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aLMGC, UMR-CNRS 5508, Université Montpellier II, Case courier 048, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
bDepartment of Mathematics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Centre of Excellence in Mathematics, CHE,

Bangkok 10400, Thailand

Abstract

We extend the study [1] devoted to the dynamic response of a structure made of two linearly elastic bodies connected

by a thin soft adhesive layer made of a Kelvin Voigt type nonlinear viscoelastic material to the case of a Generalized

Standard Material with a positive definite quadratic density of free energy. A concise formulation in terms of an

evolution equation in a Hilbert space of possible states with finite energy makes it possible to identify the asymptotic

behavior, when some geometrical and mechanical parameters tend to their natural limits, like the response of the two

bodies connected by a mechanical constraint. Its law has the same structure as that of the adhesive but with coefficients

accounting for the relative behavior of the parameters.

Résumé

On étend au cas d’un matériau standard généralisé l’étude [1] consacrée à la réponse dynamique d’un assemblage de

deux corps linéairement élastiques liés par une couche adhésive mince et molle constituée d’un matériau viscoélastique

non linéaire de type Kelvin-Voigt. Une formulation concise en termes d’équation d’évolution dans un espace de

Hilbert d’états possibles d’énergie mećanique finie permet d’identifier le comportement asymptotique, lorsque des

paramètres géométriques et mécaniques tendent vers leurs limites naturelles, comme celui de la réponse de l’assemblage

des deux corps par une liaison mécanique. Sa loi a la même structure que celle de l’adhésif mais avec des coefficients

rendant compte du comportement relatif des paramètres.

Keywords: Bonding problem, Generalized Standard Material, Dynamics, Maximal Monotone Operators

1. Introduction

For both theoretical and practical reasons, it is important to study the behavior of thin adhesively bonded joints

not only in static or quasistatic cases but also in dynamic ones. Here we extend a previous study [1] devoted to a

Kelvin Voigt type nonlinear viscoelastic material to a general inelastic one. More precisely, the adhesive is assumed

to be made of a generalized standard material [2, 3] with a positive definite quadratic density of free energy. The

key point is a concise formulation of the problem of determining the dynamic response of a structure made of two

linearly elastic bodies perfectly connected by a thin soft layer in terms of an evolution equation in a Hilbert space of

possible states with finite energy. Hence, it is possible to adapt the strategy of [1] in order to first obtain existence

and uniqueness results and then to study the asymptotic behavior when some geometrical and mechanical data, now

regarded as parameters, tend to their natural limits. The limit behavior, which prompted our proposal of a simplified

but accurate enough model for the initial physical situation, corresponds to the dynamic response to the initial load

of two linearly elastic bodies linked by a mechanical constraint along the surface the adhesive layer shrinks to. Its

constitutive equations keep the memory of the adhesive joint in the sense that they have the same generalized standard

structure but with various coefficients depending on the relative behaviors of the parameters. In the following, we

focus on specifying the necessary adjustments to [1].
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2. Setting the problem

We study the dynamic response of a structure consisting of two adherents connected by a thin adhesive layer

which is subjected to a given load. The reference configuration of the structure is a bounded connected open set of R3

with a Lipschitz-continuous boundary ∂Ω. Let { e1, e2, e3 } be an orthonormal basis of R3 assimilated to the Euclidean

physical space and, for all ξ = (ξ1, ξ2, ξ3) in R
3, bξ stands for (ξ1, ξ2). The intersection S ofΩ with { x3 = 0 } is assumed

to have a positive two-dimensional Hausdorff measureH2(S ), and it is also assumed that there exists ε0 > 0 such that

Bε0
:= { x ∈ Ω; |x3| < ε0 } is equal to S × (−ε0, ε0). Let ε < ε0, then the adhesive occupies the layer Bε while each of

the two adherents occupies Ω±ε := { x ∈ Ω; ±x3 > ε }, and let Ωε = Ω
+
ε ∪ Ω

−
ε . Adherents and adhesive are assumed to

be perfectly stuck together along S ε = S +ε ∪ S −ε , S ±ε := { x ∈ Ω; x3 = ±ε }. The structure is clamped on a part Γ0 of

∂Ω, withH2(Γ0) > 0, and is subjected to body forces in Ω and surface forces on Γ1 = ∂Ω \ Γ0 having densities f and

g, respectively, during the time interval [0,T ]; let Γ±0 = Γ0 ∩ {±x3 > 0 }. The adherents are modeled as linearly elastic

materials with a strain energy density W, such that8<
:W(x, e) =

1

2
a(x)e · e a.e. x ∈ Ω, ∀e ∈ S 3

a ∈ L∞
�
Ω; Lin(S 3)

�
; ∃cm, cM > 0 s.t. cm|e|

2 ≤ a(x)e · e ≤ cM |e|
2 ∀e ∈ S 3,

(2.1)

where S 3 is the space of (3 × 3) symmetric matrices with the usual inner product and norm denoted · and | | (as for

R
3), and Lin(S 3) denotes the space of linear mappings from S 3 into S 3. The adhesive is assumed to be made of a

homogeneous generalized standard material [2, 3]. In addition to strain e, there exists another inner or hidden state

variable α which takes values in a finite dimensional space Ξ (whose inner product and norm are also denoted · and | |

and the same for Θ := S 3 × Ξ), and the densities of free energy and dissipation potential read as (Wλµ, bD) where8>>>>>>>>><
>>>>>>>>>:

−λ, µ, b are strictly positive real numbers,

−Wλµ(e, α) = λW1(esph, jα) + µW2(e, α) ∀(e, α) ∈ Θ,

−esph is the spherical part of e,

− j is a not necessarily injective element of Lin(Ξ),

−W1, W2 are quadratic forms satisfying :

∃ci
m, c

i
M > 0; ci

m|θ|
2 ≤ Wi(θ) ≤ ci

M |θ|
2 ∀(i, θ) ∈ { 1, 2 } × Θ,

−D is a convex function on Θ satisfying:

∃p ∈ [1, 2],∃c′m, c
′
M > 0 s.t. c′m|θ̇|

p ≤ D(θ̇) ≤ c′M |θ̇|
p ∀θ̇ ∈ Θ,

(2.2)

with the upper dot˙denoting the time derivative.

Let ρ > 0 and ρM > ρm > 0. If ρ is a measurable function such that ρm ≤ ρ(x) ≤ ρM a.e. x inΩ, the density γ of the

structure is ρ inΩε and ρ in Bε. Thus, the problem (Ps) of determining the dynamic evolution of the assembly involves

a quintuplet s := (ε, λ, µ, b, ρ) of data, and hereafter all the fields involved will be indexed by s. In the following, t

denotes the times, e(u) is the linearized strain tensor associated with the field of displacment u, and ∂J(v) denotes the

subdifferential at v of any lower semi-continuous convex function J, while DJ(v) stands for the differential at v of any

Fréchet differentiable function J. Hence, the constitutive equations of the adhesive read as:

(σs, 0) ∈ DWλµ(e(us), αs) + b∂D

�
e

�
∂us

∂t

�
,
∂αs

∂t

�
, (2.3)
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where σs denotes the field of stresses, so if Uo
s = (u0

s , α
0
s , v

0
s) is the initial state, a formulation of (Ps) could be

(Ps)

8>>>>>>><
>>>>>>>:

Find us sufficiently smooth in Ω × [0,T ] such that us = 0 on Γ0 × (0,T ],�
us(·, 0), αs(·, 0),

∂us

∂t
(·, 0)

�
= Uo

s and there exists ζ in ∂D

�
e

�
∂us

∂t

�
,
∂αs

∂t

�
satisfying:

ˆ

Ω

γ
∂2us

∂t2
· v dx +

ˆ

Ωε

ae(us) · e(v) dx +

ˆ

Bε

�
DWλµ

�
e(us), αs

�
+ bζ

�
· (e(v), α) dx =

=

ˆ

Ω

f · v dx +

ˆ

Γ1

g · v dH2

for all (v, α) sufficiently smooth in Ω and v vanishing on Γ0.

3. Existence and uniqueness

Assuming

( f , g) ∈ BV
�
0,T ; L2(Ω;R3)

�
× BV (2)

�
0,T ; L2(Γ1;R3)

�
, (H1)

where for any Banach space X, BV(0,T ; X) is the subspace of L1(0, T ; X) consisting of all elements whose time

derivative in the sense of distributions is a bounded X-valued measure on (0,T ), and BV (2)(0,T ; X) is the subspace of

BV(0,T ; X) made of all elements whose time derivative in the sense of distributions belongs to BV(0,T ; X), we seek

zs := (us, αs) in the form

zs = ze
s + zr

s, (3.1)

where ze
s is the unique solution to

ze
s(t) ∈ Zs; ϕs(z

e
s(t), z) = L(t)(v) ∀z ∈ Zs, ∀t ∈ [0,T ], (3.2)

with
Zs = H1

Γ0
(Ω;R3) × L2(Bε;Ξ),

H1
Γ0

(Ω;R3) := { v ∈ H1(Ω;R3); v = 0 on Γ0 in the sense of traces },
(3.3)

ϕs(z, z
′) :=

ˆ

Ωε

ae(v) · e(v′) dx +

ˆ

Bε

DWλµ

�
e(v), α

�
· (e(v′), α′) dx ∀z = (v, α), z′ = (v′, α′) ∈ Zs,

Φs(z) := ϕs(z, z),

(3.4)

L(t)(v) :=

ˆ

Γ1

g(x, t) · v(x) dH2 ∀v ∈ H1
Γ0

(Ω;R3), ∀t ∈ [0,T ]. (3.5)

As g 7→ ze
s is linear continuous from L2(Γ1;R3) into Zs, we have

ze
s ∈ BV (2)

�
0,T ; Zs). (3.6)

The remaining part zr
s will therefore be involved in an evolution equation governed by a maximal monotone operator

As defined in a Hilbert space Hs of possible states with finite total mechanical energy. Given the kinetic forms ks, Ks

ks(v, v
′) :=

ˆ

Ω

γ(x)v(x) · v′(x) dx, Ks(v) := ks(v, v), ∀v, v′ ∈ L2(Ω;R3), (3.7)

Hs reads as

Hs = Zs × L2(Ω;R3) (3.8)

where, for all U i
= (zi, vi), i = 1, 2, the inner product and norm are

(U1,U2)s := ϕs(z
1, z2) + ks(v

1, v2), |U i|2s := (U i,U i)s, (3.9)
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while As is defined by8>>><
>>>:

D(As) =

�
U = (z, v) ∈ Hs;

¨
i)v ∈ H1

Γ0
(Ω;R3)

ii)∃(w, β, ζ) ∈ L2(Ω;R3) × L2(Bε;Ξ) × ∂D(e(v), β) with

ks(w, v
′) + ϕs(z, z

′) + b
´

Bε
ζ · (e(v′), α′) dx = 0 ∀z′ = (v′, α′) ∈ Zs

�
AsU = (−v, 0, 0) + { (0,−β,−w); ii) of the definition of D(As) is satisfied }.

(3.10)

Proposition 3.1. Operator As is maximal monotone and, for all ψ = (ψ1, ψ2, ψ3) in Hs,

¨
U s = (us, αs, vs) s.t.

U s + AsU s ∋ ψ
⇔

8>><
>>:

Zs ∋ ξs = (vs, αs); Js(ξs) ≤ Js(z) ∀z ∈ Zs,

Js(z) := 1
2
Ks(v) − ks(ψ

3, v) + 1
2
Φs(z) + ϕs((ψ

1, 0), z)+

b
´

Bε
D
�
e(v), α − ψ2

�
dx ∀z = (v, α) ∈ Zs

us = vs + ψ
1.

(3.11)

Proof. Let U i
= (zi, vi) in D(As) and V i

= −(vi, βi,wi) in AsU
i, i = 1, 2, the definition of D(As) implies that there exist

ζ i in ∂D
�
e(vi), βi

�
such that

ks(w
1 − w2, v1 − v2) + ϕs(z

1 − z2, ((v1 − v2, β1 − β2)) + b

ˆ

Bε

(ζ1 − ζ2) · (e(v1 − v2), β1 − β2) dx = 0,

Hence,

(V1 − V2,U1 − U2)s = −ϕs((v
1 − v2, β1 − β2), z1 − z2) − ks(w

1 − w2, v1 − v2) = b

ˆ

Bε

(ζ1 − ζ2) · (e(v1 − v2), β1 − β2) dx

and the monotonicity of As stems from that of ∂D.

If U s + AsU s ∋ ψ, the very definition of As means that us − vs = ψ
1 and that there exists ζs in ∂D

�
e(vs), αs − ψ

2
�

such that

ks(vs − ψ
3, v) + ϕs(vs + ψ

1, αs), (v, α)) + b

ˆ

Bε

ζs · (e(v), α) dx = 0 ∀(v, α) ∈ Zs

that is to say, (vs, αs) is the unique minimizer in Zs of the strictly convex, continuous and coercive function Js.

Conversely, if us := vs + ψ
1, then clearly U s := (us, αs, vs) belongs to D(As) and U s + AsU s ∋ ψ.

Then, taking (H1), (3.1), (3.2), (3.6), (3.10) into account, it is straightforward that (Ps) is formally equivalent to

dUr
s

dt
+ AsU

r
s ∋ Fs :=

�
−

dze
s

dt
, f /γ

�
, Ur

s(0) = Uo
s −

�
ze

s(0), 0
�

(3.12)

and consequently [4] we have the following result

Theorem 3.1. If ( f , g) satisfies (H1) and Uo
s ∈

�
ze

s(0), 0
�
+ D(As), then (3.12) has a unique solution such that Ur

s

belongs to W1,∞(0,T ; Hs) and (3.12) is satisfied almost everywhere in [0,T ]. Hence, there exists a unique zs = (us, αs)

in W1,∞
�
0, T ; Zs) with us in W2,∞(0,T ; L2(Ω;R3)

�
which satisfy8>>>>>><

>>>>>>:

∃ζs ∈ ∂D
�

e

�
dus

dt

�
,

dαs

dt

�
such that

ˆ

Ω

γ
d2us

dt2
v dx +

ˆ

Ωε

ae(us) · e(v) dx +

ˆ

Bε

(DWλµ

�
e(us), αs

�
+ bζs) · (e(v), α) dx

=

ˆ

Ω

f · v dx +

ˆ

Γ1

g · v dH2, ∀(v, α) ∈ Zs, a.e. t ∈ (0,T ]�
zs(0),

dus

dt
(0)
�
= Uo

s .

(3.13)
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We set

Ue
s =

�
ze

s, 0
�
, Us = Ur

s + Ue
s . (3.14)

4. Asymptotic behavior

Now we regard the quintuplet s of geometrical and mechanical data as a quintuplet of parameters taking values in

a countable subset of (0, ε0) × (0,+∞)4 with a single cluster point s and study the asymptotic behavior of Us in order

to obtain a simplified but accurate enough model for the initial physical situation. The following assumptions account

for the magnitudes of thickness, stiffness and density:8>>>>>><
>>>>>>:

i) s ∈ {0} × [0,+∞)2 × [0,+∞] × [0,+∞)

ii) ∃(λ, µ) ∈ [0,+∞]2 s.t. (λ/2ε, µ/2ε)→ (λ, µ)

iii) lim
s→s̄

bε = 0,∃b ∈ [0,+∞] s.t. b = lim
s→s̄

b/(2ε)p−1

iv) µ ∈ (0,+∞] if min{H2(Γ±0 ) } = 0

v) lim
s→s̄

ε2/µ < +∞

vi) ∃r ∈ [0, 1) s.t. lim
s→s̄

εr/ρ < +∞.

(H2)

4.1. The limit behavior

From our previous study [1], it is easy to guess what the limit behavior may be and thus introduce the following

concepts. We will consider five cases indexed by I : I = 1 if (λ, µ) ∈ [0,+∞) × { 0 }; I = 2 if (λ, µ) ∈ {+∞, 0 }; I = 3 if

(λ, µ) ∈ [0,∞) × (0,+∞); I = 4 if (λ, µ) ∈ {+∞} × (0,+∞); I = 5 if µ = +∞. As any element in H1
Γ0

(Ω \ S ;R3) has

restrictions u± to Ω± = Ω ∩ {±x3 > 0 } in H1(Ω±;R3), we denote the difference between the traces on S of u+ and u−

by [u] which belongs to L2(S ;R3) and represents the relative displacement of bodies occupying Ω±. Let

1Hd := H1
Γ0

(Ω \ S ;R3), 2Hd := { u ∈ 1H; [u]3 = 0 }, 3Hd := 1Hd, 4Hd := 2Hd, 5Hd := H1
Γ0

(Ω;R3),

3X := L2(S ;Ξ), 4X := {α ∈ 3X; jα = 0 },

IZ := IHd if I ∈ { 1, 2, 5 }, IZ := IHd × IX if I ∈ { 3, 4 },

(4.1)

such that IZ will be the space of the state variables describing the limit behavior; this suggests that when I = 1, 2, 5

an additional state variable to the displacement is not necessary! It is convenient to introduce some operators:

I = 3, 4 z = (u, α) ∈ IZ 7→ (zd
= u, zh

= α,Πz = ([u] ⊗S e3, α)) ∈ IZ×L2(S ;Θ)

I = 1, 2, 5 z(= u) ∈ IZ 7→ (zd
= u,Πz = [u] ⊗S e3) ∈ IZ×L2(S ; S 3)

(4.2)

where (ξ ⊗S ζ)i j =
1
2
/(ξiζ j + ξ jζi) ∀(ξ, ζ) ∈ R3.

The following forms define an inner product and a norm on IZ:

Iϕ(z, z′) :=

ˆ

Ω\S

ae(zd) · e(z′d) dx +

ˆ

S

DWλµ(Πz) · Πz′ dx̂, IΦ(z) := Iϕ(z, z) (4.3)

where: 8>><
>>:

I = 1 Wλµ(e) = λW⊥1 (esph), W⊥1 (e) = inf{W1(e, α);α ∈ Ξ }

I = 2, 5 Wλµ = 0

I = 3 Wλµ(Πz) = λW1([zd]3e3 ⊗S e3, jzh) + µW2(Πz)

I = 4 Wλµ(Πz) = µW2(Πz),
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so the Hilbert space of possible “limit”states with finite energy should be

IH = IZ×L2(Ω;R3) (4.4)

where, for all U i
= (zi, vi) in IH, the inner product and norm are:

((U1,U2))I := Iϕ(z1, z2) + k(v1, v2) ||U ||2I := ((U,U))I. (4.5)

with

k(v, v′) :=

ˆ

Ω

ρv · v′ dx ∀(v, v′) ∈ L2(Ω;R3). (4.6)

The limit global potential of dissipation will be the functional
´

S
D(ż) dx, with

I = 3, 4 D(ż) =

¨
bD∞,p(Πż) if b ∈ [0,+∞)

I{0}(Πż) if b = ∞,

I = 1, 2, 5 D(ż) =

¨
b(D∞,p)⊥(Πż) if b ∈ [0,+∞)

I{0}(Πż) if b = ∞,

(4.7)

where (D∞,p)⊥(ė) = Inf{D∞,p(ė, α̇), α̇ ∈ Ξ }, IC is the indicator function of any convex set C and D∞,p(e) =

limt→∞D(te)/tp, with

∃cδ > 0 and δ ∈ (0, p); |D(θ) −D∞,p(θ)| ≤ cδ(1 + |θ|
δ) ∀θ ∈ Θ. (H3)

Finally, the evolution operator IA can be defined by:8>>>>>>><
>>>>>>>:

D(IA) =

�
U = (z, v) ∈ IH;

8><
>:

i) v ∈ IH
d

and [v] = 0 if b = ∞,

ii) I = 1, 2, 5 ∃(w, ζ) ∈ L2(Ω;R3) × ∂D(v) s.t.

I = 3, 4 ∃(w, β, ζ) ∈ L2(Ω;R3) × L2(S ;Ξ) × ∂D(v, β) s.t.

k(w, z′d) + Iϕ(z, z′) +
´

S
ζ · Π(z′) dx̂ = 0 ∀z′ ∈ IZ .

�
IAU =

¨
(−v, 0, 0) + { (0,−β,−w); ii) of the definition of D(IA) is satisfied } if I = 3, 4,

(−v, 0) + { (0,−w); ii) of the definition of D(IA) is satisfied } if I = 1, 2, 5.

(4.8)

When arguing as in the case of As, it can easily be checked that IA is maximal monotone and, especially, that for all

ψ = (ψ1, ψ2) in IH:

¨
IU = (Iz, Iv) s.t.
IU + IAIU ∋ ψ

⇔

8>>>><
>>>>:

IZ ∋ Iξ =

¨
(Iv, Iz̄h) I = 3, 4
Iv I = 1, 2, 5

s.t. IJ(Iξ) ≤ IJ(z) ∀z ∈ IZ

IJ(z) := 1
2
K(zd) − k(ψ2, zd) + 1

2
IΦ(z) + Iϕ(ψ̌1, z) +

´

S
D(z − ψ̃1) dx̂

ψ̌1
= (ψ1d, 0), ψ̃1

= (0, ψ1h) if I = 3, 4, ψ̌1
= ψ1, ψ̃1

= 0 if I = 1, 2, 5
Iu(= Iz̄d) = Iv + ψ1d

(4.9)

Consequently, the same statement as that of theorem 3.1 is valid for the following equation, which will be shown to

describe the asymptotic behavior of zs:

dIUr

dt
+

IAIUr ∋ IF :=
�
−

dIze

dt
, f /ρ

�
, IUr(0) = IUro (4.10)

with
Ize ∈ BV (2)(0,T ; IZ); Iϕ(Ize(t), z) = L(t)(zd) ∀z ∈ IZ,∀t ∈ [0, T ]. (4.11)
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We set
IUe
=

�
Ize, 0

�
, IU = IUe

+
IUr. (4.12)

4.2. Convergence

As in [1], to prove the convergence of zs toward Iz = Ize
+

Izr, we will use the framework of a nonlinear version of

Trotter’s theory of convergence of semigroups acting on variable spaces ([5], [6] and consider the Appendix of [7])

because zr
s and Izr do not inhabit the same space.

First, to introduce a linear operator IPs from IH into Hs in order to compare the elements of IH and Hs it suffices,

if need be, to add to that of [1] an obviously suitable operator to deal with the additional state variable; let Rε be the

smoothing operator, which is also linear continuous from IH
d

into H1
Γ0

(Ω;R3) defined by

Rεu(x) =

¨
us(x) +Min{|x3|/ε, 1}u

a(x) ∀x in Bε

u(x) ∀x in Ωε
(4.13)

where us(x) = 1
2

�
u(x̂, x3) + u(x̂,−x3)

�
, ua(x) = 1

2

�
u(x̂, x3) − u(x̂,−x3)

�
. Then operator IPs defined by8>>>><

>>>>:

I = 1 U = (u, v) ∈ 1H 7→ 1PsU = (Rεu, 0, v) ∈ Hs

I = 2 U = (u, v) ∈ 2H 7→ 2PsU = (Rε(û, 0) + (0, u3), 0, v) ∈ Hs

I = 3 U = (u, α, v) ∈ 3H 7→ 3PsU = (Rεu, α/2ε, v) ∈ Hs

I = 4 U = (u, α, v) ∈ 4H 7→ 4PsU = (Rε(û, 0) + (0, u3), α/2ε, v) ∈ Hs

I = 5 U = (u, α, v) ∈ 5H 7→ 5PsU = (u, α/2ε, v) ∈ Hs,

(4.14)

where α/2ε is also considered to be a function of x ∈ Bε : α(x)/2ε = α(x̂)/2ε, has the fundamental properties :

Proposition 4.1.

i) There exists a strictly positive constant CI such that |IPsU |s ≤ CI ||U ||I , ∀U ∈ IH,

ii) When s tends to s̄, |IPsU |s converges toward ‖U‖I for all U in IH.

Next we state that:

(Us) in Hs converges in the sense of Trotter toward U in IH if lim
s→s̄
|IPsU − Us|s = 0. (4.15)

Even if this is the right notion from a mechanical point of view, it could be of interest to consider this convergence

with respect to some classical conventional notions:

Proposition 4.2. For all U = (z, v) in IH, if Us = (us, αs, vs) in Hs converges in the sense of Trotter toward U, then :

i) 1Ωεe(us) converges strongly in L2(Ω \ S ; S 3) toward e(zd) and, for all positive η, the sequence (us) converges

strongly in H1
Γ0

(Ωη;R
3) toward u := zd;

ii) the traces on S ±ε of us regarded as elements of L2(S ;R3) converge strongly in L2(S ;R3) toward the traces on S

of u±;

iii)
´ ε

−ε
e(us)(·, x3) dx3 converges strongly in L2(S ;R3) toward [u] ⊗S e3 if µ ∈ (0,+∞];

iv) (us) is bounded in L2(Ω;R3) and converges strongly in L2(Ω;R3) toward u, when lim
s→s̄

ε2/µ = 0, in Lq(Ω;R3),

∀q < 2, when lim
s→s̄

ε2/µ ∈ (0,+∞);

v)
´ ε

−ε
αs(·, x3) dx3 converges strongly toward α in L2(S ;Ξ) if µ ∈ (0,+∞];

vi) 1Ωεvs converges strongly in L2(Ω;R3) toward v and vs converges strongly in L2/(1+r)(Ω;R3) toward u.

Of course, 1Ωε denotes the characteristic function of Ωε, and the new points iii) and v) are a simple consequence

of the Cauchy-Schwarz inequality.

Lastly, we conclude by using a suitable nonlinear version (see [6, 7]) of Trotter’s theory of convergence of semi-

groups, where it suffices to make an additional assumption (H5) about the initial states and to establish the following

“static” result :
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Proposition 4.3. We have

i) ∀ψ ∈ IH, lims→s |
IPs(I +

IA)−1ψ − (I + As)
−1 IPsψ|s = 0,

ii) lim
s→s̄
|IPsU

e(t) − Ue
s(t)|s = 0 uniformly on [0,T ],

iii) lim
s→s̄

ˆ T

0

|IPsF(t) − Fs(t)|s dt = 0.

As IPsF reads as (×, 0,×), the proof of ii)-iii) given in [1] which necessitates the additional assumption

i) f ∈ BV
�
0,T ; L2/(1−r)(Bε0

;R3)
�

where r was defined in (H2)-vi).

ii) supp(g) ∩ Bε0
= ∅ ∀t ∈ [0,T ] and

if Min{H2(Γ±0 ) } = 0, sayH2(Γ−0 ) = 0, then supp g ∩ (∂Ω−ε0
) = ∅

(H4)

is still valuable. As regards point i), we use the same strategy as in [1] which, taking due account of (3.11) and (4.9),

establishes the variational convergence toward IJ of eJs defined by

eJs(z) =
1

2
Ks(v) − ks(ψ

2, v) +
1

2
Φs(z) + ϕs((

IP1ψ)1, z) + b

ˆ

Bε

D
�
e(v), α − ψ̃1

�
dx

∀z = (v, α) ∈ Zs, ψ = (ψ1, ψ2), ψ̃1
= ψ1h if I = 3, 4, ψ̃1

= 0 if I = 1, 2, 5. Indeed, when µ ∈ (0,+∞]

or b ∈ (0,+∞], a simple use of Hölder and Jensen inequalities gives the following additional (with respect to

Lemma 4.2 of [1]) compactness property for a sequence (ws) = ((vs, αs)) such that eJs(ws) is uniformly bounded:

(
´ ε

−ε
e(vs)(·, x3) dx3,

´ ε

−ε
αs(·, x3) dx3) converges (up to a subsequence) weakly in Lq(S ;Θ) toward ([v] ⊗S e3, α) with

q = 2 if µ ∈ (0,+∞] or q = p if b ∈ (0,+∞]. This dramatically simplifies the proof of the optimal lower bound foreJs(ws) by a simple use of the Jensen inequality and a standard lower semi-continuity argument for convex integral

functionals in Lq(S ;Θ) and is the source of terms like W⊥1 and (D∞,p)⊥ when µ = 0! . . . As W1(e, 0) or D∞,p(ė, 0)

generally differs from W⊥1 (e) or (D∞,p)⊥(ė), it is worthwhile to note that in the cases I = 1, 2, 5, where the additional

state variable disappears, it cannot be replaced by 0 in order to uniformize formulation of the spaces, functionals and

equations! Thus, we deduce the convergence uniformly on [0,T ] in the sense of Trotter of the solution of (3.12)

toward that of (4.10) with IUro
=

IUo− IUe(0) and the additional conditions of convergence and compatibility between

the initial state and loading:

∃IUo ∈ IUe(0) + D(IA); Uo
s ∈ Ue

s(0) + D(As) and lim
s→s̄
|IPs

IUo − Uo
s |s = 0. (H5)

This can be rephrased in a more explicit way with respect to (Ps):

Theorem 4.1. The solution to
dUs

dt
+ As(Us − Ue

s) ∋ (0, f /γ), Us(0) = Uo
s (4.16)

converges toward the solution to

dIU

dt
+

IA(IU − IUe) ∋ (0, f /ρ̄), IU(0) = IUo (4.17)

in the sense lim
s→s̄
|IPs

IU(t) − Us(t)|s = 0, lim
s→s̄
|Us(t)|s = ‖

IU(t)‖I uniformly on [0,T ].

5. Concluding result

A more explicit way of writing (4.17) is:
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- if b < +∞, ∃ζ ∈ ∂D
�dIz

dt

�
such that

ˆ

Ω

ρ
d2Iu

dt2
zd dx +

ˆ

Ω\S

ae(Iu) · e(zd) dx +

ˆ

S

(DWλµ

�
Π

Iz) + ζ
�
· Πz dx̂

=

ˆ

Ω

f · zd dx +

ˆ

Γ1

g · zd dH2 ∀z ∈ IZ .

- if b = ∞,
�dIu

dt

�
= 0 and

ˆ

Ω

ρ
d2Iu

dt2
zd dx +

ˆ

Ω\S

ae(Iu) · e(zd) dx +

ˆ

S

DWλµ

�
[ΠIz

�
· Πz dx̂

=

ˆ

Ω

f · zd dx +

ˆ

Γ1

g · zd dH2 ∀z ∈ IZ∩{ [zd] = 0 }.

�
Iz(0),

dIu

dt
(0)

�
=

IUo with Iz = (Iu, α) if I = 3, 4 Iz = Iu if I = 1, 2, 5.

Hence, the limit behavior concerns the dynamic response to the initial loads ( f , g) of the assembly of two linearly

elastic adherents occupying Ω± as reference configurations and linked along S by a dissipative mechanical constraint,

which can be written:

(Iσe3, 0) ∈ DWλµ

�
[ΠIz

�
+ ∂D

�
dIz

dt

�
where Iσe3 is the stress vector along S . This constitutive equation is of the same algebraic form as that of the adhesive

layer. It enters the formalism of Generalized Standard Materials [2, 3]. The contact state is described by the relative

displacement [Izd] and possibly an additional state variable Izh when µ ∈ (0,∞) while the constitutive equation is

derived from a free energy like Wλµ(ΠIz) and a potential of dissipation D
�

dIz
dt

�
. It may degenerate when the values of

one of the coefficients λ, µ, b are in { 0,+∞}.

• b = 0

µ

0 finite and positive +∞

z = u z = (u, α) z = u

λ

0 σe3
= 0 (σe3, 0) = µDW2(Πz) [u] = 0

finite and positive
σT = 0

(σe3, 0) = DWλµ(ΠIz) [u] = 0
σN = (λDW⊥1 ([u]Ne3 ⊗S e3)

+∞
σT = 0 (σe3, 0) = µDW2(Πz)

[u] = 0
[u]N = 0 [u]N = 0, jα = 0

with [u]N = [u]3, σN = σe3 · e3, σT = σe3 − σNe3. They are elastic constraints.

• b ∈ (0,+∞) : we have to add some element ζ in ∂D
�dIz

dt

�
in the previous left upper 2 × 2 block. The other

boxes on the right are not changed whereas we have to add ζT to the bottom left boxes. Thus, as seen in [6], the

case (λ, µ) = (+∞, 0) corresponds to generalized Norton Hoff (1 < p ≤ 2) or Tresca (p = 1) tangential friction

with bilateral contact.

• b = +∞ : the relative displacement along S is always equal to its initial value (which is zero if µ = ∞ and has a

vanishing normal component if λ = ∞), regardless of the values of λ, µ, the relative motion along S is frozen!

In practice, the geometrical and mechanical data obviously “do not tend to some limits”, so our proposal of a

simplified but accurate enough model for the behavior of the real structure is that obtained in the case I = 3 by

replacing λ, µ, b by the real values λ/2ε, µ/2ε and b/(2ε)p−1!

A major defect in this modeling is that it supplies a mechanical constraint which permits the unrealistic interpenetra-

tion of the two bodies. This is due to the framework of small deformations used, which is rather questionable because
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λ, µ are assumed to take rather low values. That is why, in order to avoid the highly delicate framework of large

deformations, especially in the dynamic case, we introduced not only one “stiffness parameter” µ but also a couple

(λ, µ) of “stiffness coefficients” which, when λ = ∞, supplies realistic bilateral contact conditions. When µ = 0, the

limit constraint corresponds to a Norton-or Tresca-like friction and, when µ ∈ (0,∞), the limit constraint involves a

new type (but entering the formalism of Generalized Standard Materials) of law of friction involving an additional

state variable.

For the sake of simplification and to condense the presentation, we considered a special type Wλµ of free energy

for the adhesive involving only one couple of “stiffness coefficients” (like in a linearized Hooke law) with the de-

fect that the additional state variable disappears when µ = 0. However, by systematically considering the fact that if
´ ε

−ε
qs(·, x3) dx3 has a weak limit q in Lp(S ; X), X ∈ { S 3,Ξ }, when (ε, b) tends to zero, then lim

(ε,b)→0

b

ˆ

Bε

W(qεb(x)) dx ≥

lim
(ε,b)→0

� b

εq−1

� ˆ
S

W(q(x̂)) dx̂ for all q-positively homogeneous convex functionsW and the trick of introducingW⊥,

it is possible to treat many more generalized standard materials. Here are two important examples where α is the

inelastic strain.

Example 5.1 (Poynting-Thomson like material).

Free energy: W(e, α) = Wλ1,µ1
(e)+Wλ2µ2

(e−α),Wλµ(e) = λ| tr e|2 + µ|e|2, dissipation potential: D(ė, α̇) = D(α̇). If µi,

λi, bi are the expected limits of µi/2ε, λi/2ε, bi/(2ε)p−1. The state variables for the limit contact law are [u], α ∈ S 3

(only [u] if µ1 = µ2 = 0) while the free energy and dissipation potential are

Wλ1µ1
([u] ⊗S e3) +Wλ2µ2

([u] ⊗S e3 − α), bD∞,p(α̇)

so that the case λ1 = λ2 = ∞, µ1 = 0, µ2 ∈ (0,∞) supplies a kind of “Maxwell friction” with bilateral contact :

[uN] = 0, σT ∈ b∂D(α̇) = 2µ2([u]T /2 − (αe3)T ), αsph = 0.

Example 5.2 (Elastoplasticity with strain hardening).

Free energy: Wλ1µ1
(e − α) + Wλ2µ2

(α), dissipation potential: b|α̇|. The state variables of the limit constraint are [u],

α ∈ S 3 (only [u] if µ1 = 0.) If µ1 = 0 the bodies are free to separate (σe3
= 0), in the other cases the surface energy

and dissipation potential read as:

Wλ1µ1
([u] ⊗S e3 − α) +Wλ2µ2

(α), b|α̇|

and the case λ1 = λ2 = ∞, µ1 ∈ (0,∞), µ2 = 0 corresponds to a kind of “elasto-perfecto plastic friction” with

bilateral contact:

[u]N = 0 σT ∈ b∂| |(α̇) = 2µ1([u]T /2 − (αe3)T ), αsph = 0

Eventually, we obtained a result of existence and unicity for the dynamic response of two elastic bodies in bilateral

contact with a tangential friction law given through a very general dissipation potential and quadratic convex energy

because this problem can be formulated as (4.17) . . .
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