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ABSTRACT

This paper presents a methodology of parametric toler-
ance synthesis with respect to output aleatory uncertainty
specifications. It relies on density function propagation
through the inverse model. The resulting parameter den-
sity function is then used to synthesize a confidence interval
suitable for sizing purpose. As an illustration, parametric
tolerance synthesis on a DC motor rotating a load is pro-
cessed.

INTRODUCTION

Nowadays, mechatronics touches a wide range of appli-
cations, in daily life as well as in industry. Following tech-
nologies improvements, design process has to balance time
development and manufacturing cost while systems require-
ments become increasingly sharp. Part of this process is
concerned with parametric tolerance intended for manufac-
turers towards minimal cost components design with respect
to requirements.

In the framework of this paper, we are interested in the
problem of parametric tolerance synthesis with respect

to specifications including output aleatory uncertainties.
The aim is to obtain the tolerance of the design parameter to
keep satisfying the requirement. We adopt the bond graph
language (for system modelling, structural analysis and in-
verse model generation) and probability tools (for aleatory
uncertainties representation and propagation).

Classically represented by its transfer function, or state
equations, mechatronic system are often treated as a whole,
without consideration to local physical phenomena. We pro-
pose, in this paper, to use the bond graph language [1] to
represent the mechatronic system, in order to better adapt
the modelling to physical phenomena and causalities. Bond
graph is a multi-discipline language, which facilitates the
representation of multi-domain mechatronic system. It is
popularly used in engineering applications [2, 3], especially
multi-domain physical systems [4,5]. A mathematical foun-
dation of bond graph is established in [6].

The bond graph framework provides users with model
inversion algorithms [7, 8]. Based on the concept of bi-

causality [9], the bond graph model serves for design pur-
poses while keeping the same structure as that of the direct
model. Inverse model approach reduces the calculus time
and the number of simulating iterations, while, at the same
time, takes a good view on physical phenomena and effects.
The structural invertibility of a bond graph model is easily
checked thanks to existing procedures based on power lines
[8] and causal paths [10].

Uncertainty in a mechatronic system is categorized into
three distinct classes: variability, uncertainty, and error

[11]. Different approaches for uncertainty characterizing
and managing are required for the different classes. In this
paper we focus on aleatory uncertainty. A similar procedure
to deal with epistemic uncertainty in mechatronic system
tolerance synthesis has been treated in [12].

Aleatory uncertainty in a mechatronic system refers to
the inherent variation associated with the physical system
or the environment. In the simplest form, aleatory uncer-
tainty is often quantified with interval arithmetic [13, 14].
However, it is proven to be expensive in computation time
and the propagation result is often over-estimated. There-
fore, aleatory uncertainty is usually represented by probabil-
ity theory in the form of probability density function (PDF).

Having the inverse model and uncertainties on output
specifications, one has to propagate them to the design pa-
rameters. In order to propagate aleatory uncertainty through
a mechatronic model, there are several popular approaches:
the classical Monte-Carlo and Polynomial Chaos. Monte-
Carlo is a computational sampling and simulation methods.
A general overview of this method is given in [15]. Poly-
nomial Chaos is based on the solution of stochastic dif-
ferential equations. Firstly developed in [16], this method
was continuously refined and applied into structural analy-
sis problems [17–20]. The cost of polynomial chaos method
is much cheaper than Monte-Carlo, yet is still significantly
high.

Based on the principle of conservation of probability, a
stochastic formulation of physical system was proposed in
[21]. That formulation was applied to the inverse model
to propagate the PDFs [22] and to form the probabilistic
bond graph. This method takes into account the dynam-
ics of stochastic systems and can be applied to an inverse
model. However, it requires to determine firstly the joint
PDF of the energy variables and their derivatives, which is



sometimes hard to obtain.
In this paper, we shall use the probability density function

to represent output uncertainties specifications. Moreover,
uncertainty propagation through inverse model is processed
using an analytical way.

The paper is organized as follows. In the next section,
the problem of tolerance synthesis is briefly formulated. In
the third section, a methodology of tolerance synthesis is
presented. The methodology is illustrated in the fourth part
by an example of tolerance synthesis on a DC motor where
both cases of output mono-uncertainty and output multi-
uncertainty are considered.

FORMULATION OF THE PROBLEM

Our goal is to determine the tolerances of design parame-
ters given the probabilistic representation of aleatory output
uncertainties.

System’s specifications contain the deterministic be-
haviour that characterizes the (ideal) scenario to be fol-
lowed. The associated set of desired output trajectories is
then considered to be subject to aleatory uncertainties. Out-
put uncertainties are translated into a family of trajectories
living in the neighbourhood of the desired ones. The model
gives us the relation between the output behaviours and the
design parameters, which sets a base of knowledge for tol-
erance synthesis.

Let us consider a given mechatronic system. We shall use
probability density functions to quantify the output aleatory
uncertainties included in the specifications. It describes the
relative likelihood for the output to behave in a given way.
Once the aleatory output behaviour is quantified with PDFs,
the aim is to link it with the design parameters. The inverse
model gives us this link with an explicit relation between
outputs and design parameters. The PDF of the output un-
certainty is then propagated through the inverse model using
theorem 1 [22]:

Theorem 1: Let Θ1 be an aleatory variable with marginal
PDF φΘ1

(θ1), and Θ2 another aleatory variable such that
Θ2 = g(Θ1) where g is a diffeomorphism. Then the associ-
ated PDF φΘ2

(θ2) is given by

φΘ2
(θ2) =

φΘ1
(g−1(θ2))

|g′(g−1(θ2))|
,

where g−1 is the inverse function of g and g′ its differential.
The latter remains true for a vector of aleatory variables.
Moreover, notice that when g is not a global differomor-

phism (a popular scenario) but satisfies some smoothness
condition, the θ1-space can be partitioned in such a way that
g restricted to any subpart is a local diffeomophism denoted
gi. In that case, the marginal PDF of Θ2 is given by

φΘ2
(θ2) =

k
∑

i=1

φΘ1
(g−1

i (θ2))

|g′(g−1
i (θ2))|

.

In practice, one not only consider a single variable but
rather a vector of aleatory variables. In that case, the
aleatory uncertainties are represented by the joint PDFs of
those vectors and the propagation is actualized on those joint
PDFs.

The above theorem assumes that the vectors of aleatory
variablesΘ1 andΘ2 have the same dimension. If it is not the
case, fictive variables have to be added in order to complete
the dimension.

Propagating the uncertainty in output behaviours yields
the probability density functions of the design parameters,
which allow the determination of tolerances of design pa-
rameters with respect to the specifications.

METHODOLOGY OF TOLERANCE SYNTHESIS IN THE

PRESENCE OF ALEATORY UNCERTAINTY

We propose the next procedure to solve our problem of
tolerance synthesis:
A Modelling: Construct the bond graph of the system,
model the aleatory uncertainties included in the output spec-
ifications with probability density function, determine the
set of design parameters and outputs.
B Adequacy: Check the adequacy between the system
structure and the input/output specifications [22].
C Inversion: Test the structural invertibility [8, 10] and
construct the inverse model [22, 23]
D Propagation: Deduce the PDF associated with the de-
sign parameters by propagating the output uncertainties
through the inverse model.
E Tolerance synthesis: Synthesize the tolerance of the de-
sign parameters from their computed uncertainties.
F Validation: Verify the chosen tolerance in simulation in
direct model.

A. Modelling

The bond graph model is constructed based on the phys-
ical phenomena of the deterministic mechatronic system.
Because we focus on the problem of tolerance synthesis,
the structure of the model is assumed to be known and fixed
(which means that there is no black-box, models commu-
tation, discontinuity). The parameters of system are then
classified into two sets: the set of known parameters and
the set of design parameters (those of interest for tolerance
synthesis).

Output uncertainties are modelled with their probability
density functions.

B. Adequacy verification

Depending on its nature, some types of specifications are
not compatible with certain types of dynamic systems or
model workspace, etc. . . . A verification of adequacy be-
tween the system’s structure and the input/output specifica-
tions is therefore essential. In the case of linear system, an
adequacy verification procedure based on the order of sys-
tem is given in [22]. This step means to avoid unnecessary
further advancement, if the structure of system is not ade-
quate with the demanded specifications. It gives also hints
to redefine a proper set of requirements in that case.

C. Inversion

We shall deduce an explicit relation between the outputs
and the design parameters via the inverse bond graph model.
The direct model outputs will be the inputs of the inverse
model and the design parameters will be the outputs of the
inverse model. A structural analysis of causal paths and



power lines [22,23] has to be done to verify the invertibility.
The inverse model of minimum order can be found from the
bicausal bond graph with the procedure detailed in [22]. It
is necessary to find the model of minimum order, because
it decides the order of derivatives of outputs in the inverse
model, hence, in the calculation cost.

D. Propagation

There are two ways to propagate the uncertainties
throughout the inverse bond graph model: global approach
and local approach. In global approach, the system is con-
sidered as a whole and the output (or vector of outputs) is
directly connected to the parameter(s) by a global relation
(or a set of relations); the uncertainties on output (or vector
of outputs) is propagated to the parameter(s) under interest
by applying the theorem 1 to that global relation (or a set of
relations). Another approach is the local propagation: PDFs
from outputs (or vector of outputs) are transferred from el-
ement to element in the (inverse) bond graph model, until it
reaches the design parameters. This approach offers a closer
look to the effects of uncertainty to local physical phenom-
ena.

In case of output multi-uncertainty, the obtained PDF is
the joint PDF of design parameters (including "fictive" pa-
rameters, if they were added to balance the vector dimen-
sion). In order to determine the marginal PDF of one design
parameter, we need to integrate the joint PDF on all the do-
mains of definition of the other parameters (including the
"fictive" variables) following theorem 2 below.

Theorem 2: Given the joint PDF φ(Θ1,Θ2,...,Θn), the
marginal PDF of an element θ1 is calculated:

φΘ1
(θ1) =

∫

Θ2

. . .

∫

Θn

φ(Θ1,Θ2,...,Θn)(θ1, θ2, . . . , θn)dθ2 . . . dθn

E. Tolerance synthesis

The final PDF obtained for the design parameter provides
us with information on its distribution law. Different from
interval analysis, where we obtain only the "worst case so-
lution", with the PDF, we obtain more information about the
distributing interval of the design parameters. This PDF is,
however, not necessarily Gaussian nor symmetric, which is
required in most manufacturing processes. An adaptation
step is therefore necessary. In the frame of our research, the
tolerances of the design parameters are defined as a Gaus-
sian laws with the same mean and variance as the computed
PDF.

F. Validation

From the obtained tolerance, we generate a number of
samples, following the synthesized PDF of the parameter,
and re-inject them into the direct bond graph model. Simu-
lation is made with the generated values to verify the spec-
ifications on system’s performance. The simulated results
are checked with the set of requirements. Since the initial
specifications are given in the form of PDFs, on may have
to compare the PDF obtained from simulation’s results and
initial PDFs.

This can be done visually if the PDF obtained from sim-
ulations stays totally inside the interval of the initial PDF.

However, in some case, the comparison is hard to be done
visually, a numeric criterion is therefore needed. We adopt
here the criterion of quantiles:

Definition 1: The quantile function QX at level u is de-
fined by QX(u) = inf{x/FX(x) ≥ u} where FX is the
distribution function of the aleatory variable X .
The two PDFs are considered similar enough if the error
between them is less than 15%:

Criterion 1: The criterion of quantiles gives the mean av-
erage error (MAE) as follows

MAE = Σ

∣

∣Q1
i −Q2

i

∣

∣

σ1
≤ 15%

with i = {1, 5, 25, 50, 75, 95, 99}%, σ1 is the variance of
the first PDF.

In the next part, we illustrate our proposed procedure on
the example of a DC motor rotating a load.

EXAMPLE

Consider a DC motor rotating a load (Figure 1). As an
illustration of our methodology, we process the tolerance
synthesis of the internal resistance of the DC motor. We
shall study a simple output mono-uncertainty case and an
output multi-uncertainty case.

Modelling assumptions: The electrical part contains a
voltage source u, an internal resistance R and an inductance
L. The (ideal) electromechanical coupling is characterized
by a torque constant kc. The mechanical part takes into ac-
count the motor axis inertia Jm and the load inertia Jc, a
reduction gear ratio 1/N and the viscous friction coefficient
bc on the load axis.

Fig. 1: Scheme of a DC motor rotating a load

Data specifications.

L Motor internal self inductance 0.001[H ]
kc Electromechanical coupling 0.031[N.m/A]
Jm Motor axis inertia 1.8× 10−6[kg.m2]
N Gear ratio 1/20
Jc Load inertia 2× 10−4[kg.m2]
bc Viscous friction coefficient 0.0001[N.m/rad.s−1]
u Input voltage 20[V ]

Performance specifications. The output angular veloc-
ity Ω is desired to follow a second order step response with
an amplitude K = 32, a damping ratio ξ = 24 and an un-
damped frequency ωn = 650 rad.s−1.

Uncertainty specifications. The stationary output veloc-
ity may vary in the interval δK = ±1. For the other two
parameters, one specifies δξ = ±3 and δωn = ±30 s−1.



These variations form an envelop that the output trajectory
is expected to lie within.

We shall first study the mono-uncertainty case where only
uncertainty on the amplitude K is taken into account. Then,
we study the multi-uncertainty case where variations on
K, ξ and ωn are considered.

Mono-uncertainty

Modelling. The bond graph model of the system is given
in Fig. 2. The internal motor resistance R is the design

Fig. 2: Causal bond graph representation of a DC motor rotating a load

parameter and the output is the angular velocity Ω.

We model the uncertainty on K as a Gaussian distribution
with density probability function φK , which has as expecta-
tion the nominal deterministic value µK = 32 and variance
σK = 1/3.

φK = N (µK , σK) .

Adequacy. We note J = Jm

n
+ nJc and b = bm

n
+ nbc.

The dynamic response writes

(

kc
n

+
Rb

kc

)

Ω +

(

RJ + Lb

kc

)

Ω̇ +
LJ

kc
Ω̈ = u (1)

The considered model is therefore a second order. As a re-
sult, its structure is in adequacy with the specification.

Inverse model. The structure of system verifies the cri-
terion of invertibility [23] from the output Ω to the design
parameter R. The bicausal bond graph model is given in
Fig. 3.

Fig. 3: Bicausal bond graph representation of inverse model

The minimum order inverse model, obtained from [22]

applied to the model depicted in Figure 3, is given by

R =
u− L

[

1
kc

(

Jm

n
+ nJc

)

Ω̈− 1
kc

(

bm
n

+ nbc
)

Ω̇
]

− kc

n
Ω

1
kc

(

Jm

n
+ nJc

)

Ω̇ + 1
kc

(

bm
n

+ nbc
)

Ω

= g(u,Ω, Ω̇, Ω̈)
= h(u,K, ξ, ωn) .

(2)
Propagation. Uncertainty on the amplitude K is propa-

gated to the internal resistance R through the inverse model
h given by (2). This results in the PDF φR which represents
the uncertainty on the design parameter R evolving in time
(Fig. 4).

Fig. 4: φR evolving in time

Tolerance synthesis. Projecting the obtained PDF set
onto (R, t), we obtain the set of values of r with φR(r) > 0
and the curve of modal value of R (Fig. 5). We want the

Fig. 5: Set of values of r with φR(r) > 0 and modal value of R

output trajectories to be bounded by the specified envelop
(blue dotted curve). The value of R is therefore supposed to
stay inside the interval defined by the minimum of the upper
curve and the maximum of lower curve in Fig. 5. However,
since the amplitude uncertainty mainly acts on the steady-
state values of the response and little on the transient re-
sponse, we shall determine the tolerance of R from the PDF
at an ad hoc time. In this example, we have arbitrary cho-
sen 0.1 second. The output trajectory is therefore expected
to stay inside our envelop from 0.1 second. This PDF is
however, not necessarily Gaussian, we choose therefore the
PDF of the tolerance as an Gaussian with same mean and
variance.

Validation. We generate random samples of R accord-
ing to the PDF tolerance and re-inject into our direct model.



The simulations give us the corresponding gains and trajec-
tories (Fig. 6). As predicted, the trajectories go out of the

Fig. 6: Simulations with the synthesized tolerance

envelop for a short time, but they do lie inside the envelop
from 0.1s (Fig. 6). The PDFs of K are synthesized from
the obtained samples. We notice also that the PDF of K ob-

Fig. 7: Desired PDF of K and obtained PDF from samples

tained from simulated samples is much more concentrated
to the nominal value than the desired PDF (Fig. 7). The
specifications on K is met. We can therefore validate our
choice of tolerance on R

Output multi-uncertainty

Modelling. The modelling assumptions are identical to
the previous case. We thus deal with the same bond graph
model given in Fig. 2. The only difference resides in the fact
that we now add the damping ratio ξ and the undamped fre-
quency ωn uncertainties in order to take into account tran-
sient response uncertainties. Similarly, the uncertainties on
the undamped natural frequency ωn and on the damping ra-
tio ξ are represented by their PDFs (assumed to be Gaussian)

φK = N (32, 0.33), φξ = N (24, 1), φωn
= N (650, 10).

The steps of adequacy verification and inversion are iden-
tical to the previous case.

Propagation. The uncertainty is given on a vector




K
ωn

ξ



. In order to propagate, we need to add, for in-

stance, K and ωn (as fictive variables) to R to form a vec-

tor. The uncertainty vector is then





R
K
ωn



 and we have the

relation




R
K
ωn



 = G





K
ωn

ξ





where the linear map is given by G = (g, idK , idωn
). We

assume that K,ωn and ξ are independent variables. From
independency, the joint PDF of (K,ωn, ξ) is the product of
marginal PDFs and is calculated as

φ(K,ωn,ξ) = φK .φωn
.φξ

Thefore, the Jacobian of G, denoted |JG| is

|JG| = det







∂g(K,ωn,ξ)
∂K

∂g(K,ωn,ξ)
∂ωn

∂g(K,ωn,ξ)
∂ξ

∂K

∂K

0 0

0 ∂ωn

∂ωn
0







The joint PDF of (R,K, ωn) is then computed as (follow-
ing Theorem 1) as

φ(R,K,ωn) = |JG|
−1.φ(K,ωn,ξ)

The PDF of R is deduced from the joint PDF of (R,K)
while integrating along K and ωn (see Theorem 2). The ob-
tained PDF, depicted in Figure 8, represents the variability
of R evolving in time.

Fig. 8: φR evolving in time

Tolerance synthesis. Projecting this PDF set to (R, t),
we obtain the set of values of r with φR(r) > 0 and the
curve of modal value of R (Fig. 9) The tolerance of R is

Fig. 9: Set of values of r with φR(r) > 0 and modal value of R

therefore synthesized as PDF that gives the smallest interval
of R with φR(r) > 0 in t.

Validation We generate random samples of R according
to the PDF tolerance and re-inject into our direct model. The



Fig. 10: Simulations with the synthesized tolerance

simulation gives us the corresponding gains and trajectories
(Fig. 10). A tiny part of the trajectories goes out of the en-
velop before 0.01 sec. However, it is numerical error due to
the fact that we began the simulation at 0.01 sec, and can be
eliminated by setting the start point of simulation closer to
0. We verify also the PDFs of K,ωn, ξ computed from the
simulated samples. They are all much more concentrated to
the nominal value than the demanded PDF, therefore veri-
fied. We present here only the PDF of K (Fig. 11). The

Fig. 11: Simulations with the synthesized tolerance

specifications are met. We can therefore validate our choice
of tolerance on R

CONCLUSION AND OUTLOOK

In this paper, a methodology to address the problem of
parametric tolerance synthesis in the presence of aleatory
uncertainties has been presented.

Bond graph was chosen as the modelling tool, because of
its multi-disciplinary and acausality. The inverse approach
was adopted. That methodology proves its interest over the
direct approach in term of calculation cost. However, it re-
quires the structure of system to be invertible.

The proposed methodology provides users with the prob-
ability density function of the design parameter, evolving
in time, which offers a complete view on the parameter’s
distribution. The methodology was illustrated on a simple
example of tolerance synthesis on a DC motor.

As we mentioned above, three types of uncertainties co-
exist in mechatronic systems, which, in general, can not be
treated separately. A combined representation and resolu-
tion should be investigated. Another perspective concerns
stochastic uncertain systems which demand to handle much

more complex specifications.
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