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I. Introduction

Piezoelectric ceramics (piezoceramics) are very prized in the design of microrobots, micro/nanopositioning devices and systems at the micro/nano scale in general. They have been successfully used to develop stepper microrobots [START_REF] Bergander | Mobile cm3-microrobots with tools for nanoscale imaging and micromanipulation[END_REF] [START_REF] Rakotondrabe | Development, modelling and control of a micro/nano positioning 2DoF stickslip device[END_REF], Atomic Force Microscopes (AFM) [START_REF] Bining | Atomic Force Microscope[END_REF] and continuous microactuators such as piezocantilevers and microgrippers [START_REF] Agnus | A smart microrobot on chip: design, identification and modeling[END_REF] [START_REF] Rakotondrabe | Development and Force/Position Control of a New Hybrid Thermo-Piezoelectric microGripper dedicated to automated pick-and-place tasks[END_REF]. This recognition is mainly thanks to the high resolution (at the nanometre level), the high bandwidth (more than 1kHz) and the relatively high force density that they offer. However, when the applied electrical field is large, piezoceramics exhibit an important hysteresis nonlinearity which strongly limits the accuracy of the developed actuators.

Three approaches exist to control the hysteresis and to improve the general performance of piezoelectric actuators (piezoactuators): feedback control, charge control, and feedforward voltage control. In feedback control, both classical (PID, ...) and advanced control laws (H ∞ , passivity,...) have been successfully used [START_REF] Leang | Hysteresis, creep, and vibration compensation[END_REF] [START_REF] Rakotondrabe | Quadrilateral modeling and robust control of a nonlinear piezoelectric cantilever[END_REF]. Its main advantages are the possibility to reject external disturbance effects and to account for the model uncertainties. However, the use of closed loop control techniques at the micro/nano scale is strongly limited by the difficulty to integrate sensors. Sensors which are precise and fast enough are bulky (interferometers, triangulation optical sensors, camera-microscopes measurement systems, etc.) or difficult to fabricate. In charge control, an adapted electrical circuit is used to provide the input charge applied to the piezoactuators [START_REF] Agnus | Dispositif de commande d'un actionneur pizolectrique et scanner muni de ceux-ci[END_REF][9] [START_REF] Clayton | Inverse-feedforward of charge-controlled piezopositioners[END_REF]. Finally, in feedforward voltage control, the hysteresis is precisely mod-eled and a kind of inverse model is put in cascade with the process resulting in an overall linearized system. The main advantage of the two latter approaches is the shunning of external sensors making the controlled system packageable and fabricated with low cost. In an automatic point of view, feedforward voltage control is particularly appreciated because this approach allows stability, performance analysis and controllers synthesis.

For piezoactuators, there exist several approaches of hysteresis compensation based on voltage control: the Bouc-Wen [START_REF] Rakotondrabe | Bouc-Wen modeling and inverse multiplicative structure to compensate hysteresis nonlinearity in piezoelectric actuators[END_REF], the polynomial [START_REF] Bashash | A Polynomial-Based Linear Mapping Strategy for Feedforward Compensation of Hysteresis in Piezoelectric Actuators[END_REF], the lookup tables [START_REF] Eddy | Actuator bias prediction using lookup-table hysteresis modeling[END_REF], the Preisach [START_REF] Croft | Creep, hysteresis and vibration compensation for piezoactuators: atomic force microscopy application[END_REF][15] and the classical Prandtl-Ishlinskii approaches [START_REF] Rakotondrabe | Complete open loop control of hysteretic, creeped and oscillating piezoelectric cantilevers[END_REF][17] [START_REF] Mokaberi | Compensation of scanner creep and hysteresis for AFM nanomanipulation[END_REF]. The Prandtl-Ishlinskii approach is particularly appreciated for its simplicity, ease of implementation and accuracy. It is based on the sum of many elementary hysteresis backlash operators. The accuracy of the model increases with the number of these operators. To compute the corresponding hysteresis compensator, the least-squared error optimization has been used [START_REF] Ang | Feedforward controller with inverse rate-dependent model for piezoelectric actuators in trajectory-tracking applications[END_REF]. However the computation time greatly increases according to the number of operators which makes this method only practical for low number of backlash operators. In this paper, we propose another compensation approach for hysteresis modelled by the Prandtl-Ishlinskii. Based on the inverse multiplicative structure, the proposed approach does not need any computation of the compensator. Indeed, as soon as the model is identified, the compensator is derived without extra-calculation. Therefore, independant from the number of the backlashes (and whatever the required accuracy), there is no cost for the compensator computation.

II. The classical Prandtl-Ishlinskii modeling and identification

The classical Prandtl-Ishlinskii (PI) model is based on the backlash operator.

A. The backlash operator Definition 2.1: A backlash operator, also called playoperator (see Fig. 1), is defined by the following equations: y(t) = max {u(t)r, min {u(t) + r, y(t -T )}} y(0) = y 0 where u(t) is the input control, y(t) is the output displacement, r is the threshold of the backlash and T is the refresh time. 

B. The classical PI model Definition 2.2:

A classical PI hysteresis model is defined as the sum of several backlashes each one having a threshold r i and a slope (weighting) w i [START_REF] Krasnosel | Systems with hysteresis[END_REF]:

     y(t) = n i=1 w i • max {u(t) -r i , min {u(t) + r i , y ei (t -T )}} y(0) = y 0
where n is the number of operators and y ei the i th elementary output (output of the i th backlash). Fig. 2 gives the block diagram showing the principle of the classical PI hysteresis modeling. 

C. Parameters identification

Following the procedure in [START_REF] Rakotondrabe | Complete open loop control of hysteretic, creeped and oscillating piezoelectric cantilevers[END_REF], the identification of the parameters r i and w i is performed by applying a sine or a triangular input voltage u(t) with an amplitude u A to the process. This amplitude corresponds to the maximal output of y that is expected for the applications. The curve in the (u, y)-plane -which has a hysteresis shape -should be afterwards shifted so that it is in the positive section of the plane. Fig. 3 shows an example of a (shifted) hysteresis curve approximated by three backlashes. In Fig. 3, bw i = 2 • r i is the bandwidth. From the figure, the k th output can be formulated as follows:

y k = k i=1 (bw k+1 -bw i ) • w i (1) 
From the previous equation, a tensorial formulation can be obtained:

{y} = [A] • {w} (2) 
where [A] is a triangular matrix constructed from the different bandwidth values. Example of (shifted) hysteresis obtained with three elementary backlashes.

The identification procedure is therefore as follows [START_REF] Rakotondrabe | Complete open loop control of hysteretic, creeped and oscillating piezoelectric cantilevers[END_REF].

• Apply at least half a period of sine voltage u(t) to the piezoactuator. The amplitude of the corresponding output y(t) should cover the end use range.

• If the obtained hysteresis curve is not in the positive section of the (u, y)-plane, shift the curve. • Define the number n of the backlashes.

• Split the input u domain into n + 1 uniform or non-uniform partitions. For example, Fig. 3 depicts four partitions and presents an approximation of hysteresis with three backlashes. The bandwidth bw i and the output vector {y} are easily obtained according to Fig. 3. • Construct the matrix [A] from the bandwidth bw i by using (equ 1) and (equ 2), • Finally, compute the parameter {w} using the following formula:

{w} = [A] -1 • {y} (3) 
Remark 2.1: The classical PI hysteresis model (see Def. 2.2) is a static model. It is used to model hysteresis of processes working at low frequency. At high frequency, the classical PI hysteresis model is often combined with a linear dynamics to maintain the initial accuracy [START_REF] Rakotondrabe | Complete open loop control of hysteretic, creeped and oscillating piezoelectric cantilevers[END_REF]. Since the compensation of this dynamics part is independant from the compensation of the static hysteresis and is available in several approaches [START_REF] Croft | Creep, hysteresis and vibration compensation for piezoactuators: atomic force microscopy application[END_REF] [START_REF] Rakotondrabe | Complete open loop control of hysteretic, creeped and oscillating piezoelectric cantilevers[END_REF], this paper only focuses on the static hysteresis.

Remark 2.2: The refresh time T should be low relative to the time characteristics of the used input signals such as the period of u(t). Indeed, if T is high, the backlash defined in Def. 2.1 (and in Fig. 1) is distorted and the accuracy of the PI model in Def. 2.2 is decreased. The choice of T can start with the Shannon Theorem that can be further refined if necessary. For example, from the expected working frequency f , the sampling frequency f s should satisfy f s f . III. A new compensation approach for the PI hysteresis modeling In this section, we propose a new compensation method for the classical PI hysteresis model previously presented. The advantage of the proposed method is that as soon as the model is identified, the compensator is directly derived without additional calculation. For that, we need to rewrite the PI model.

A. General principle

Definition 3.1: The (feedforward) compensation of piezoelectric materials hysteresis consists in putting in cascade with the hysteretic system a compensator (see Fig. 4) such that one obtains a linear input-ouptut (y r , y) with a unity gain between the reference input y r and the output y 

B. Rewriting the model

First we shall rewrite the hysteresis model already defined in Def. 2.2. For that, we need to give a property of the backlash operator.

Property 3.1: Reconsider the backlash operator in Def. 2.1. We have: r = 0 ⇔ y(t) = u(t) So we have the following consequence which is an alternative expression of Def. 

               y(t) = -u(t) + n i=0 w i • max {u(t) -r i , min {u(t) + r i , y ei (t -T )}}
y(0) = y 0 where r i and w i (for i = 1 • • • n) are known according to the above identification procedure. For i = 0, we have: r 0 = 0 and w 0 = 1. Proof: We rewrite the first equation in Def. 2.2 as follows:

y(t) = u(t) -u(t) + n i=1 w i • max {u(t) -r i , min {u(t) + r i , y ei (t -T )}}
According to Property 3.1, u(t) can be expressed using the backlash operator by using a threshold r 0 = 0. Multiplying the result by a weighting w 0 = 1, we obtain: u(t) = w 0 • max {u(t)r 0 , min {u(t) + r 0 , y e0 (t -T )}} Using the two previous equations, we derive Consequence. 3.1.

C. A new compensator for the hysteresis

First, we give a consequence of Remark 2.1 and Remark 2.2 that will be used further.

Consequence 3.2: Define a compensator with input y r (t) and output u(t). From Remark 2.1 ( du(t) dt is low) and Remark 2.2 (T is very low), we have:

∂u(t) ∂yr(t) -∂u(t-T ) ∂yr(t)
→ 0 where ∂u(t) ∂yr(t) is the slope of the compensator map (y r (t), u(t)).

Proof: Since du(t) dt and T are both low, we have 

u(t) = n i=0 w i • max u(t -T ) -r i ,
min {u(t -T ) + r i , y ei (t -2T )} -y r (t) then ∂y ∂yr ≃ 1 and therefore, the hysteresis is compensated.

Proof: Replacing u(t) of the model in Consequence. 3.1 by the proposed compensator in Theo. 3.1, we obtain:

y(t) = y r (t) + O where O = u(t) -u(t -T ) + n i=1 w i • max {u(t) -r i , min {u(t) + r i , y ei (t -T )}} - n i=1 w i • max u(t -T ) -r i , min u(t -T ) + r i , y ei (t -2T
) Knowing that the model is independant from the reference, i.e.:

∂ n i=1
wi•max{u(t)-ri,min{u(t)+ri,yei(t-T )}} ∂yr = 0 we derive: ∂O ∂yr = ∂u(t) ∂yr(t) -∂u(t-T ) ∂yr(t) which -according to Consequence. 3.2 -means ∂O ∂yr → 0 Finally, we deduce that: ∂y(t) ∂yr = ∂yr ∂yr + ∂O ∂yr ≃ 1 We have demonstrated that using the compensator given in Theo. 3.1, the hysteresis modelled by a classical PI technique was compensated. It is reminded that the proposed compensator contains the initial model itself (up to a signal -u(t) and up to period T ) according to Cons. 3.1. This means that there is no extra-calculation of the compensator since it uses the same parameters and structures than the initial model.

D. Parameters and implementation of the proposed compensator

The proposed compensator is identified and implemented as follows.

First, the hysteresis model of the process is given. It is defined by Def. 2.2. Then, the parameters r i and w i of the model are identified following the procedure in Section. II-C. As soon as this model is identified, the compensator is directly derived from Theo. 3.1 since they have the same parameters. This proposed compensator is implemented in cascade with the process either by direct programming or by using block diagram tool as presented in Fig. 5-a.

Remark 3.2: The implementation scheme in Fig. 5-a is equivalent to the Fig. 5-b. The difference is on the two substraction and addition blocks. The scheme in Fig. 5b is more natural since the reference y r (t) brings in the positive input of the block.

Remark 3.3: The proposed compensator in Theo. 3.1 and presented in Fig. 5 has a (nonlinear) feedback. The structure has an inverse multiplicative form.

Remark 3.4: As we can see, an additional one period delay appears in the proposed compensator in Theo. 3.1 (see for example u(t) and u(t -T )). It ensures that no algebraic loop is in the feedback of the compensator, and therefore no error occurs during functioning. In the block diagram implementation, this delay is obtained using the delay-block (Fig. 5).

IV. Experimental results

In this section, we apply the proposed compensator to feedforward control the bending of a piezoactuator.

A. The experimental setup

The piezoactuator used in the experiments is a unimorph cantilever with rectangular cross-section. It is made up of one piezoceramic layer (PZT-151) and one passive layer (Nickel). When applying a voltage to the piezolayer, it expands/contracts resulting a bending of the whole cantilever (Fig. 6-a). The setup -pictured in Fig. 6-b -is composed of:

• the unimorph piezoelectric cantilever with dimensions: 15mm × 2mm × 0.3mm, where 0.2mm and 0.1mm are the thicknesses of the PZT and of the Nickel respectively, • a computer and a dSPACE-board that is used to acquire the measurements and to provide the control signal u(t) and reference y r (t). The software Matlab-Simulink is used for that. The refresh frequency of the acquisition material is f s = 5kHz (T = 0.2ms) which is high enough relative to the frequencies of the signal to be used, • a high voltage (HV) amplifier,

• and an optical sensor from Keyence (LC2420) with a resolution up to 10nm. This sensor is used to report the bending y(t) of the actuator for the identification and for the validation aspects. 

B. Modeling and parameters identification

The piezoactuator has a strong hysteresis. It is modeled using the classical PI approach described by Def. 2.2 and by Fig. 2. To identify the parameters r i and w i , we follow the procedure in Section. II-C.

First, a sine input voltage u(t) is applied to the piezoactuator. The amplitude of the sine signal -equal to u A = 80V -corresponds to a bending that covers the required range (nearly 20µm for us) in the application. The working frequency is chosen to correspond to that required by the application: f = 0.1Hz.

After reporting the measured bending y(t), we plot y(t) versus u(t) and shift it in order to obtain a shifted map (u, y) in the positive section like in Fig. 3. Then, we define the number of backlashes n. The choice is a compromise because a low number generates a less accurate model while a high number increases its complexity. In our case, we choose n = 15.

Then, we split the range 160V (= 2•u A ) into 16 (= n+ 1) partitions and we compute the bandwidths bw i . Using the bandwidths and the ascending curve of the shifted y(t), the discrete values y i are deduced. The matrix A is also computed from the derived bw i and from (equ 1) and (equ 2).

Finally, we derive the thresholds using r i = bwi 2 and the weighting w i using (equ 3). Using different amplitude of sine input u(t), the simulation of the identified model is now compared with the experimental result. Fig. 7 shows that the identified model captures the hysteresis behavior of the piezoactuator. This figure also shows that the hysteresis amplitude is about 23% (= h H ≈ 10µm 43µm ).

C. Results with the compensator

We now implement the compensator pictured in Fig. 5b. When applying a sine input reference y r (t) with the working frequency f = 0.1Hz, we see that the map (y r , y) is linear and with a unity slope (Fig. 8-a) and thus the accuracy of the controlled system is obtained. Fig. 8b plots the corresponding tracking response. Finally, the tracking error is plotted in Fig. 8-c. As pictured in the figure, the maximal tracking error (y r -y) is nearly 0.5µm which is negligible relative to the operational range. These results demonstrate that the proposed compensator reduces the hysteresis from 23% to less than 2.5% (≈ 1µm 40µm , 1µm and 40µm being the range of the error and the operational range respectively). 

V. Conclusion

A new compensator technique for the classical Prandtl-Ishlinskii (PI) hysteresis model was proposed in this paper. The main particularity of the proposed technique is that no additional computation is required for the compensator. As soon as the model is identified, the compensator is obtained. The approach is dedicated to compensate static hysteresis in smart materials such as piezoceramics. The experimantal results on piezoactuators demonstrated the efficiency of the proposed method. Future works include the extension of the proposed compensation technique to multivariable hysteresis compensation. Application of the proposed method in piezoactuators working in tasks where the reference input is more complicated (varying amplitude, etc) will also be considered.
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