course, the evolutions are identical before the polymer touches the

top of the cavity. Then, the force increases sharply for a shallow pattern,

whereas it keeps decreasing for a deep pattern with the normalization used.

The force increase after the polymer free surface has touched the top of the

cavity reduces even more the applicability of the lubrication theory, since
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Figure 6: Cavity filling obtained for h0/L = 0.8, W/L = 4 and D/L = 2/3.
Mold descent of 0.41L (a), 0.45L (b) and 0.49L (c). Complete filling is
obtained for a descent of L/2.

F/FL keeps far from 1 all along the process, except possibly for very thin

initial polymer layers for which the cavity would be filled after extremely

small polymer thicknesses are obtained.

The kinematics of the end of cavity filling is illustrated in Fig. 6 for a

mode A flow (h0/L = 0.8). First, the top of the free surface is modified,

with both its part close to the symmetry axis and its lowest part almost

unaffected. Then, the lowest part becomes steeper and closer to the sidewall.

Finally, the only left space is in the corner of the cavity, with the polymer

shearing along the sidewall, and this is similar to the configurations obtained

directly with mode B flows (for large h0/L values, where the peak of the

free surface is along the symmetry axis).
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Figure 7: Notations used to define the models of Schultz et al. (2006), on
the left, and of Hsin and Young (2008), on the right.

5 Discussion

The above definition of two flow modes when imprinting with a deep periodic

mold can be compared with the results obtained by Rowland et al. (2005).

These authors also defined two flow modes, but with the free surface within

one pattern period showing either one or two peaks. Fig. 4a, for instance,

is an example of a two-peak mode, whereas Fig. 4b illustrates a one-peak

mode (the highest polymer level is obtained on a symmetry axis). This

definition puts more emphasis on the free surface shape than on the imprint

force, and Rowland et al. (2005) found that the mode change is obtained

for h0/L = (W/L − 1)/2.4 with our notations. This gives h0/L ≈ 0.4 when

W/L = 2, and we did obtain a dual-peak surface for h0/L = 0.2 and 0.3, and

a single peak for h0/L = 0.4 and beyond, but contact with the protrusion

sidewalls nevertheless occurred for h0/L = 0.7 at least. This indicates that

mode transition for the force occurs for h0/L values that are larger than for

the shape transition observed by Rowland et al. (2005), since single-peak

free surfaces may be associated with mode A flow. This is confirmed in

the W/L = 4 case of Fig. 5, where Rowland et al. (2005) would predict a

change in peak numbers for h0/L = 1.25, while we obtained a transition for

h0/L ≈ 1.8 for the force evolution.

A first model that uses a simplified flow and which can be compared
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with the finite element results is that of Schultz et al. (2006). As indicated

in Fig. 7, it assumes that the volume of polymer that is occupied by the

new position of the mold is moved near the corner of the mold. Accordingly,

this model requires a shallow mold and implies that the initial polymer free

surface is maintained beyond the redistributed volume, as shown in Fig. 7.

Volume preservation provides the polymer-mold contact width L′ readily,

and the model considers a squeeze of the polymer in the ABB′A′ region,

using the lubrication theory result, which leads to the total force per unit

length

FS = ηV

(

L′

h

)3

= ηV

(

L

h

)3 (

D

D − h0 + h

)3

. (11)

For deep molds (D/L ≫ 1), this model recovers the elementary squeeze

model (7) that was shown in section 3 to underestimate the force. When

normalized by FL, the force on shallow molds is equal to 1 when h = h0,

i.e. the force evolution starts from the lower axis in Fig. 5, which is far too

low compared to the finite element results, and it equals (W/L)3 for any h0

value when the cavity is filled, according to (10). Moreover, the FS/FL ratio

keeps increasing when h decreases, whereas Fig. 5 (solid symbols) shows a

decrease before the ratio increases up to complete cavity filling. It may

thus be concluded from the comparison performed in Fig. 5 in three cases

that the very simple flow assumed by Schultz et al. (2006) is not realistic

enough and does not allow a good evaluation of the nanoimpression force

involved with shallow molds for the h0/L ratios considered here, but it must

be mentioned that the simulations presented by Schultz et al. (2006) are

limited to h0/L ≤ 0.25.

A different simplified polymer flow is considered by Hsin and Young

(2008) for power-law fluids, where the free surface of the polymer is assumed

to keep parallel to the substrate, as shown in Fig. 7, and where an example

with h0/L = 1.05 is given. In the simple case of a Newtonian behavior,

horizontal and vertical plane Poiseuille flows are assumed in the AA′′B′′B

region and in twice the CB′′C′′C′ region (since B′′C′′ is a symmetry axis),

15



respectively, leading to pressure drops

p0 − p1 = 12 η
Q

h3

W

2
and p2 = 12 η

Q′

(W − L)3
W

h0 − h

W − L
(12)

where p0, p1 and p2 denote pressure along AB, A′′B′′ and B′′C, respectively.

The above computation of p2 assumed a zero pressure on the free surface

C′C′′ and applied the preservation of volume to compute the CC′ length. In

these expressions, Q and Q′ denote planar flow rates (per unit mold length

normal to the cross section considered). Assuming now that p2 = p1 and

Q′ = 2Q = V L (which leads for p1/p0 to the same expression as (6) of Hsin

and Young, 2008, with different notations) gives

p0 = 3 ηV WL

[

1

h3
+ 4

h0 − h

(W − L)4

]

and p1 = 12 ηV WL
h0 − h

(W − L)4
. (13)

Pressure p1 applied along CB′′ equilibrates the shear force induced by the

vertical plane Poiseuille flow on sidewall CC′ and induces a vertical force Fv.

In addition, Hsin and Young (2008) compute the vertical force Fh on BC due

to the horizontal plane Poiseuille flow by applying p0 uniformly (although

pressure decreases linearly, actually). These two contributions lead to the

following expression for the total force per unit length, for one period of the

mold pattern:

FH = Fh + Fv = 3 ηV WL2

[

1

h3
+ 4

W

L

h0 − h

(W − L)4

]

(14)

which does not tend to FL when h → 0, but rather to 3FLW/L. A com-

parison is made in Fig. 8 with finite element results in four cases where

sidewall contact was established, and a strong disagreement appears clearly.

It may then be concluded that the model of Hsin and Young (2008) is not

appropriate to predict the imprint force.

The latter model, with its contributions from two distinct flows, can

nevertheless be modified as follows. It may be noted first that assuming

a plane Poiseuille flow in the AA′′B′′B region is not compatible with the

symmetry conditions that apply along AB and A′′B′′. This suggests that the
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Figure 8: Applied force computed by finite elements and normalized by the
lubrication theory result for nanoimpression using a deep pattern with a
W/L ratio of 2 and starting from various h0/L values (symbols). Compar-
ison with the model of Hsin and Young (2008) (dashed lines) and with the
partially predictive proposed model (solid lines).

horizontal flow considered in the model of Hsin and Young (2008), and the

associated Fh force, may contribute to the bad results obtained. Actually,

the force due to the flow in the AA′′B′′B region corresponds to the A mode

flow described in the previous section, and therefore it can be evaluated from

the dashed lines shown in Figs. 3 and 5. Since a straight line was obtained

for a W/L ratio of 2, the following fit yields readily

Fh = 101.3h/LFL (15)

which provides Fh for this special W/L value only. In contrast with the

horizontal flow, the vertical flow assumed by Hsin and Young (2008) is in

reasonable agreement with the velocity profiles found in the finite element

simulations. This part of the Hsin and Young (2008) model should be cor-

rected, though, because the flow rate Q′ must be computed with respect

to the sidewall, which is moving vertically with velocity V , for a relevant

computation of the pressure drop. Therefore, Q′ = V W applies, rather than
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Q′ = V L, as can be obtained by considering equivalently a fixed mold and

a moving substrate with upward velocity V . Introducing this correction in

(12) leads to the following vertical component for two sidewalls:

Fv = 12 ηV W 2 h0 − h

(W − L)3
(16)

with an amplifying factor of W/L − 1 with respect to (14). The total force

Fh + Fv that results from (15) and (16) is shown in Fig. 8 as solid lines

for four h0 values. Although the agreement is still imperfect, which may

be due to an interaction between the two flows that is not accounted by

merely summing their contributions, one notes that the trends are correct,

with the best accordance found among all models considered in this study.

Unfortunately, this model is not fully predictive, since the contribution Fh

of mode A has to be obtained from finite element simulations. This should

stimulate further effort to develop appropriate simple models for mode A,

or to fit Fh for a large set of W/L ratios.

6 Conclusion

It has been shown that assuming simplified flows may lead to quite incor-

rect evaluations of the force involved in the nanoimprint of simple periodic

patterns on Newtonian fluids for given mold velocity. It is recalled that an

underestimation of the imprint force for a fixed mold velocity implies an

overestimation of the mold velocity for a constant applied force, which is

the usual experimental condition. The mere use of the classical result of

the lubrication theory does not account for the range of thickness-to-width

ratios that may be involved, especially at the beginning of the process. An

improved squeeze model includes this effect, but still underestimates the

imprint force. Moreover, finite element simulations have demonstrated lim-

itations of two more elaborate models that are found in the literature.

These simulations have also shown that two flow modes could be de-

fined, according to whether or not the polymer touches the mold sidewalls.
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A deeper analysis of these two modes may help the definition of a more ap-

propriate simplified model in the future. Of course, additional work will still

be required to account for shear-thinning and the effect of surface tension.
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