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Introduction

We consider a finite number of convex open sets O 1 , ..., O I ⊂ R 2 with boundary C 3 -smooth and with non null curvature. We repeat these sets Z 2 -periodically by defining U i,ℓ = O i + ℓ for every (i, ℓ) ∈ {1, ..., I} × Z 2 . We suppose that the closures of the U i,ℓ are pairwise disjoint. We assume that the horizon is finite, which means that every line meets the boundary of at least one obstacle (i.e. there is no infinite free flight). We consider a particle moving in the domain Q := R 2 \ I i=1 ℓ∈Z 2 U i,ℓ with unit speed and with respect to the Descartes reflection law at its reflection times (reflected angle=incident angle). We assume that the particle starts from [0, 1[ 2 ∩Q with uniform distribution in position and in speed. The Lorentz process describes the evolution of the particle in Q. Because of the Z 2 -periodicity, it is strongly related to the Sinai billiard, the ergodic properties of which have been studied namely by Sinai in [START_REF] Ya | Dynamical systems with elastic reflections[END_REF] (for its ergodicity), Bunimovich and Sinai [START_REF] Bunimovich | Markov partitions for dispersed billiards[END_REF][START_REF] Bunimovich | Statistical properties of Lorentz gas with periodic configuration of scatterers[END_REF], Bunimovich, Chernov and Sinai [START_REF] Bunimovich | Markov partitions for two-dimensional hyperbolic billiards[END_REF][START_REF] Bunimovich | Statistical properties of two-dimensional hyperbolic billiards[END_REF] (for central limit theorems), Young [START_REF] Young | Statistical properties of dynamical systems with some hyperbolicity[END_REF] (for exponential rate of decorrelation). The similarity of behaviour of the Lorentz process with a simple planar random walk has been investigated by many authors ( [START_REF] Szász | Local limit theorem for the Lorentz process and its recurrence in the plane[END_REF][START_REF] Dolgopyat | Recurrence properties of Lorentz gas[END_REF],...). The number of auto-intersections up to time n of a random walk ( Sn ) n is Ṽn := n k,ℓ=1 1 Sk = Sℓ . This quantity is linked with random walks in random sceneries [START_REF] Bolthausen | A central limit theorem for two-dimensional random walks in random sceneries[END_REF][START_REF] Deligiannidis | An asymptotic variance of the self-intersections of random walks[END_REF]. Recently, in [START_REF] Deligiannidis | An asymptotic variance of the self-intersections of random walks[END_REF], Deligiannidis and Utev proved that V ar( Ṽn ) ∼ cn 2 with an explicit c. This improved the estimation in O(n 2 log n) by Bolthausen [START_REF] Bolthausen | A central limit theorem for two-dimensional random walks in random sceneries[END_REF]. For the Lorentz process, we define (I k , S k ) in {1, ..., I}×Z 2 for the index of the obstacle hit at the k-th reflection time ((I 0 , S 0 ) being the index of the obstacle at the reflection time just before time 0). Recall that (k -1/2 S k ) k≥1 admits an asymptotic positive variance matrix Σ 2 . We call number of self-intersections of the Lorentz process up to the n-th reflection time the quantity

V n := n k,ℓ=1 1 S k =S ℓ ,I k =I ℓ . In [8], we proved that E[V n ] ∼ c 0 n log n with c 0 := I i=1 (|∂O i | 2 ) ( I i=1 |∂O i |) 2 π √ det Σ 2
, where |∂O i | stands for the length of ∂O i . In [START_REF] Pène | Planar Lorentz process in a random scenery[END_REF], V ar(V n ) = O(n 2 log n) was enough for our study of the planar Lorentz process in random scenery. Our proof of the following result uses decorrelation and precised local limit theorems established in [START_REF] Pène | Planar Lorentz process in a random scenery[END_REF]. It provides an alternative strategy to the one of [START_REF] Deligiannidis | An asymptotic variance of the self-intersections of random walks[END_REF].

Theorem 1. V ar(V n ) ∼ cn 2 with c := c 2 0 1 + 2J - π 2 6 and J := [0,1] 3 (1 -(u + v + w))1 {u+v+w≤1} du dv dw uv + uw + vw .

Proof of Theorem 1

Observe that the distribution of (S k -S 0 , I k ) k under P and under ν considered in [START_REF] Pène | Planar Lorentz process in a random scenery[END_REF] are the same (by Z 2 -periodicity and by construction of ν). We write

E k,ℓ := {S k = S ℓ , I k = I ℓ }.
According to [START_REF] Pène | Planar Lorentz process in a random scenery[END_REF], we have

P(E k,ℓ ) = P(E 0,|ℓ-k |) = c 1 |ℓ -k| -1 + O(|ℓ -k| -2 ), with c 1 := I i (P(I 0 = i)) 2 2π √ det Σ 2 = c 0 2 . ( 1 
)
Observe that we have

V n = n + 2 1≤k<ℓ≤n 1 S k =S ℓ ,I k =I ℓ and so V ar(V n ) = 4 1≤k 1 <ℓ 1 ≤n 1≤k 2 <ℓ 2 ≤n D k 1 ,ℓ 1 ,k 2 ,ℓ 2 = 8A 1 + 8A 2 + 8A 3 + 4A 4 , with D k 1 ,ℓ 1 ,k 2 ,ℓ 2 := P(E k 1 ,ℓ 1 ∩ E k 2 ,ℓ 2 ) -P(E k 1 ,ℓ 1 )P(E k 2 ,ℓ 2 )
and

A 1 := 1≤k 1 <ℓ 1 ≤k 2 <ℓ 2 ≤n D k 1 ,ℓ 1 ,k 2 ,ℓ 2 , A 2 := 1≤k 1 ≤k 2 <ℓ 1 ≤ℓ 2 ≤n D k 1 ,ℓ 1 ,k 2 ,ℓ 2 , A 3 := 1≤k 1 <k 2 <ℓ 2 <ℓ 1 ≤n D k 1 ,ℓ 1 ,k 2 ,ℓ 2 , A 4 := 1≤k<ℓ≤n [P(E k,ℓ ) -(P(E k,ℓ )) 2 ]. • Control of A 1 . Due to [8], if k 1 < ℓ 1 ≤ k 2 < ℓ 2 , then |D k 1 ,ℓ 1 ,k 2 ,ℓ 2 | ≤ C 1 τ k 2 -ℓ 1 1 /((ℓ 1 -k 1 )(ℓ 2 -k 2 )
) for some C 1 > 0 and some τ 1 ∈ (0, 1). Hence

A 1 = O(n log 2 n) = o(n 2 ). • Control of A 4 .
Due to (1) or [START_REF] Szász | Local limit theorem for the Lorentz process and its recurrence in the plane[END_REF],

A 4 ≤ C 2 1≤k<ℓ≤n (ℓ -k) -1 = O(n log n) = o(n 2 ). • Control of A 2 .
According to [START_REF] Pène | Planar Lorentz process in a random scenery[END_REF], we have

A 2 = 1≤k 1 <k 2 <ℓ 1 <ℓ 2 ≤n c 2 1     x e - (Σ 2 ) -1 x,x 2 
1 k 2 -k 1 + 1 ℓ 1 -k 2 + 1 ℓ 2 -ℓ 1 2π √ det Σ 2 (k 2 -k 1 )(ℓ 1 -k 2 )(ℓ 2 -ℓ 1 )   - 1 (ℓ 1 -k 1 )(ℓ 2 -k 2 )   + o(n 2 ), (2) where x = x∈Z 2 : |x|≤||S 1 ||∞ min(k 2 -k 1 ,ℓ 1 -k 2 ,ℓ 2 -ℓ 1 ) and •, • is the usual scalar product in R 2 . -First A 2,0 := 1≤k 1 <k 2 <ℓ 1 <ℓ 2 ≤n x e -(Σ 2 ) -1 x,x 2 1 k 2 -k 1 + 1 ℓ 1 -k 2 + 1 ℓ 2 -ℓ 1 2π √ det Σ 2 (k 2 -k 1 )(ℓ 1 -k 2 )(ℓ 2 -ℓ 1 ) = (k 1 ,m 0 ,m 1 ,m 2 )∈En |x|≤||S 1 ||∞ min(m 0 ,m 1 ,m 2 ) e - (Σ 2 ) -1 x,x 2 
1 m 0 + 1 m 1 + 1 m 2 2π √ det Σ 2 m 0 m 1 m 2 , with E n := {(k 1 , m 0 , m 1 , m 2 ) ∈ Z + : k 1 + m 0 + m 1 + m 2 ≤ n}.
Observe that, using a comparison series-integral, we obtain sup

||S 1 ||∞≤a≤3||S 1 ||∞ x∈Z 2 : |x|≤am e -(Σ 2 ) -1 x,x 2m -2πm √ det Σ 2 = O( √ m). (3) 
So A 2,0 = (k 1 ,m 0 ,m 1 ,m 2 )∈En 1 + O(min(m 0 , m 1 , m 2 ) -1/2 ) m 0 m 1 + m 0 m 2 + m 1 m 2 ∼ n 2 J.
-

Second 1≤k 1 <k 2 <ℓ 1 <ℓ 2 ≤n 1 (ℓ 1 -k 1 )(ℓ 2 -k 2 ) = A 2,1 + 2A 2,2 , with A 2,1 := n k=1 max(1,2k-n)≤m≤k n -(2k -m) + 1 k 2 ≤ n k=1 k m=0 n k 2 = O(n log n) = o(n 2 ),
and

A 2,2 := 1≤k<ℓ≤n max(0,k+ℓ-n)≤m≤k n -(k + ℓ -m) + 1 kℓ = ⌊n/2⌋ ℓ=1 ℓ-1 k=1 k m=0 • • • + n ℓ=⌊n/2⌋+1 n-ℓ k=1 k m=0 • • • + n ℓ=⌊n/2⌋+1 ℓ-1 k=n-ℓ+1 k m=k+ℓ-n • • • = o(n 2 ) + ⌊n/2⌋ ℓ=1 ℓ-1 k=1 2(n -ℓ) -k 2ℓ + n ℓ=⌊n/2⌋+1 n-ℓ k=1 2(n -ℓ) -k 2ℓ + n ℓ=⌊n/2⌋+1 ℓ-1 k=n-ℓ+1 (n -ℓ) 2 2kℓ = o(n 2 ) + ⌊n/2⌋ ℓ=1 4n -5ℓ 4 + n ℓ=⌊n/2⌋+1 3(n -ℓ) 2 4ℓ + n ℓ=⌊n/2⌋+1 (n -ℓ) 2 2ℓ log ℓ n -ℓ ∼ n 2 - 1 8 + 3 4 log 2 + I 2 ,
with

I := 1 1/2 (1 -u) 2 u log u 1 -u du = Li 2 (u) + 1 2 u + log u(u 2 + log u -4u) + log(1 -u)(-u 2 + 4u -3) 1 1/2 , with Li 2 (z) := k≥1 z k k 2 . So I = Li 2 (1) -Li 2 (1/2) + 1 4 -log 2 2 2 -3 2 log 2 = π 2 6 -( π 2 12 - log 2 2 2 ) + 1 4 -log 2 2 2 -3 2 log 2 = π 2 12 + 1 4 -3 2 log 2. Hence we have A 2,1 + 2A 2,2 ∼ π 2 12 n 2 . • Control of A 3 .
Notice that 1≤k 1 <k 2 <ℓ 2 <ℓ 1 ≤n P(E k 1 ,ℓ 1 ∩E k 2 ,ℓ 2 ) and 1≤k 1 <k 2 <ℓ 2 <ℓ 1 ≤n P(E k 1 ,ℓ 1 )P(E k 2 ,ℓ 2 ) are in n 2 log n. But we will see that their difference is in n 2 . According to [START_REF] Pène | Planar Lorentz process in a random scenery[END_REF] and to (1), we have:

A 3 = c 1 1≤k 1 ≤k 2 <ℓ 2 <ℓ 1 ≤n     x e -(Σ 2 ) -1 x,x 2 1 k 2 -k 1 + 1 ℓ 1 -ℓ 2 2π √ det Σ 2 (k 2 -k 1 )(ℓ 1 -ℓ 2 )   - 1 (ℓ 1 -k 1 )   P(E k 2 ,ℓ 2 ) + o(n 2 ) (4)
with the same notations as for [START_REF] Bunimovich | Markov partitions for dispersed billiards[END_REF]. Using again (3) and (1), we obtain 

A 3 = o(n 2 ) + c 2 1 1≤k 1 <k 2 <ℓ 2 ≤ℓ 1 ≤n 1 ℓ 2 -k 2 1 (ℓ 1 -k 1 ) -(ℓ 2 -k 2 ) - 1 (ℓ 1 -k 1 ) = o(n 2 ) + c 2

1 1≤k 1 <k 2 <ℓ 2 ≤ℓ 1 ≤n 1 (ℓ 1 - 4 1

 114 k 1 )[(ℓ 1 -k 1 ) -(ℓ 2 -k 2 )] {t+u+v+w<1} dt du dv dw (u + w)(u + v + w)
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