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 devoted to the dynamic response of a structure made of two linearly elastic bodies connected by a thin soft adhesive layer made of a Kelvin Voigt type nonlinear viscoelastic material to the case of a Generalized Standard Material with a positive definite quadratic density of free energy. A concise formulation in terms of an evolution equation in a Hilbert space of possible states with finite energy makes it possible to identify the asymptotic behavior, when some geometrical and mechanical parameters tend to their natural limits, like the response of the two bodies connected by a mechanical constraint. Its law has the same structure as that of the adhesive but with coefficients accounting for the relative behavior of the parameters.

Résumé

On étend au cas d'un matériau standard généralisé l'étude [1] consacrée à la réponse dynamique d'un assemblage de deux corps linéairement élastiques liés par une couche adhésive mince et molle constituée d'un matériau viscoélastique non linéaire de type Kelvin-Voigt. Une formulation concise en termes d'équation d'évolution dans un espace de Hilbert d'états possibles d'énergie mećanique finie permet d'identifier le comportement asymptotique, lorsque des paramètres géométriques et mécaniques tendent vers leurs limites naturelles, comme celui de la réponse de l'assemblage des deux corps par une liaison mécanique. Sa loi a la même structure que celle de l'adhésif mais avec des coefficients rendant compte du comportement relatif des paramètres.

Introduction

For both theoretical and practical reasons, it is important to study the behavior of thin adhesively bonded joints not only in static or quasistatic cases but also in dynamic ones. Here we extend a previous study [START_REF] Licht | Dynamics of elastic bodies connected by a thin soft viscoelastic layer[END_REF] devoted to a Kelvin Voigt type nonlinear viscoelastic material to a general inelastic one. More precisely, the adhesive is assumed to be made of a generalized standard material [START_REF] Halphen | Sur les matériaux standards généralisés[END_REF][START_REF] Ziegler | The derivation of constitutive relations from the free energy and the dissipation function[END_REF] with a positive definite quadratic density of free energy. The key point is a concise formulation of the problem of determining the dynamic response of a structure made of two linearly elastic bodies perfectly connected by a thin soft layer in terms of an evolution equation in a Hilbert space of possible states with finite energy. Hence, it is possible to adapt the strategy of [START_REF] Licht | Dynamics of elastic bodies connected by a thin soft viscoelastic layer[END_REF] in order to first obtain existence and uniqueness results and then to study the asymptotic behavior when some geometrical and mechanical data, now regarded as parameters, tend to their natural limits. The limit behavior, which prompted our proposal of a simplified but accurate enough model for the initial physical situation, corresponds to the dynamic response to the initial load of two linearly elastic bodies linked by a mechanical constraint along the surface the adhesive layer shrinks to. Its constitutive equations keep the memory of the adhesive joint in the sense that they have the same generalized standard structure but with various coefficients depending on the relative behaviors of the parameters. In the following, we focus on specifying the necessary adjustments to [START_REF] Licht | Dynamics of elastic bodies connected by a thin soft viscoelastic layer[END_REF].

Setting the problem

We study the dynamic response of a structure consisting of two adherents connected by a thin adhesive layer which is subjected to a given load. The reference configuration of the structure is a bounded connected open set of R 3 with a Lipschitz-continuous boundary ∂Ω. Let { e 1 , e 2 , e 3 } be an orthonormal basis of R 3 assimilated to the Euclidean physical space and, for all ξ = (ξ 1 , ξ 2 , ξ 3 ) in R 3 , b ξ stands for (ξ 1 , ξ 2 ). The intersection S of Ω with { x 3 = 0 } is assumed to have a positive two-dimensional Hausdorff measure H 2 (S ), and it is also assumed that there exists ε 0 > 0 such that

B ε 0 := { x ∈ Ω; |x 3 | < ε 0 } is equal to S × (-ε 0 , ε 0 ). Let ε < ε 0 ,
then the adhesive occupies the layer B ε while each of the two adherents occupies Ω ± ε := { x ∈ Ω; ±x 3 > ε }, and let

Ω ε = Ω + ε ∪ Ω - ε .
Adherents and adhesive are assumed to be perfectly stuck together along

S ε = S + ε ∪ S - ε , S ± ε := { x ∈ Ω; x 3 = ±ε }.
The structure is clamped on a part Γ 0 of ∂Ω, with H 2 (Γ 0 ) > 0, and is subjected to body forces in Ω and surface forces on Γ 1 = ∂Ω \ Γ 0 having densities f and g, respectively, during the time interval [0, T ]; let Γ ± 0 = Γ 0 ∩ { ±x 3 > 0 }. The adherents are modeled as linearly elastic materials with a strain energy density W, such that 8 < :

W(x, e) = 1 2 a(x)e • e a.e. x ∈ Ω, ∀e ∈ S 3 a ∈ L ∞ Ω; Lin(S 3 ) ; ∃c m , c M > 0 s.t. c m |e| 2 ≤ a(x)e • e ≤ c M |e| 2 ∀e ∈ S 3 , (2.1) 
where S 3 is the space of (3 × 3) symmetric matrices with the usual inner product and norm denoted • and | | (as for R 3 ), and Lin(S 3 ) denotes the space of linear mappings from S 3 into S 3 . The adhesive is assumed to be made of a homogeneous generalized standard material [START_REF] Halphen | Sur les matériaux standards généralisés[END_REF][START_REF] Ziegler | The derivation of constitutive relations from the free energy and the dissipation function[END_REF]. In addition to strain e, there exists another inner or hidden state variable α which takes values in a finite dimensional space Ξ (whose inner product and norm are also denoted • and | | and the same for Θ := S 3 × Ξ), and the densities of free energy and dissipation potential read as (W λµ , bD) where

8 > > > > > > > > > < > > > > > > > > > :
-λ, µ, b are strictly positive real numbers, -W λµ (e, α) = λW 1 (e sph , jα) + µW 2 (e, α) ∀(e, α) ∈ Θ, -e sph is the spherical part of e, j is a not necessarily injective element of Lin(Ξ), -W 1 , W 2 are quadratic forms satisfying :

∃c i m , c i M > 0; c i m |θ| 2 ≤ W i (θ) ≤ c i M |θ| 2 ∀(i, θ) ∈ { 1, 2 } × Θ, -D is a convex function on Θ satisfying: ∃p ∈ [1, 2], ∃c ′ m , c ′ M > 0 s.t. c ′ m | θ| p ≤ D( θ) ≤ c ′ M | θ| p ∀ θ ∈ Θ, (2.2) 
with the upper dot˙denoting the time derivative. Let ρ > 0 and ρ M > ρ m > 0. If ρ is a measurable function such that ρ m ≤ ρ(x) ≤ ρ M a.e. x in Ω, the density γ of the structure is ρ in Ω ε and ρ in B ε . Thus, the problem (P s ) of determining the dynamic evolution of the assembly involves a quintuplet s := (ε, λ, µ, b, ρ) of data, and hereafter all the fields involved will be indexed by s. In the following, t denotes the times, e(u) is the linearized strain tensor associated with the field of displacment u, and ∂J(v) denotes the subdifferential at v of any lower semi-continuous convex function J, while DJ(v) stands for the differential at v of any Fréchet differentiable function J. Hence, the constitutive equations of the adhesive read as:

(σ s , 0) ∈ DW λµ (e(u s ), α s ) + b∂D e ∂u s ∂t , ∂α s ∂t , (2.3) 
where σ s denotes the field of stresses, so if U o s = (u 0 s , α 0 s , v 0 s ) is the initial state, a formulation of (P s ) could be

(P s ) 8 > > > > > > > < > > > > > > > :
Find u s sufficiently smooth in Ω × [0, T ] such that u s = 0 on Γ 0 × (0, T ], 

u s (•, 0), α s (•, 0), ∂u s ∂t (•, 0) = U o
+ bζ • (e(v), α) dx = = ˆΩ f • v dx + ˆΓ1 g • v dH 2
for all (v, α) sufficiently smooth in Ω and v vanishing on Γ 0 .

Existence and uniqueness

Assuming ( f, g) ∈ BV 0, T ; L 2 (Ω; R 3 ) × BV (2) 0, T ; L 2 (Γ 1 ; R 3 ) , ( H1 
)
where for any Banach space X, BV(0, T ; X) is the subspace of L 1 (0, T ; X) consisting of all elements whose time derivative in the sense of distributions is a bounded X-valued measure on (0, T ), and BV (2) (0, T ; X) is the subspace of BV(0, T ; X) made of all elements whose time derivative in the sense of distributions belongs to BV(0, T ; X), we seek z s := (u s , α s ) in the form

z s = z e s + z r s , (3.1) 
where z e s is the unique solution to

z e s (t) ∈ Z s ; ϕ s (z e s (t), z) = L(t)(v) ∀z ∈ Z s , ∀t ∈ [0, T ], (3.2) 
with

Z s = H 1 Γ 0 (Ω; R 3 ) × L 2 (B ε ; Ξ), H 1 Γ 0 (Ω; R 3 ) := { v ∈ H 1 (Ω; R 3 ); v = 0 on Γ 0 in the sense of traces }, (3.3) 
ϕ s (z, z ′ ) := ˆΩε ae(v) • e(v ′ ) dx + ˆBε DW λµ e(v), α • (e(v ′ ), α ′ ) dx ∀z = (v, α), z ′ = (v ′ , α ′ ) ∈ Z s , Φ s (z) := ϕ s (z, z), (3.4 
)

L(t)(v) := ˆΓ1 g(x, t) • v(x) dH 2 ∀v ∈ H 1 Γ 0 (Ω; R 3 ), ∀t ∈ [0, T ]. (3.5) 
As g → z e s is linear continuous from L 2 (Γ 1 ; R 3 ) into Z s , we have

z e s ∈ BV (2) 0, T ; Z s ). (3.6) 
The remaining part z r s will therefore be involved in an evolution equation governed by a maximal monotone operator A s defined in a Hilbert space H s of possible states with finite total mechanical energy. Given the kinetic forms

k s , K s k s (v, v ′ ) := ˆΩ γ(x)v(x) • v ′ (x) dx, K s (v) := k s (v, v), ∀v, v ′ ∈ L 2 (Ω; R 3 ), (3.7) 
H s reads as

H s = Z s × L 2 (Ω; R 3 ) (3.8)
where, for all U i = (z i , v i ), i = 1, 2, the inner product and norm are

(U 1 , U 2 ) s := ϕ s (z 1 , z 2 ) + k s (v 1 , v 2 ), |U i | 2 s := (U i , U i ) s , (3.9) 
while A s is defined by

8 > > > < > > > : D(A s ) = U = (z, v) ∈ H s ; ¨i)v ∈ H 1 Γ 0 (Ω; R 3 ) ii)∃(w, β, ζ) ∈ L 2 (Ω; R 3 ) × L 2 (B ε ; Ξ) × ∂D(e(v), β) with k s (w, v ′ ) + ϕ s (z, z ′ ) + b ´Bε ζ • (e(v ′ ), α ′ ) dx = 0 ∀z ′ = (v ′ , α ′ ) ∈ Z s A s U = (-v, 0, 0) + { (0, -β, -w); ii) of the definition of D(A s ) is satisfied }. (3.10) Proposition 3.1. Operator A s is maximal monotone and, for all ψ = (ψ 1 , ψ 2 , ψ 3 ) in H s , ¨U s = (u s , α s , v s ) s.t. U s + A s U s ∋ ψ ⇔ 8 > > < > > : Z s ∋ ξ s = (v s , α s ); J s (ξ s ) ≤ J s (z) ∀z ∈ Z s , J s (z) := 1 2 K s (v) -k s (ψ 3 , v) + 1 2 Φ s (z) + ϕ s ((ψ 1 , 0), z)+ b ´Bε D e(v), α -ψ 2 dx ∀z = (v, α) ∈ Z s u s = v s + ψ 1 . (3.11) Proof. Let U i = (z i , v i ) in D(A s ) and V i = -(v i , β i , w i ) in A s U i , i = 1, 2, the definition of D(A s ) implies that there exist ζ i in ∂D e(v i ), β i such that k s (w 1 -w 2 , v 1 -v 2 ) + ϕ s (z 1 -z 2 , ((v 1 -v 2 , β 1 -β 2 )) + b ˆBε (ζ 1 -ζ 2 ) • (e(v 1 -v 2 ), β 1 -β 2 ) dx = 0, Hence, (V 1 -V 2 , U 1 -U 2 ) s = -ϕ s ((v 1 -v 2 , β 1 -β 2 ), z 1 -z 2 ) -k s (w 1 -w 2 , v 1 -v 2 ) = b ˆBε (ζ 1 -ζ 2 ) • (e(v 1 -v 2 ), β 1 -β 2 ) dx
and the monotonicity of A s stems from that of ∂D.

If U s + A s U s ∋ ψ, the very definition of A s means that u sv s = ψ 1 and that there exists

ζ s in ∂D e(v s ), α s -ψ 2 such that k s (v s -ψ 3 , v) + ϕ s (v s + ψ 1 , α s ), (v, α)) + b ˆBε ζ s • (e(v), α) dx = 0 ∀(v, α) ∈ Z s
that is to say, (v s , α s ) is the unique minimizer in Z s of the strictly convex, continuous and coercive function J s . Conversely, if u s := v s + ψ 1 , then clearly U s := (u s , α s , v s ) belongs to D(A s ) and U s + A s U s ∋ ψ.

Then, taking (H1), (3.1), (3.2), (3.6), (3.10) into account, it is straightforward that (P s ) is formally equivalent to

dU r s dt + A s U r s ∋ F s := - dz e s dt , f /γ , U r s (0) = U o s -z e s (0), 0 (3.12) 
and consequently [START_REF] Brezis | Opeŕateurs maximaux-monotones et semi-groupes de contraction dans les espaces de Hilbert[END_REF] we have the following result 

= (u s , α s ) in W 1,∞ 0, T ; Z s ) with u s in W 2,∞ (0, T ; L 2 (Ω; R 3 ) which satisfy 8 > > > > > > < > > > > > > : ∃ζ s ∈ ∂D e du s dt , dα s dt such that ˆΩ γ d 2 u s dt 2 v dx + ˆΩε ae(u s ) • e(v) dx + ˆBε (DW λµ e(u s ), α s + bζ s ) • (e(v), α) dx = ˆΩ f • v dx + ˆΓ1 g • v dH 2 , ∀(v, α) ∈ Z s , a.e. t ∈ (0, T ] z s (0), du s dt (0) = U o s . (3.13)
We set

U e s = z e s , 0 , U s = U r s + U e s .
(3.14)

Asymptotic behavior

Now we regard the quintuplet s of geometrical and mechanical data as a quintuplet of parameters taking values in a countable subset of (0, ε 0 ) × (0, +∞) 4 with a single cluster point s and study the asymptotic behavior of U s in order to obtain a simplified but accurate enough model for the initial physical situation. The following assumptions account for the magnitudes of thickness, stiffness and density:

8 > > > > > > < > > > > > > : i) s ∈ {0} × [0, +∞) 2 × [0, +∞] × [0, +∞) ii) ∃(λ, µ) ∈ [0, +∞] 2 s.t. (λ/2ε, µ/2ε) → (λ, µ) iii) lim s→ s bε = 0, ∃b ∈ [0, +∞] s.t. b = lim s→ s b/(2ε) p-1 iv) µ ∈ (0, +∞] if min{ H 2 (Γ ± 0 ) } = 0 v) lim s→ s ε 2 /µ < +∞ vi) ∃r ∈ [0, 1) s.t. lim s→ s ε r /ρ < +∞.
(H2)

The limit behavior

From our previous study [START_REF] Licht | Dynamics of elastic bodies connected by a thin soft viscoelastic layer[END_REF], it is easy to guess what the limit behavior may be and thus introduce the following concepts. We will consider five cases indexed by I : 1 (Ω ± ; R 3 ), we denote the difference between the traces on S of u + and u - by [u] which belongs to L 2 (S ; R 3 ) and represents the relative displacement of bodies occupying Ω ± . Let

I = 1 if (λ, µ) ∈ [0, +∞) × { 0 }; I = 2 if (λ, µ) ∈ { +∞, 0 }; I = 3 if (λ, µ) ∈ [0, ∞) × (0, +∞); I = 4 if (λ, µ) ∈ { +∞ } × (0, +∞); I = 5 if µ = +∞. As any element in H 1 Γ 0 (Ω \ S ; R 3 ) has restrictions u ± to Ω ± = Ω ∩ { ±x 3 > 0 } in
1 H d := H 1 Γ 0 (Ω \ S ; R 3 ), 2 H d := { u ∈ 1 H; [u] 3 = 0 }, 3 H d := 1 H d , 4 H d := 2 H d , 5 H d := H 1 Γ 0 (Ω; R 3 ), 3 X := L 2 (S ; Ξ), 4 X := { α ∈ 3 X; jα = 0 }, I Z := I H d if I ∈ { 1, 2, 5 }, I Z := I H d × I X if I ∈ { 3, 4 }, (4.1)
such that I Z will be the space of the state variables describing the limit behavior; this suggests that when I = 1, 2, 5 an additional state variable to the displacement is not necessary! It is convenient to introduce some operators:

I = 3, 4 z = (u, α) ∈ I Z → (z d = u, z h = α, Πz = ([u] ⊗ S e 3 , α)) ∈ I Z ×L 2 (S ; Θ) I = 1, 2, 5 z(= u) ∈ I Z → (z d = u, Πz = [u] ⊗ S e 3 ) ∈ I Z ×L 2 (S ; S 3 ) (4.2)
where (ξ

⊗ S ζ) i j = 1 2 /(ξ i ζ j + ξ j ζ i ) ∀(ξ, ζ) ∈ R 3 .
The following forms define an inner product and a norm on I Z:

I ϕ(z, z ′ ) := ˆΩ\S ae(z d ) • e(z ′d ) dx + ˆS DW λµ (Πz) • Πz ′ d x, I Φ(z) := I ϕ(z, z) (4.3)
where:

8 > > < > > :

I = 1 W λµ (e) = λW ⊥ 1 (e sph ), W ⊥ 1 (e) = inf{ W 1 (e, α); α ∈ Ξ } I = 2, 5 W λµ = 0 I = 3 W λµ (Πz) = λW 1 ([z d ] 3 e 3 ⊗ S e 3 , jz h ) + µW 2 (Πz) I = 4 W λµ (Πz) = µW 2 (Πz),
so the Hilbert space of possible "limit"states with finite energy should be

I H = I Z ×L 2 (Ω; R 3 ) (4.4)
where, for all U i = (z i , v i ) in I H, the inner product and norm are:

((U 1 , U 2 )) I := I ϕ(z 1 , z 2 ) + k(v 1 , v 2 ) ||U|| 2 I := ((U, U)) I . (4.5) with k(v, v ′ ) := ˆΩ ρv • v ′ dx ∀(v, v ′ ) ∈ L 2 (Ω; R 3 ). (4.6)
The limit global potential of dissipation will be the functional ´S D(ż) dx, with

I = 3, 4 
D(ż) = ¨bD ∞,p (Πż) if b ∈ [0, +∞) I {0} (Πż) if b = ∞, I = 1, 2, 5 D(ż) = ¨b(D ∞,p ) ⊥ (Πż) if b ∈ [0, +∞) I {0} (Πż) if b = ∞, (4.7) 
where (D ∞,p ) ⊥ (ė) = Inf{ D ∞,p (ė, α), α ∈ Ξ }, I C is the indicator function of any convex set C and D ∞,p (e) = lim t→∞ D(te)/t p , with

∃c δ > 0 and δ ∈ (0, p); |D(θ) -D ∞,p (θ)| ≤ c δ (1 + |θ| δ ) ∀θ ∈ Θ. (H3) 
Finally, the evolution operator I A can be defined by:

8 > > > > > > > < > > > > > > > : D( I A) = U = (z, v) ∈ I H; 8 > < > : i) v ∈ I H d and [v] = 0 if b = ∞, ii) I = 1, 2, 5 ∃(w, ζ) ∈ L 2 (Ω; R 3 ) × ∂D(v) s.t. I = 3, 4 ∃(w, β, ζ) ∈ L 2 (Ω; R 3 ) × L 2 (S ; Ξ) × ∂D(v, β) s.t. k(w, z ′d ) + I ϕ(z, z ′ ) + ´S ζ • Π(z ′ ) d x = 0 ∀z ′ ∈ I Z . I AU = ¨(-v, 0, 0) + { (0, -β, -w); ii) of the definition of D( I A) is satisfied } if I = 3, 4, (-v, 0) + { (0, -w); ii) of the definition of D( I A) is satisfied } if I = 1, 2 , 5. 
(4.8)

When arguing as in the case of A s , it can easily be checked that I A is maximal monotone and, especially, that for all ψ = (ψ 1 , ψ 2 ) in I H:

¨IU = ( I z, I v) s.t. I U + I A I U ∋ ψ ⇔ 8 > > > > < > > > > : I Z ∋ I ξ = ¨(I v, I zh ) I = 3, 4 I v I = 1, 2, 5 s.t. I J( I ξ) ≤ I J(z) ∀z ∈ I Z I J(z) := 1 2 K(z d ) -k(ψ 2 , z d ) + 1 2 I Φ(z) + I ϕ( ψ1 , z) + ´S D(z -ψ1 ) d x ψ1 = (ψ 1d , 0), ψ1 = (0, ψ 1h ) if I = 3, 4, ψ1 = ψ 1 , ψ1 = 0 if I = 1, 2, 5 I u(= I zd ) = I v + ψ 1d (4.9)
Consequently, the same statement as that of theorem 3.1 is valid for the following equation, which will be shown to describe the asymptotic behavior of z s : 

d I U r dt + I A I U r ∋ I F := - d I z e dt , f /ρ , I U r (0) = I U ro

Convergence

As in [START_REF] Licht | Dynamics of elastic bodies connected by a thin soft viscoelastic layer[END_REF], to prove the convergence of z s toward I z = I z e + I z r , we will use the framework of a nonlinear version of Trotter's theory of convergence of semigroups acting on variable spaces ([5], [START_REF] Licht | Comportement asymptotique d'une bande dissipative mince de faible rigidité[END_REF] and consider the Appendix of [START_REF] Iosifescu | Nonlinear Boundary Conditions in Kirchhoff-Love Plate Theory[END_REF]) because z r s and I z r do not inhabit the same space. First, to introduce a linear operator I P s from I H into H s in order to compare the elements of I H and H s it suffices, if need be, to add to that of [START_REF] Licht | Dynamics of elastic bodies connected by a thin soft viscoelastic layer[END_REF] an obviously suitable operator to deal with the additional state variable; let R ε be the smoothing operator, which is also linear continuous from I H d into H 1 Γ 0 (Ω; R 3 ) defined by

R ε u(x) = ¨us (x) + Min{|x 3 |/ε, 1}u a (x) ∀x in B ε u(x) ∀x in Ω ε (4.13)
where

u s (x) = 1 2 u( x, x 3 ) + u( x, -x 3 ) , u a (x) = 1 2 u( x, x 3 ) -u( x, -x 3 )
. Then operator I P s defined by

8 > > > > <
> > > > :

I = 1 U = (u, v) ∈ 1 H → 1 P s U = (R ε u, 0, v) ∈ H s I = 2 U = (u, v) ∈ 2 H → 2 P s U = (R ε (û, 0) + (0, u 3 ), 0, v) ∈ H s I = 3 U = (u, α, v) ∈ 3 H → 3 P s U = (R ε u, α/2ε, v) ∈ H s I = 4 U = (u, α, v) ∈ 4 H → 4 P s U = (R ε (û, 0) + (0, u 3 ), α/2ε, v) ∈ H s I = 5 U = (u, α, v) ∈ 5 H → 5 P s U = (u, α/2ε, v) ∈ H s , (4.14)
where α/2ε is also considered to be a function of x ∈ B ε : α(x)/2ε = α( x)/2ε, has the fundamental properties : Even if this is the right notion from a mechanical point of view, it could be of interest to consider this convergence with respect to some classical conventional notions:

Proposition 4.2. For all U = (z, v) in I H, if U s = (u s , α s , v s ) in H s converges

in the sense of Trotter toward U, then :

i) 1 Ω ε e(u s ) converges strongly in L 2 (Ω \ S ; S 3 ) toward e(z d ) and, for all positive η, the sequence (u s ) converges strongly in H 1 Γ 0 (Ω η ; R 3 ) toward u := z d ; ii) the traces on S ± ε of u s regarded as elements of L 2 (S ; R 3 ) converge strongly in L 2 (S ; R 3 ) toward the traces on S of u

± ; iii) ´ε -ε e(u s )(•, x 3 ) dx 3 converges strongly in L 2 (S ; R 3 ) toward [u] ⊗ S e 3 if µ ∈ (0, +∞]; iv) (u s ) is bounded in L 2 (Ω; R 3 ) and converges strongly in L 2 (Ω; R 3 ) toward u, when lim s→ s ε 2 /µ = 0, in L q (Ω; R 3 ), ∀q < 2, when lim s→ s ε 2 /µ ∈ (0, +∞); v) ´ε -ε α s (•, x 3 ) dx 3 converges strongly toward α in L 2 (S ; Ξ) if µ ∈ (0, +∞]; vi) 1 Ω ε v s converges strongly in L 2 (Ω; R 3 ) toward v and v s converges strongly in L 2/(1+r) (Ω; R 3 ) toward u.
Of course, 1 Ω ε denotes the characteristic function of Ω ε , and the new points iii) and v) are a simple consequence of the Cauchy-Schwarz inequality.

Lastly, we conclude by using a suitable nonlinear version (see [START_REF] Licht | Comportement asymptotique d'une bande dissipative mince de faible rigidité[END_REF][START_REF] Iosifescu | Nonlinear Boundary Conditions in Kirchhoff-Love Plate Theory[END_REF]) of Trotter's theory of convergence of semigroups, where it suffices to make an additional assumption (H5) about the initial states and to establish the following "static" result :

Proposition 4.3. We have i) ∀ψ ∈ I H, lim s→s | I P s (I + I A) -1 ψ -(I + A s ) -1 I P s ψ| s = 0, ii) lim s→ s | I P s U e (t) -U e s (t)| s = 0 uniformly on [0, T ],
iii) lim s→ s ˆT 0

| I P s F(t) -F s (t)| s dt = 0.
As I P s F reads as (×, 0, ×), the proof of ii)-iii) given in [START_REF] Licht | Dynamics of elastic bodies connected by a thin soft viscoelastic layer[END_REF] which necessitates the additional assumption

i) f ∈ BV 0, T ; L 2/(1-r) (B ε 0 ; R 3 )
where r was defined in (H2)-vi).

ii) supp(g)

∩ B ε 0 = ∅ ∀t ∈ [0, T ] and if Min{ H 2 (Γ ± 0 ) } = 0, say H 2 (Γ - 0 ) = 0, then supp g ∩ (∂Ω - ε 0 ) = ∅ (H4)
is still valuable. As regards point i), we use the same strategy as in [START_REF] Licht | Dynamics of elastic bodies connected by a thin soft viscoelastic layer[END_REF] which, taking due account of (3.11) and (4.9), establishes the variational convergence toward I J of A J s defined by

A J s (z) = 1 2 K s (v) -k s (ψ 2 , v) + 1 2 Φ s (z) + ϕ s (( I P 1 ψ) 1 , z) + b ˆBε D e(v), α -ψ1 dx ∀z = (v, α) ∈ Z s , ψ = (ψ 1 , ψ 2 ), ψ1 = ψ 1h if I = 3, 4, ψ1 = 0 if I = 1, 2, 5
. Indeed, when µ ∈ (0, +∞] or b ∈ (0, +∞], a simple use of Hölder and Jensen inequalities gives the following additional (with respect to Lemma 4.2 of [START_REF] Licht | Dynamics of elastic bodies connected by a thin soft viscoelastic layer[END_REF]) compactness property for a sequence (w

s ) = ((v s , α s )) such that A J s (w s ) is uniformly bounded: ( ´ε -ε e(v s )(•, x 3 ) dx 3 , ´ε -ε α s (•, x 3 ) dx 3 ) converges (up to a subsequence) weakly in L q (S ; Θ) toward ([v] ⊗ S e 3 , α) with q = 2 if µ ∈ (0, +∞] or q = p if b ∈ (0, +∞].
This dramatically simplifies the proof of the optimal lower bound for A J s (w s ) by a simple use of the Jensen inequality and a standard lower semi-continuity argument for convex integral functionals in L q (S ; Θ) and is the source of terms like W ⊥ 1 and (D ∞,p ) ⊥ when µ = 0! . . . As W 1 (e, 0) or D ∞,p (ė, 0) generally differs from W ⊥ 1 (e) or (D ∞,p ) ⊥ (ė), it is worthwhile to note that in the cases I = 1, 2, 5, where the additional state variable disappears, it cannot be replaced by 0 in order to uniformize formulation of the spaces, functionals and equations! Thus, we deduce the convergence uniformly on [0, T ] in the sense of Trotter of the solution of (3.12) toward that of (4.10) with I U ro = I U o -I U e (0) and the additional conditions of convergence and compatibility between the initial state and loading:

∃ I U o ∈ I U e (0) + D( I A); U o s ∈ U e s (0) + D(A s ) and lim s→ s | I P s I U o -U o s | s = 0. ( H5 
)
This can be rephrased in a more explicit way with respect to (P s ): 

Concluding result

A more explicit way of writing (4.17) is:

-if b < +∞, ∃ζ ∈ ∂D d I z dt such that ˆΩ ρ d 2I u dt 2 z d dx + ˆΩ\S ae( I u) • e(z d ) dx + ˆS (DW λµ Π I z) + ζ • Πz d x = ˆΩ f • z d dx + ˆΓ1 g • z d dH 2 ∀z ∈ I Z . -if b = ∞, d I u dt = 0 and ˆΩ ρ d 2I u dt 2 z d dx + ˆΩ\S ae( I u) • e(z d ) dx + ˆS DW λµ [Π I z • Πz d x = ˆΩ f • z d dx + ˆΓ1 g • z d dH 2 ∀z ∈ I Z ∩{ [z d ] = 0 }. I z(0), d I u dt (0) = I U o with I z = ( I u, α) if I = 3, 4 I z = I u if I = 1, 2, 5.
Hence, the limit behavior concerns the dynamic response to the initial loads ( f, g) of the assembly of two linearly elastic adherents occupying Ω ± as reference configurations and linked along S by a dissipative mechanical constraint, which can be written:

( I σe 3 , 0) ∈ DW λµ [Π I z + ∂D d I z dt
where I σe 3 is the stress vector along S . This constitutive equation is of the same algebraic form as that of the adhesive layer. It enters the formalism of Generalized Standard Materials [START_REF] Halphen | Sur les matériaux standards généralisés[END_REF][START_REF] Ziegler | The derivation of constitutive relations from the free energy and the dissipation function[END_REF]. The contact state is described by the relative displacement 

T = 0 (σe 3 , 0) = DW λµ (Π I z) [u] = 0 σ N = (λDW ⊥ 1 ([u] N e 3 ⊗ S e 3 ) +∞ σ T = 0 (σe 3 , 0) = µDW 2 (Πz) [u] = 0 [u] N = 0 [u] N = 0, jα = 0 with [u] N = [u] 3 , σ N = σe 3 • e 3 , σ T = σe 3 -σ N e 3 .
They are elastic constraints.

• b ∈ (0, +∞) : we have to add some element ζ in ∂D d I z dt in the previous left upper 2 × 2 block. The other boxes on the right are not changed whereas we have to add ζ T to the bottom left boxes. Thus, as seen in [START_REF] Licht | Comportement asymptotique d'une bande dissipative mince de faible rigidité[END_REF], the case (λ, µ) = (+∞, 0) corresponds to generalized Norton Hoff (1 < p ≤ 2) or Tresca (p = 1) tangential friction with bilateral contact.

• b = +∞ : the relative displacement along S is always equal to its initial value (which is zero if µ = ∞ and has a vanishing normal component if λ = ∞), regardless of the values of λ, µ, the relative motion along S is frozen! In practice, the geometrical and mechanical data obviously "do not tend to some limits", so our proposal of a simplified but accurate enough model for the behavior of the real structure is that obtained in the case I = 3 by replacing λ, µ, b by the real values λ/2ε, µ/2ε and b/(2ε) p-1 ! A major defect in this modeling is that it supplies a mechanical constraint which permits the unrealistic interpenetration of the two bodies. This is due to the framework of small deformations used, which is rather questionable because λ, µ are assumed to take rather low values. That is why, in order to avoid the highly delicate framework of large deformations, especially in the dynamic case, we introduced not only one "stiffness parameter" µ but also a couple (λ, µ) of "stiffness coefficients" which, when λ = ∞, supplies realistic bilateral contact conditions. When µ = 0, the limit constraint corresponds to a Norton-or Tresca-like friction and, when µ ∈ (0, ∞), the limit constraint involves a new type (but entering the formalism of Generalized Standard Materials) of law of friction involving an additional state variable.

For the sake of simplification and to condense the presentation, we considered a special type W λµ of free energy for the adhesive involving only one couple of "stiffness coefficients" (like in a linearized Hooke law) with the defect that the additional state variable disappears when µ = 0. However, by systematically considering the fact that if ´ε -ε q s (•, x 3 ) dx 3 has a weak limit q in L p (S ; X), X ∈ { S 3 , Ξ }, when (ε, b) tends to zero, then lim ˆS W(q( x)) d x for all q-positively homogeneous convex functions W and the trick of introducing W ⊥ , it is possible to treat many more generalized standard materials. Here are two important examples where α is the inelastic strain. Eventually, we obtained a result of existence and unicity for the dynamic response of two elastic bodies in bilateral contact with a tangential friction law given through a very general dissipation potential and quadratic convex energy because this problem can be formulated as (4.17) . . .

,

  I z e ∈ BV(2) (0, T ; I Z); I ϕ( I z e (t), z) = L(t)(z d ) ∀z ∈ I Z, ∀t ∈ [0, T ]. (4I U = I U e + I U r . (4.12)

Proposition 4. 1 .

 1 i) There exists a strictly positive constant C I such that | I P s U| s ≤ C I ||U|| I , ∀U ∈ I H, ii) When s tends to s, | I P s U| s converges toward U I for all U in I H. Next we state that: (U s ) in H s converges in the sense of Trotter toward U in I H if lim s→ s | I P s U -U s | s = 0. (4.15)

Theorem 4 . 1 .

 41 The solution to dU s dt+ A s (U s -U e s ) ∋ (0, f /γ), U s (0) = U o s (4.16)converges toward the solution tod I U dt + I A( I U -I U e ) ∋ (0, f / ρ), I U(0) = I U o (4.17) in the sense lim s→ s | I P s I U(t) -U s (t)| s = 0, lim s→ s |U s (t)| s = I U(t) I uniformly on [0, T ].

  [ I z d ] and possibly an additional state variable I z h when µ ∈ (0, ∞) while the constitutive equation is derived from a free energy like W λµ (Π I z) and a potential of dissipation D d I z dt . It may degenerate when the values of one of the coefficients λ, µ, b are in { 0, +∞ }. • b = 0 µ 0 finite and positive +∞ z = u z = (u, α) z = u λ 0 σe 3 = 0 (σe 3 , 0) = µDW 2 (Πz) [u] = 0 finite and positive σ

Example 5 . 1 (Example 5 . 2 (

 5152 Poynting-Thomson like material).Free energy: W(e, α) = W λ 1 ,µ 1 (e) + W λ 2 µ 2 (eα), W λµ (e) = λ| tr e| 2 + µ|e| 2 , dissipation potential: D(ė, α) = D( α). If µ i , λ i , b i are the expected limits of µ i /2ε, λ i /2ε, b i /(2ε) p-1 . The state variables for the limit contact law are [u], α ∈ S 3 (only [u] if µ 1 = µ 2 = 0) while the free energy and dissipation potential areW λ 1 µ 1 ([u] ⊗ S e 3 ) + W λ 2 µ 2 ([u] ⊗ S e 3α), bD ∞,p ( α) so that the case λ 1 = λ 2 = ∞, µ 1 = 0, µ 2 ∈ (0, ∞)supplies a kind of "Maxwell friction" with bilateral contact :[u N ] = 0, σ T ∈ b∂D( α) = 2µ 2 ([u] T /2 -(αe 3 ) T ), α sph = 0.Elastoplasticity with strain hardening). Free energy: W λ 1 µ 1 (eα) + W λ 2 µ 2 (α), dissipation potential: b| α|. The state variables of the limit constraint are [u], α ∈ S 3 (only [u] if µ 1 = 0.) If µ 1 = 0 the bodies are free to separate (σe 3 = 0), in the other cases the surface energy and dissipation potential read as: W λ 1 µ 1 ([u] ⊗ S e 3α) + W λ 2 µ 2 (α), b| α| and the case λ 1 = λ 2 = ∞, µ 1 ∈ (0, ∞), µ 2 = 0 corresponds to a kind of "elasto-perfecto plastic friction" with bilateral contact: [u] N = 0 σ T ∈ b∂| |( α) = 2µ 1 ([u] T /2 -(αe 3 ) T ), α sph = 0