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Abstract

We extend the study [1] devoted to the dynamic response of a structure made of two linearly elastic bodies connected
by a thin soft adhesive layer made of a Kelvin Voigt type nonlinear viscoelastic material to the case of a Generalized
Standard Material with a positive definite quadratic density of free energy. A concise formulation in terms of an
evolution equation in a Hilbert space of possible states with finite energy makes it possible to identify the asymptotic
behavior, when some geometrical and mechanical parameters tend to their natural limits, like the response of the two
bodies connected by a mechanical constraint. Its law has the same structure as that of the adhesive but with coefficients
accounting for the relative behavior of the parameters.

Résumé

On étend au cas d’un matériau standard généralisé 1’étude [1] consacrée a la réponse dynamique d’un assemblage de
deux corps linéairement élastiques liés par une couche adhésive mince et molle constituée d’un matériau viscoélastique
non linéaire de type Kelvin-Voigt. Une formulation concise en termes d’équation d’évolution dans un espace de
Hilbert d’états possibles d’énergie mecanique finie permet d’identifier le comportement asymptotique, lorsque des
parametres géométriques et mécaniques tendent vers leurs limites naturelles, comme celui de la réponse de I’assemblage
des deux corps par une liaison mécanique. Sa loi a la méme structure que celle de I’adhésif mais avec des coefficients
rendant compte du comportement relatif des parametres.
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1. Introduction

For both theoretical and practical reasons, it is important to study the behavior of thin adhesively bonded joints
not only in static or quasistatic cases but also in dynamic ones. Here we extend a previous study [1] devoted to a
Kelvin Voigt type nonlinear viscoelastic material to a general inelastic one. More precisely, the adhesive is assumed
to be made of a generalized standard material [2, 3] with a positive definite quadratic density of free energy. The
key point is a concise formulation of the problem of determining the dynamic response of a structure made of two
linearly elastic bodies perfectly connected by a thin soft layer in terms of an evolution equation in a Hilbert space of
possible states with finite energy. Hence, it is possible to adapt the strategy of [1] in order to first obtain existence
and uniqueness results and then to study the asymptotic behavior when some geometrical and mechanical data, now
regarded as parameters, tend to their natural limits. The limit behavior, which prompted our proposal of a simplified
but accurate enough model for the initial physical situation, corresponds to the dynamic response to the initial load
of two linearly elastic bodies linked by a mechanical constraint along the surface the adhesive layer shrinks to. Its
constitutive equations keep the memory of the adhesive joint in the sense that they have the same generalized standard
structure but with various coefficients depending on the relative behaviors of the parameters. In the following, we
focus on specifying the necessary adjustments to [1].
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2. Setting the problem

We study the dynamic response of a structure consisting of two adherents connected by a thin adhesive layer
which is subjected to a given load. The reference configuration of the structure is a bounded connected open set of R?
with a Lipschitz-continuous boundary 9Q. Let { e',¢%, &} be an orthonormal basis of R3 assimilated to the Euclidean
physical space and, for all & = (¢1,&,&3) in R3, .;Afstands for (&1, &>). The intersection S of Q with { x3 = 0} is assumed
to have a positive two-dimensional Hausdorff measure H 2(S), and it is also assumed that there exists £y > 0 such that
B, ={x€Q; |x3] <& }isequalto S X (=&, &p). Let € < &, then the adhesive occupies the layer B, while each of
the two adherents occupies QF := {x € Q; +x3 > ¢}, and let Q, = QF U Q. Adherents and adhesive are assumed to
be perfectly stuck together along S, = S} USZ, ST := {x € Q;x3 = +e}. The structure is clamped on a part I'y of
0Q, with H3([Ty) > 0, and is subjected to body forces in Q and surface forces on I'j = 9Q \ Iy having densities f and
g, respectively, during the time interval [0, T]; let I'j = o N { +x3 > 0}. The adherents are modeled as linearly elastic
materials with a strain energy density W, such that

{W(x, e) = %a(x)e e ae. xeQ, YeeS? @0

a€l” (Q; Lin(S3)); Aep, e > 0 st emlel < a(x)e-e < cyle? Ve e S3,

where S3 is the space of (3 X 3) symmetric matrices with the usual inner product and norm denoted - and | | (as for
R?), and Lin(S?) denotes the space of linear mappings from S into S3. The adhesive is assumed to be made of a
homogeneous generalized standard material [2, 3]. In addition to strain e, there exists another inner or hidden state
variable @ which takes values in a finite dimensional space = (whose inner product and norm are also denoted - and | |
and the same for ® := S3 x Z), and the densities of free energy and dissipation potential read as (W, bD) where

Ir—/l, M, b are strictly positive real numbers,
F—Wo(e, @) = AW (eqn, j@) + uWale,a) (e, a) € O,
—egpn 1s the spherical part of e,
j —j is a not necessarily injective element of Lin(Z), 2.2)
—Wj, W, are quadratic forms satisfying :

Aci,chy > 05 IO < Wi@) < iyl VG,0) € {1,2}x O,

i —D is a convex function on © satisfying:
Ap € [1,2],3c,,, chy > 0s.t. 0P < D@) < c)l0F Vo€ O,

with the upper dot " denoting the time derivative.

Letp > 0 and p,, > p,, > 0. If p is a measurable function such that p,, < p(x) < p,, a.e. x in Q, the density y of the
structure is p in ), and p in B,. Thus, the problem (P;) of determining the dynamic evolution of the assembly involves
a quintuplet s := (&, 4, u, b, p) of data, and hereafter all the fields involved will be indexed by s. In the following, ¢
denotes the times, e(u) is the linearized strain tensor associated with the field of displacment u, and dJ(v) denotes the
subdifferential at v of any lower semi-continuous convex function J, while DJ(v) stands for the differential at v of any
Fréchet differentiable function J. Hence, the constitutive equations of the adhesive read as:

(5.0) € DWy(e(uy), a,) + bdD (e(aa“t ) %) , 2.3)



where o denotes the field of stresses, so if U? = (1%, a%,1?) is the initial state, a formulation of (P;) could be

( Find u, sufficiently smooth in Q X [0, T'] such that u; = 0 on Iy X (0, 7],
Qu 0 . . uy\ Oa; C
(us(.,O), a,(-, 0), E("O)) = UY and there exists ¢ in 0D <e< ot ), o ) satisfying:

8uy

Y -vdx + / ae(uy) - e(v)dx + / (DW (e(uy), ag) +bZ) - (e(v), @) dx =
Q Q. .

or?
=/f-vdx+/g-vd7'(2
Q Iy

{ for all (v, @) sufficiently smooth in  and v vanishing on I'y.

(Py)

&

e e N e e

3. Existence and uniqueness

Assuming
(f.8) € BV(0,T; L*(Q:; R)) x BV®(0,T; L*(T1; R%)), (H1)

where for any Banach space X, BV(0,T;X) is the subspace of L'(0,T;X) consisting of all elements whose time
derivative in the sense of distributions is a bounded X-valued measure on (0, 7'), and BV®@ (0, T; X) is the subspace of
BV(0, T; X) made of all elements whose time derivative in the sense of distributions belongs to BV(0, T'; X), we seek
zs := (uy, ;) in the form

25 =25 + 2, 3.1

where z{ is the unique solution to

with
Z, = H{ (4 RY) x LX(B,; B),

1 3 1 3 . (3.3)
Hp (Q;R7) :={v e H (Q;R);v=0onTY in the sense of traces },

¢s(z,7) == / ae(v)-e(v')dx + / DW,, (e(v), a) -(e(V),a)dx Vz=W,a),7 =0 ,a) € Z,
Q, B, 34
D(2) := ¢s5(2, 2)s
L(Hv) = / g(x,0) - v(x)dH* Vv e Hf (R, Vi€ [0,T]. (3.5)
I

As g — ¢ is linear continuous from L*(I';; R?) into Z;, we have
2 € BV?(0,T; Zy). (3.6)

The remaining part z;, will therefore be involved in an evolution equation governed by a maximal monotone operator
A, defined in a Hilbert space H of possible states with finite total mechanical energy. Given the kinetic forms ky, K

ky(v,V) = / yW(x) -V (x)dx, Kyv) = kg(v,v), Yv,v € LX(Q;R?), (3.7)
Q

H; reads as
H, = Z, x L*(Q;R?) (3.8)

where, for all U’ = (z/,V'), i = 1,2, the inner product and norm are

(U, U?), := 95", ) + k0" V), U = (U, U, (3.9)



while A; is defined by

v € HY, (R

Dids) = { U=@veHs {ii)ﬂ(w, B,7) € IA(Q: R%) x [A(B,: E) x dD(e(v), B) with

—_—m i ——

/ ’ ’ ’ ’ ’ ’ (310)
ksw, V') + (2, 2) + b [5 {-(e(V),a)dx=0 VY7 =(/,a)€Z
1 &
1
LA, U = (=v,0,0) + { (0, =B, —w); ii) of the definition of D(A;) is satisfied }.
Proposition 3.1. Operator A, is maximal monotone and, for all ¢ = (Y, y*,¢3) in Hy,
I{Zs E] E‘v = (g, @,); Jb(gv) <Js(z) VzeZ,
Uy =@y @) st JJs(@) = 3K0) = k@ v) + 3040 + ou(@, 0), 9+ 3.11)
Us+A U3¢ { b [5 D(ev),a—y?)dx Vz=(v,a)€Z '

lu, =7, +yl.
Proof. Let Ui = A(z’v, v)in D(A) and V! = —(v, B/, w') in AU, i = 1,2, the definition of D(A,) implies that there exist
'in dD(e(v'), ) such that
k! =W vt =) 4 =2 (01 =B =) + b /B €' = (e =), B = dx =0,
Hence,

(V' = V2 U = U = = (0 =V B = B2 =) — k(W' —w? v =) = b / (' = (e =V, B - pHdx
B,

and the monotonicity of A, stems from that of 9D.
If U, + AUy 3y, the very definition of A, means that , — v, = ¢ and that there exists £, in 0D (e(¥,), @ — §?)
such that

k(s — 42, v) + @, (Vs + ¥, @), (v, @) + b / L (ev),@)dx=0 VY(v,a)€Z,
B,

that is to say, (vy,@,) is the unique minimizer in Z; of the strictly convex, continuous and coercive function J;.
Conversely, if 7, := ¥, + ¢, then clearly U, := (i, @,, V) belongs to D(A,) and U, + AU, 3 . O

Then, taking (H1), (3.1), (3.2), (3.6), (3.10) into account, it is straightforward that (P;) is formally equivalent to

dUu;,
dt

dz
+ AU 5 F,y = <—%,f/y), UL(0) = U? - (24(0),0) (3.12)

and consequently [4] we have the following result

Theorem 3.1. If (f, g) satisfies (H1) and U € (zﬁ(O), O) + D(A;), then (3.12) has a unique solution such that U’
belongs to W'>(0, T; H,) and (3.12) is satisfied almost everywhere in [0, T]. Hence, there exists a unique z; = (i, @)
in W(0,T; Zy) with us in W>*(0, T; L*(Q; R?)) which satisfy

i{ ¢, € f@(e (d;:) , d;:) such that

i / yd—gsv dx + / ae(uy) - e(v) dx + / (DW,, (e(us), as) + b)) - (e(v), @) dx

{ o dr 0 B, (3.13)
! =/f-vdx+/g-vd7-l2, Vv, a) € Z, a.e. t€(0,T]

i Q I

! dug v

L (2.~ ) =05



We set
Ut = (2£,0), U, =U+U (3.14)

4. Asymptotic behavior

Now we regard the quintuplet s of geometrical and mechanical data as a quintuplet of parameters taking values in
a countable subset of (0, 9) X (0, +o0)* with a single cluster point 5 and study the asymptotic behavior of Uj in order
to obtain a simplified but accurate enough model for the initial physical situation. The following assumptions account
for the magnitudes of thickness, stiffness and density:

i) 3, € [0, +0]? s.t. (A/2¢, u/2e) — (A, 0)
iii) limbe = 0,3b € [0, +00] s.t. b = limb/(2e)""!

{ iv) 1 € (0, +oo] if min{ HA(TE)} = 0 (H2)
tv)  lime®/u < +oo

(vi) Jrel0,)s.t lime"/p < +o0.

I{i) 5 € {0} X [0, +c0)? X [0, +00] X [0, +00)

4.1. The limit behavior
From our previous study [1], it is easy to guess what the limit behavior may be and thus introduce the following
concepts. We will consider five cases indexed by I : I = 1 if (4,71) € [0, +00) X {0}; I = 2if (4, 1) € { +00,0}; 1 = 3 if
(A, 1) € [0,00) X (0, +00); I = 4if (A,11) € {+00} X (0, +00); I = 5if i = +oo. As any element in H}O(Q \ §;R?) has
restrictions u* to Q* = Q N {xx; > 0} in H'(Q*; R?), we denote the difference between the traces on S of u* and u~
by [u] which belongs to L2(S ; R?) and represents the relative displacement of bodies occupying Q*. Let
'HY:= Hp (Q\S;RY), °*HY:={ue 'H; [ul; =0}, °H':='H, “*H':=°HY °H:=H (R,
X = [XS;5), *X:={ae’X;ja=0}, “.1)
17.=H? if1€{1,2,5}, 'Z:="H'x'X ifl€{3,4},

such that 'Z will be the space of the state variables describing the limit behavior; this suggests that when I = 1,2,5
an additional state variable to the displacement is not necessary! It is convenient to introduce some operators:

[=34 z=(wa)e'ZH @ =u =aTlz=(ul®s e, a)) € 'ZxL*S;0)

4.2
[=1,2,5 z2=uwe'Z @ =ullz=[ul® ) e 'ZxL*S;S? )
where (£ ®s 0)ij = 5/(Elj +£8) V(ED) e R,
The following forms define an inner product and a norm on 'Z:
o(z,7) = / ae(z) - e(z4) dx + / DW;H(HZ) M7 dj, 'P(z) ="(z,2) 4.3)
Q\s s

where:

1 W;ﬁ(e) = AWi(espn),  Wi(e) = inf{ Wi(e,@);a € E}
25 Wy=0

3 Wyl = AW ([27]3€° &5 €, jz) + aWo(ITz)

4 Wy(lz) = AW, (),

I
I
I
I

—_—_———



so the Hilbert space of possible “limit”’states with finite energy should be
'H="ZxL*(Q;R?) 44
where, for all U’ = (z/,1") in 'H, the inner product and norm are:
W U= "o 22) + k1)U = (U, U)). (4.5)
with

kv, V') := / pv-vidx Yu,V)e LX(R). (4.6)
Q

The limit global potential of dissipation will be the functional [ D(z) dx, with

_ (Bper@s) ifh
a0 = 0 0

Lo ifb=o,
b(D®PYLI1z) if b € [0, +00)
lipy(I12) if b = co,

4.7)
I1=1,2,5 D@) = {

where (D*P)(e) = Inf{D>P(é,&), & € E}, Ic is the indicator function of any convex set C and D*P(e) =
lim,—,co D(te) /1", with
dcs > 0and 6 € (0, p); |DO) — DPO)] < cs(1 +16]°) VY6 € 0. (H3)

Finally, the evolution operator 'A can be defined by:

(i) ve'H and[v] = 0ifb = oo,
D(A) = { U=G@ve i) 1=1,2,5 A 0) e LAQ: R x 6D) s.t.
U =34 38,0 € QR x LA(S:5) x 9D, B) s
(4.8)

N —

k(W» Z,d) + I(;D(Za Z’) + fs § : H(Z’) d)% = O VZ’ S IZ}

WY = {(—v, 0,0) + { (0, =B, —w); ii) of the definition of D('A) is satisfied }if I = 3,4,

i
1
i
L (=v,0) + { (0, —w); ii) of the definition of D(A) is satisfied }ifI=1,2,5.

When arguing as in the case of A,, it can easily be checked that 'A is maximal monotone and, especially, that for all
guing y p Yy
Y= 'y in 'H:
(
; Iy 1=1,2,5
U(z) = 1K) - k@2, 2) + Y0(@) + Yo', 2) + [ D(z - §)dx (4.9)
r P = @!0), g = 0p"if1=3,4, Pl =yl ¢ =0if1=1,2,5
tlﬁ(: I7d) = Iy 4 y1d

_ If’I—h I = 3’4 —
1751 = {(V Z') st UE <@ Vze'Z

(=4

U =(1z,9) s.t.
W+AU sy

— N

Consequently, the same statement as that of theorem 3.1 is valid for the following equation, which will be shown to
describe the asymptotic behavior of z;:

d'u’ 41 I d'z Iyr I
—— + AU >F:=(- 0 ! =y 4.1
Al (==~ /1p). 'UO=U (4.10)
with
122 € BV®(0,T; '2);'o('2°(1),2) = L)) Vze 'Z,Vte[0,T]. (4.11)

6



We set
Iye = (Ize,o), Iy =1y + 'y, (4.12)

4.2. Convergence

As in [1], to prove the convergence of z, toward 'z = 'z¢ + 7", we will use the framework of a nonlinear version of
Trotter’s theory of convergence of semigroups acting on variable spaces ([5], [6] and consider the Appendix of [7])
because 7. and 'z" do not inhabit the same space.

First, to introduce a linear operator P from 'H into H, in order to compare the elements of "H and H, it suffices,
if need be, to add to that of [1] an obviously suitable operator to deal with the additional state variable; let R, be the

smoothing operator, which is also linear continuous from H into H}O(Q; R?) defined by

Rou(x) = u®(x) + Min{|x3|/e, 1}u®(x) VYxin B, @.13)
o = u(x) Vxin Q. '

where u*(x) = 5 (u(£, x3) + u(%, —x3)), u®(x) = 3 (u(%, x3) — u(%, —x3)). Then operator P defined by

(1=1 U=@wve'H + 'PU=Ru0,v)¢cH,

i1=2 U=@wv)e?H  PU=R0) +0,u3),0,v) € H,

{ 1=3 U=@a,v) e H o 3P,U=Rou a/2ev) e H, 4.14)
i1=4 U=@av)e*H mPU=R@0)+0,u3),a/2¢,) € H,

=5 U=@wav e’ wPU=ual2sv)€H,,

where a/2¢ is also considered to be a function of x € B, : a(x)/2e = a(X)/2¢, has the fundamental properties :

Proposition 4.1.

i) There exists a strictly positive constant C; such that |'P,U|, < Ci||Ul;, YU € 'y,
ii) When s tends to 5, 'P,U|, converges toward ||U||; for all U in "H.

Next we state that:
(Uy) in H converges in the sense of Trotter toward U in 'H if lim I'p,U - U,|, = 0. 4.15)
S—8

Even if this is the right notion from a mechanical point of view, it could be of interest to consider this convergence
with respect to some classical conventional notions:

Proposition 4.2. Forall U = (z,v) in Iy, if Us = (us, a5, vy) in Hg converges in the sense of Trotter toward U, then :

i) 1q, e(uy) converges strongly in L>(Q \ S;S?) toward e(z%) and, for all positive 1, the sequence (i) converges
strongly in H}O (Qy; R?) toward u := 7%;
ii) the traces on S* of u, regarded as elements of L*(S ; R®) converge strongly in L*(S ; R®) toward the traces on S
ofui;
iii) ffg e(uy)(-, x3) dx3 converges strongly in L*(S ; R3) toward [u] ®s €’ if i € (0, +0];
iv) (uy) is bounded in L*(Q;R?) and converges strongly in L>(Q; R3) toward u, when Hsz Ju =0, in LI(Q; RY),
§—

Vg < 2, when lim & /u € (0, +0);

V) f_gg as(+, x3) dx3 converges strongly toward « in L*(S;E5) ifp € (0, +00];
vi) lg, vy converges strongly in L*(Q; R®) toward v and v, converges strongly in L *"(Q; R?) toward u.

Of course, 1g, denotes the characteristic function of Q,, and the new points iii) and v) are a simple consequence
of the Cauchy-Schwarz inequality.

Lastly, we conclude by using a suitable nonlinear version (see [6, 7]) of Trotter’s theory of convergence of semi-
groups, where it suffices to make an additional assumption (HS) about the initial states and to establish the following
“static” result :



Proposition 4.3. We have

i) Vg e 'H, lim s['Pi(I+"A)" 'y — (I +A)" Pyl =0,
i) lim ['P,U“(¢) — U%(t)l, = O uniformly on [0, T],

T
iii) lim / P F(f) — Fy(0),dt = 0.
S§—8 0

i) fe BV(O, T; L7 (B,,; R3)) where r was defined in (H2)-vi).
i) supp(g) N B, =@ VYt €[0,T] and (H4)
if Min{ H*(I5) } = 0, say H*(Iy) = 0, then supp g N (9Q;,) = @

is still valuable. As regards point i), we use the same strategy as in [1] which, taking due account of (3.11) and (4.9),
establishes the variational convergence toward 'J of J; defined by

T = 3K = k0 + 38,0+ 0, (P9 )+ / D(ew),a - ') dx

BS

VZ = va) € Zg, ¢ = Wy, ¢! = " ifl = 3,4, ¢' = 0if I = 1,2,5. Indeed, when i € (0, +c0]
or b € (0,+c0], a simple use of Holder and Jensen inequalities gives the following additional (with respect to
Lemma 4.2 of [1]) compactness property for a sequence (w,) = ((vs, @s)) such that J~S(ws) is uniformly bounded:
(f_gg e(vy)(-, x3) dxs, f_gg @,(+, x3) dx3) converges (up to a subsequence) weakly in LI(S; ®) toward ([v] ®s €3, @) with
q=2if € (0,+c0] or ¢ = pif b € (0, +o0]. This dramatically simplifies the proof of the optimal lower bound for
J(wy) by a simple use of the Jensen inequality and a standard lower semi-continuity argument for convex integral
functionals in L7(S; ®) and is the source of terms like Wi~ and (D*?)* whenp = 0! ... As Wi(e,0) or D*?(¢,0)
generally differs from Wit (e) or (D™?)*(é), it is worthwhile to note that in the cases I = 1,2, 5, where the additional
state variable disappears, it cannot be replaced by 0 in order to uniformize formulation of the spaces, functionals and
equations! Thus, we deduce the convergence uniformly on [0, 7] in the sense of Trotter of the solution of (3.12)
toward that of (4.10) with 'U"° = 1U° —1U¢(0) and the additional conditions of convergence and compatibility between
the initial state and loading:

F'U° € 'U“(0) + D(A);  U? € U(0) + D(Ay) and lim ['P,'U° — U?|, = 0. (H5)

This can be rephrased in a more explicit way with respect to (P;):

Theorem 4.1. The solution to

dU;

a t Ay (Us = U9 30, fly), Uy0)=Uy (4.16)
converges toward the solution to

dIU Ay _1g7e - 1 _Iyyo

ar +ACU-"U%>3(0,f/p), UO)=U (4.17)

in the sense lim ['PU (1) — U(1)l = 0, lim |U(0)|s = MU (0)|I; uniformly on [0, T1.
§— S8

5. Concluding result

A more explicit way of writing (4.17) is:



_ _ 4"
- ifb < 400,37 € aﬂ(jf) such that

d2[ .
/ pﬁuzd dx + / ae('u) - e(z") dx + / (DW+; (1) +¢) - Tzd#
Q o\S N
=/f~zddx+/g~zdd7‘{2 Vze 'Z.
Q I

I
- if b = oo, [%] =0and

d*u d / I d 7
p—z"dx + ae(u) - e(z )dx+/DW: [1%) - Tz d%
/Qp ar s s A”( )

=/f-zddx+/g~zdd7{2 Vze 'Zn{[z/1=0}.
Q I

dI
(20 7;‘(0)) 0% with s = (w, ) if 1 = 3,47 = Wif I = 1,2, 5.

Hence, the limit behavior concerns the dynamic response to the initial loads (f, g) of the assembly of two linearly
elastic adherents occupying Q* as reference configurations and linked along S by a dissipative mechanical constraint,
which can be written: )
__ __/dz
1_3 1
,0) e DW—([I1z) + 8@(—)

(7e'.0) € DWy (1) + 9D
where 'oe? is the stress vector along S . This constitutive equation is of the same algebraic form as that of the adhesive
layer. It enters the formalism of Generalized Standard Materials [2, 3]. The contact state is described by the relative
displacement [z9] and possibly an additional state variable 'z when 1 € (0, c0) while the constitutive equation is
derived from a free energy like Wjﬁ(le) and a potential of dissipation @(%). It may degenerate when the values of

one of the coefficients A, [z, b are in {0, +oo }.

ebh=0
o
finite and positive +00
Z=Uu z=(U,a) Z=Uu
0 e’ =0 (0e®,0) = iDW,(IIz) | [u] =0
. .. or = 0 3 _ ;- I _
. finite and positive oy = (ﬁDWf([u]Ne3 85 &) (0e’,0) = DWM(H z) | [ul =0
o or=0 (0e’,0) = uDW,(Ilz) Wl = 0
[uly =0 [uly =0, ja=0 ul=

3 3

with [uly = [ul3, oy = 0’ - €3, o = o€’ — oye’. They are elastic constraints.

_ —d
e b € (0,+) : we have to add some element { in 0@(%) in the previous left upper 2 x 2 block. The other

boxes on the right are not changed whereas we have to add {7 to the bottom left boxes. Thus, as seen in [6], the
case (1,11) = (+00, 0) corresponds to generalized Norton Hoff (1 < p < 2) or Tresca (p = 1) tangential friction
with bilateral contact.

e b = +00 : the relative displacement along S is always equal to its initial value (which is zero if i = co and has a
vanishing normal component if 1 = co), regardless of the values of A, i, the relative motion along S is frozen!
In practice, the geometrical and mechanical data obviously “do not tend to some limits”, so our proposal of a
simplified but accurate enough model for the behavior of the real structure is that obtained in the case I = 3 by
replacing A, b by the real values 1/2¢, 1/2¢ and b/ (2e)P~ 1

A major defect in this modeling is that it supplies a mechanical constraint which permits the unrealistic interpenetra-
tion of the two bodies. This is due to the framework of small deformations used, which is rather questionable because
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A, are assumed to take rather low values. That is why, in order to avoid the highly delicate framework of large
deformations, especially in the dynamic case, we introduced not only one “stiffness parameter” u but also a couple
(A, ) of “stiffness coefficients” which, when A = oo, supplies realistic bilateral contact conditions. When i = 0, the
limit constraint corresponds to a Norton-or Tresca-like friction and, when i € (0, co), the limit constraint involves a
new type (but entering the formalism of Generalized Standard Materials) of law of friction involving an additional
state variable.

For the sake of simplification and to condense the presentation, we considered a special type W), of free energy
for the adhesive involving only one couple of “stiffness coefficients” (like in a linearized Hooke law) with the de-
fect that the additional state variable disappears when ;1 = 0. However, by systematically considering the fact that if

f_gg qs(-, x3) dx3 has a weak limit 7 in L”(S ; X), X € { 3,2}, when (&, b) tends to zero, then lim b [ W(gu(x))dx >
(eb)—0 JB,

( llgn 0(7) / W(q(%)) dx for all g-positively homogeneous convex functions ‘W and the trick of introducing W+,
gb)—=0NgT™ K

it is possible to treat many more generalized standard materials. Here are two important examples where « is the
inelastic strain.

Example 5.1 (Poynting-Thomson like material).

Free energy: W(e,a) = Wy, (&) + Wy, (e — ), Wy (e) = Al tr e|? + plel?, dissipation potential: D(eé, &) = D(&). Ifu,
i, b; are the expected limits of u;/2e, A;/2¢, bj/(2e)P~\. The state variables for the limit contact law are [u], @ € S3
(only [u] if p; = f, = 0) while the free energy and dissipation potential are

Wa g, (] @5 €%) + Wa s (lu] @5 €' =), bD™"(d)
so that the case A1 = A = oo, fi; = 0, i, € (0, ) supplies a kind of “Maxwell friction” with bilateral contact :
[un]1=0, o7 € bOD@) = 2, ([ulr/2 ~ (@€)r), agpn = 0.

Example 5.2 (Elastoplasticity with strain hardening).
Free energy: Wy, (e — @) + Wy, (@), dissipation potential: b||. The state variables of the limit constraint are [u],
@ € S3 (only [u] iffr; = 0.) Iffi; = O the bodies are free to separate (ce® = 0), in the other cases the surface energy
and dissipation potential read as:

Wo 2 ([u] ®s e —-a)+ Waz @,  blal

and the case 1y = Ay = oo, fi; € (0,00), i, = O corresponds to a kind of “elasto-perfecto plastic friction” with
bilateral contact:
[uly =0 o7 € bd||@ = 2 (ulr/2 ~ (@e’)r), agpn = 0

Eventually, we obtained a result of existence and unicity for the dynamic response of two elastic bodies in bilateral
contact with a tangential friction law given through a very general dissipation potential and quadratic convex energy
because this problem can be formulated as (4.17) ...
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