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INVARIANT HILBERT SCHEMES AND DESINGULARIZATIONS

OF SYMPLECTIC REDUCTIONS FOR CLASSICAL GROUPS

RONAN TERPEREAU

Abstract. Let G ⊂ GL(V ) be a reductive algebraic subgroup acting on the

symplectic vector space W = V ⊕n
′
⊕ V ∗⊕n

′
, and µ ∶ W → Lie(G)∗ the corre-

sponding moment map. In this article, we use the theory of invariant Hilbert
schemes to construct canonical desingularizations of the irreducible compo-
nents of the symplectic reduction µ−1(0)//G for classes of examples where
G = GL(V ), O(V ), or Sp(V ). Such components are isomorphic to closures
of nilpotent orbits in simple Lie algebras and, for these classes of examples,
we determine all the cases where the Hilbert-Chow morphism is a symplectic
desingularization.
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1. Introduction and statement of the main results

We work over the field of complex numbers C. Let V and V ′ be two vector
spaces of dimensions n and n′ respectively, and let

(1) W ∶= Hom(V ′, V ) ×Hom(V,V ′),

which is naturally equipped with an action of GL(V ′) ×GL(V ):

∀(g′, g) ∈ GL(V ′)×GL(V ), ∀(u1, u2) ∈W, (g′, g).(u1, u2) ∶= (g○u1○g
′−1, g′○u2○g

−1).

The GL(V )-module W is symplectic, that is, equipped with a GL(V )-invariant
non-degenerate skew-symmetric bilinear form Ω defined by:

(2) ∀(u1, u2), (u
′
1, u

′
2) ∈W, Ω((u1, u2), (u

′
1, u

′
2)) ∶= tr(u

′
1 ○ u2) − tr(u1 ○ u

′
2),

where tr(.) denotes the trace. The symplectic GL(V )-module W has a GL(V )-
equivariant moment map defined by:

(3)
µGL(V ) ∶ W → gl(V )∗

(u1, u2) ↦ (h ↦ tr(u2 ○ h ○ u1))

where gl(V ) denotes the Lie algebra of GL(V ). If G ⊂ GL(V ) is any algebraic
subgroup, and g is the Lie algebra of G, then the moment map µG ∶ W → g∗ for
the action of G on W is obtained by composing µGL(V ) with the linear projection
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2 RONAN TERPEREAU

gl(V )∗ → g∗. To simplify the notation, we will denote µ instead of µG. The map µ

is G-equivariant, and thus the set-theoretic fiber µ−1(0) is a G-stable closed subset
of W . From now on, we suppose that G is reductive, and we denote W ///G the
symplectic reduction of W by G, that is, the categorical quotient µ−1(0)//G ∶=
Spec(C[µ−1(0)]G). Let us mention that if G′ is an algebraic subgroup of the G-

equivariant automorphism group Aut
G(µ−1(0)), then G′ acts on W ///G and the

quotient morphism µ−1(0)→W ///G is G′-equivariant.
The aim of this article is to construct canonical desingularizations of the

irreducible components of W ///G for classes of examples where G = GL(V ), O(V ),
or Sp(V ). The symplectic reduction W ///G for G = Sp(V ) or O(V ) was considered
by Becker ([Bec09]), and the case G = GL(V ) will be studied in Section 3.1. The
symplectic reduction W ///G is

(1) the closure of a nilpotent orbit in the Lie algebra of G′ = GL(V ′) resp.
Sp(V ′⊕V ′∗), resp. SO(V ′⊕V ′∗), if G = GL(V ) resp. O(V ), resp. Sp(V )
with (n′ > n or n′ odd);

(2) the union of two (isomorphic) closures of nilpotent orbits in the Lie algebra
of G′ = SO(V ′ ⊕ V ′∗) if G = Sp(V ) with (n′ ≤ n and n′ even).

The geometry of nilpotent orbits has been extensively studied ([KP79, KP81, KP82,
Fu03a, Fu03b, Fu06b, Nam06]). In particular, the normalizations of such closures
are symplectic varieties (as defined by Beauville in [Bea00]) whose symplectic desin-
gularizations are the so-called Springer desingularizations, obtained by collapsing
the cotangent bundle over some flag varieties (see Section 2 for details).

Before stating our results, we need to recall briefly the definition of the invariant
Hilbert scheme, constructed by Alexeev and Brion (see [AB05, Bri] for more details),
in the particular case we are interested. Let G ⊂ GL(V ) be a reductive algebraic
subgroup, Irr(G) the set of isomorphism classes of irreducible representations of G,
and h ∶ Irr(G) → N a Hilbert function. If X ⊂W a G-stable closed subscheme, then

the invariant Hilbert scheme Hilb
G
h (X) is the moduli space that parametrizes the

G-stable closed subschemes Z of X such that

C[Z] ≅ ⊕
M∈Irr(G)

M⊕h(M)

as a G-module. We now suppose that X//G is a variety. If h = h0 is the Hilbert
function of the general fibers of the quotient morphism ν ∶ X → X//G (that is,
the fibers over a nonempty open subset of X//G), then there exists a projective
morphism

γ ∶ HilbG
h0
(X)→X//G,

called the Hilbert-Chow morphism, that sends a closed subscheme Z ⊂ X to the
point Z//G ⊂ X//G. If G′ ⊂ AutG(X) is any algebraic subgroup, then it is known

that G′ acts on X//G and on Hilb
G
h0
(X) such that ν and γ are G′-equivariant. The

Hilbert-Chow morphism induces an isomorphism over the flat locus U ⊂X//G of ν.

The main component of HilbG
h0
(X) is the irreducible component defined by

Hilb
G
h0
(X)main ∶= γ−1(U).

Then the restriction γ ∶ HilbGh0
(X)main →X//G is a projective birational morphism,

and thus γ is a candidate for a canonical desingularization of X//G. It is an open
problem to determine whether this restriction is always a desingularization or not.
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In [Terb, Tera], we studied the invariant Hilbert scheme for classical groups
acting on classical representations. We obtained classes of examples where the
Hilbert-Chow morphism is a desingularization of the categorical quotient, and fur-
ther examples where it is not. In this paper, we use the results of [Tera] to prove
the following:

Theorem A. [Sections 3.3 and 4.3] With the above notation, let G = GL(V ), O(V )
or Sp(V ), and X denote µ−1(0) in Case (1) resp. the preimage of one of the two
irreducible components of W ///G by the quotient morphism µ−1(0)→W ///G in Case

(2). Then the Hilbert-Chow morphism γ ∶ Hilb
G
h0
(X)main → X//G is a Springer

desingularization (and the unique one) if and only if

● G = GL(V ), n ≥ n′ − 1, and n′ is even; or
● G = O(V ), and n ≥ 2n′ − 1; or
● G = Sp(V ), n and n′ are even, and n ≥ 2n′ − 2.

Moreover, γ is still a desingularization (that strictly dominates the Springer desin-
gularizations when they exist) if

● G = GL(V ) and ((n = 1 and n′ ≥ 3) or (n = 2 and n′ ≥ 4)); or
● G = O(V ) and (n = 1 < n′ or n = 2 ≤ n′); or
● G = Sp(V ) and (n = 2 < n′ or n = 4 ≤ n′).

Let us mention that the case G = Sp(V ) with n = 2 and n′ = 3 was al-
ready handled by Becker in [Bec11]. In this case, W ///G is a closure of a nilpo-
tent orbit that admits two Springer desingularizations, and Becker showed that
γ ∶ Hilb

G
h0
(µ−1(0)) → W ///G is a desingularization that dominates them both.

To obtain this result, Becker first used the existence of natural morphisms from
the invariant Hilbert scheme to Grassmannians to identify Hilb

G
h0
(µ−1(0))main with

the total space of a homogeneous line bundle over a Grassmannian, and then she
showed that Hilb

G
h0
(µ−1(0)) = HilbG

h0
(µ−1(0))main by computing the tangent space

of HilbG
h0
(µ−1(0)) at every point of the main component. In the present article, our

most important theoretical result is a reduction principle that generalizes the first
step of Becker’s method.

Reduction Principle. [Propositions 3.8 and 4.8] We take the notation of Theorem
A, and we make the extra assumption that n′ ≥ 2n or (n′ < 2n and n′ is even) when
G = GL(V ), and n′ ≥ n or (n′ < n and n′, n are even) when G = Sp(V ).
Then the main component HilbG

h0
(X)main is the total space of a homogeneous fiber

bundle over a flag variety whose fiber is isomorphic to Hilb
G
h
W ′
(W ′)main, where

W ′ = V ⊕N ⊕V ∗⊕N with N ∶= h0(V ∗), and hW ′ is the Hilbert function of the general
fibers of the quotient morphism W ′ →W ′//G.

A similar reduction principle (but in a different setting) was already obtained in
[Tera]. Once we have performed the reduction step, we use [Tera, §1,Theorem] to

identify Hilb
G
h
W ′
(W ′)main. The last step to prove Theorem A is then to compare

the Hilbert-Chow morphism γ ∶ HilbG
h0
(X)main →X//G with the Springer desingu-

larizations of X//G. We thus have a general method to determine Hilb
G
h0
(X)main

that will certainly be helpful to treat further examples when G = GL(V ), O(V ) or
Sp(V ). In addition, the author thinks that the same method can be used when
G = SL(V ). However, when G = SO(V ), we do not know how to obtain a reduction
principle as above.
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Let now G ⊂ GL(V ) be any reductive algebraic subgroup, X ⊂ µ−1(0) a maximal
G-stable closed subset such that X//G is an irreducible component of W ///G, and h0

the Hilbert function of the general fibers of the quotient morphism X →X//G. Then

it is generally a difficult problem to determine whether Hilb
G
h0
(X) is irreducible,

that is, equals its main component. In this direction, we obtain

Proposition B. [Propositions 3.18 and 4.10] With the notation of Theorem A, if

G = GL(V ) and n′ ≥ 2n, then the invariant Hilbert scheme Hilb
G
h0
(X) has at least

two irreducible components (and exactly two when n = 1). On the other hand, if

G = O(V ) or Sp(V ), and n′ ≥ n = 2, then Hilb
G
h0
(X) is irreducible.

In Section 2, we recall some basic facts about symplectic varieties and closures
of nilpotent orbits in simple Lie algebras. The case of GL(V ) is treated in Section
3, and the case of Sp(V ) is treated in Section 4. The case of O(V ) is quite similar
to the case of GL(V ), and details can be found in the thesis [Terb, §3.4] from which
this article is extracted.

Acknowledgments: I am deeply thankful to Michel Brion for proposing this
subject to me, for a lot of helpful discussions, and for his patience. I thank Tanja
Becker for exchange of knowledge on invariant Hilbert schemes by e-mail and during
her stay in Grenoble in October 2010. I also thank Bart Van Steirteghem for helpful
discussions during his stay in Grenoble in Summer 2011.

2. Generalities on symplectic varieties and closures of nilpotent

orbits

2.1. Symplectic varieties and symplectic desingularizations. Let us first
recall the definitions of symplectic variety and symplectic desingularization (see
[Bea00] or the survey [Fu06a] for more details). Let Y be a normal variety whose
regular locus Yreg admits a symplectic form Ω (that is, Ω is a holomorphic 2-
form which is closed and non-degenerate at every point of Yreg) such that, for

any desingularization f ∶ Ỹ → Y , the 2-form f∗(Ω) extends to a 2-form on the

whole Ỹ , then we say that Y is a symplectic variety. Moreover, if f ∶ Ỹ → Y

is a desingularization such that f∗(Ω) extends to a symplectic form on Ỹ , then
we say that f is a symplectic desingularization of Y . It must be emphasized that
symplectic varieties do not always admit symplectic desingularizations, and when
they do, there may be several of them.

Let W = Hom(V ′, V ) ×Hom(V,V ′), and G ⊂ GL(V ) a reductive algebraic sub-
group. We consider the symplectic reduction W ///G as in the introduction. The
following conjecture motivates the study (and the name!) of W ///G:

Conjecture 2.1 (Kaledin, Lehn, Sorger). With the above notation, the irreducible
components Y1, . . . , Yr of W ///G are symplectic varieties. Moreover, if every Yi

admits a symplectic desingularization, then the quotient Hom(V ′, V )//G is smooth.

When G is a finite group, Conjecture 2.1 was proved by Kaledin and Verbitsky,
but the general case remains open. Let us mention that Becker showed in [Bec09]
that the converse of the second part of Conjecture 2.1 holds for G = Sp(V ) with
n = 2. In our setting, that is when G = GL(V ), O(V ) or Sp(V ), one easily checks
that Conjecture 2.1 holds (see [Terb, §A.2] for details).
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2.2. Closures of nilpotent orbits. We now recall some basic facts concerning
the closures of nilpotent orbits (see [CM93, Fu03a] for more details). Let g′ be a
semi-simple Lie algebra, and G′ the adjoint group of g′. The following well-known
result is due to Kostant, Kirillov, Souriau, and Panyushev:

Theorem 2.2. The normalization of the closure of an adjoint orbit in a semi-
simple Lie algebra is a symplectic variety.

When g′ is a simple Lie algebra of classical type, one can associate partitions to
nilpotent orbits. In particular:

● If g′ = sln′ , then there exists a one-to-one correspondence between the
partitions d = (d1 ≥ ⋯ ≥ dk) of n′ and the nilpotent orbits O[d1,...,dk] of g′

([CM93, §3.1]).
● If g′ = sp2n′ , then there exists a one-to-one correspondence between the

partitions d = (d1 ≥⋯ ≥ dk) of 2n′, in which every odd di occurs with even
multiplicity, and the nilpotent orbits O[d1,...,dk] of g′ ([CM93, §5.1]).
● If g′ = so2n′ , then there exists a correspondence (which is not bijective

anymore) between some partitions of 2n′ and the nilpotent orbits of g′

([CM93, §5.1]). Let d = (d1 ≥ ⋯ ≥ dk) be a partition of 2n′ such that each
even di occurs with even multiplicity. If at least one of the di is odd, then
one associates to d a unique nilpotent orbit O[d1,...,dk]; else, one associates

to d two distinct nilpotent orbits OI
[d1,...,dk]

and OII
[d1,...,dk]

.

If g′ = sln′ , then Od is always normal ([KP79]). For the other classical types, the

geometry ofOd was studied in [KP82]; in particular, if g′ = sp2n′ and d1+d2 ≤ 4 resp.

if g′ = so2n′ and d1 ≤ 2, then Od is normal. From now on, we only consider partitions
d such that each di ≤ 2. By Theorem 2.2, the variety Od is symplectic, and we are
going to describe its symplectic desingularizations (see [Fu03a, Fu06b, FN04] for
details).

Let f ∶ Z → Od be a symplectic desingularization. Then, by [Fu03a, Proposition
3.1], the group G′ acts naturally on Z in such a way that f is G′-equivariant.
One says that f is a Springer desingularization if there exists a parabolic subgroup
P ⊂ G′ and a G′-equivariant isomorphism between Z and the total space of the
cotangent bundle over G′/P , denoted T ∗(G′/P ). Then, under this isomorphism,
the map f becomes

T ∗(G′/P ) ≅ G′ ×P uÐ→ g′, (g′, x) z→ Ad(g′).x,
where u is the nilradical of the Lie algebra of P , and G′ ×P u ∶= (G′ × u)/ ≡ with(g′, u) ≡ (g′ ○ p−1,Ad(p).u).
Theorem 2.3. ([Fu03a, Theorem 3.3]) With the above notation, if f ∶ Z → Od is
a symplectic desingularization, then f is a Springer desingularization.

When g′ is of classical type, the Springer desingularizations of Od are known
(up to isomorphism). In particular:

● Let g′ = sln′ and d = [2N ,1n
′−2N ]. We denote Gr(p,Cn′) the Grassmannian

of p-dimensional subspaces of Cn′ , and T ∗1 resp. T ∗2 , the cotangent bundle

over Gr(N,Cn′) resp. over Gr(n′ −N,Cn′). By [Fu06b, §2], if N < n
′

2
, then

T ∗1 and T ∗2 are the two Springer desingularizations of Od; else, T ∗1 = T
∗
2 is

the unique Springer desingularization of Od.
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● Let g′ = sp2n′ and d = [2N ,12(n
′−N)]. Then Od admits a Springer desin-

gularization if and only if N = n′ ([Fu03a, Proposition 3.19]). We denote

IGr(p,C2n
′) the Grassmannian of isotropic p-dimensional subspaces of C2n

′

,

and T ∗ the cotangent bundle over IGr(n′,C2n
′). By [FN04, Proposition

3.5], if N = n′, then T ∗ is the unique Springer desingularization of Od.

● Let g′ = so2n′ and d = [2N ,12(n
′−N)] (with N even). We recall that if

d1 = . . . = dk = 2, then one associates to d two distinct nilpotent or-
bits OI

d
and OII

d
. By [Fu03a, Proposition 3.20], the variety Od admits

a Springer desingularization if and only if N ∈ {n′ − 1, n′}. We denote

OGr(p,C2n
′) the Grassmannian of isotropic p-dimensional subspaces of

C
2n′ . The Grassmannian OGr(p,C2n′) is irreducible except if p = n′, in

which case OGr(n′,C2n′) = OGI ∪OGII is the union of two irreducible com-

ponents (exchanged by the natural action of the orthogonal group O(C2n′)).
We denote T ∗I resp. T ∗II , the cotangent bundle over over OGI , resp. over
OGII . If N = n′−1, then T ∗I and T ∗II are the two Springer desingularizations

of O[2n′−1,12] by [Fu06b, §2]. If N = n′, then T ∗I resp. T ∗II , is the unique

Springer desingularization of OI

[2n′ ]
resp. of OII

[2n′]
, by [FN04, Proposition

3.5].

Remark 2.4. We will see in Sections 3 and 4 that the irreducible components of the
symplectic reduction W ///G, when G = GL(V ) resp. G = Sp(V ), are closures of
nilpotent orbits Od in the Lie algebra of G′ = GL(V ′) resp. of G′ = SO(V ′ ⊕ V ′∗),
where every di ≤ 2. If G = O(V ), then it is shown in [Terb, §3.4] that W ///G is the
closure of the nilpotent orbit O[2N ,12(n

′−N)] in the Lie algebra of G′ = Sp(V ′⊕V ′∗),
where N ∶=min(n′, n).

3. Case of GLn

In this section, we take G = GL(V ) and G′ = GL(V ′), both acting on W =
Hom(V ′, V ) × Hom(V,V ′) as in the introduction. We denote g resp. g′, the Lie

algebra of G resp. of G′, and N ∶=min(E(n′
2
), n), where n ∶= dim(V ), n′ ∶= dim(V ′),

and E(.) is the lower integer part.

3.1. The quotient morphism. The two main results of this section are Proposi-
tion 3.3, which describes the symplectic reduction W ///G ∶= µ−1(0)//G, and Corol-
lary 3.6, which gives the Hilbert function h0 of the general fibers of the quotient
morphism ν ∶ µ−1(0)→W ///G.

By (3), the zero fiber of the moment map µ ∶ W → g∗ is

µ−1(0) = {(u1, u2) ∈W ∣ u1 ○ u2 = 0} ,
which is a G′ × G-stable closed subset of W . Let us determine the irreducible
components of µ−1(0) as well as their dimensions. Let m ∈ {0, . . . , n′}; we define
the closed subset

(4) Xm ∶=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(u1, u2) ∈W

RRRRRRRRRRRRR
Im(u2) ⊂ Ker(u1);
rk(u2) ≤min(n,m);
dim(Ker(u1)) ≥max(n′ − n,m).

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⊂ µ−1(0),
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and we consider the diagram

Zm ∶= {(u1, u2, L) ∈W ×Gr(m,V ′) ∣ Im(u2) ⊂ L ⊂ Ker(u1)}
p1

��
��

p2

,, ,,XX
XXX

XXX
XXX

XXX
XXX

XXX
XXX

XXX

Xm Gr(m,V ′)
where the pi are the natural projections. We fix L0 ∈ Gr(m,V ′); the second pro-
jection equips Zm with a structure of homogeneous vector bundle over Gr(m,V ′)
whose fiber over L0 is isomorphic to Fm ∶= Hom(V ′/L0, V ) ×Hom(V,L0). Hence,
Zm is a smooth variety of dimension m(n′ −m) + n′n.

Proposition 3.1. The irreducible components of µ−1(0) are

⎧⎪⎪⎪⎨⎪⎪⎪⎩
X0, . . . ,Xn′ if n′ ≤ n;
Xn′−n, . . . ,Xn if n < n′ < 2n;
Xn if n′ ≥ 2n;

where Xm is defined by (4).

Proof. We have

µ−1(0) = {(u1, u2) ∈W ∣ Im(u2) ⊂ Ker(u1)} = n′

⋃
i=0

Xi.

Furthermore, for every m ∈ {0, . . . , n′}, the morphism p1 is surjective and Zm is
irreducible, hence Xm is irreducible.
If n′ ≥ 2n, then

⎧⎪⎪⎪⎨⎪⎪⎪⎩
X0 ⊂⋯ ⊂Xn;

Xn =⋯ =Xn′−n;

Xn′−n ⊃⋯ ⊃Xn′ ;

and thus µ−1(0) =Xn.
If n′ < 2n, then

{ X0 ⊂ ⋯ ⊂Xmax(0,n′−n);

Xmin(n′,n) ⊃ ⋯ ⊃Xn′ ;

and one easily checks that there is no other inclusion relation between the Xm. �

Corollary 3.2. The dimension of µ−1(0) is

dim(µ−1(0)) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

nn′ + 1
4
n′

2
if n′ < 2n and n′ is even;

nn′ + 1
4
(n′2 − 1) if n′ < 2n and n′ is odd;

2nn′ − n2 if n′ ≥ 2n.

Proof. By Proposition 3.1, it suffices to compute the dimension of Xm for some m.
If m ≤ n or m ≥ n′ − n, one may check that the map p1 ∶ Zm → Xm is birational,
and thus P (m) ∶= dim(Xm) = dim(Zm) = m(n′ −m) + n′n. It remains simply to
study the variations of the polynomial P to obtain the result. �
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Let l ∈ {0, . . . ,N}. We fix a basis B of V resp. B′ of V ′, and we introduce some
notation that we will use in the proofs of Proposition 3.3 and Lemma 3.5:

● (ul
1, u

l
2) ∶= ([ 0l,n′−l Il

0n−l,n′−l 0n−l,l
] , [ Il 0l,n−l

0n′−l,l 0n′−l,n−l
]) ∈W ;(5)

● fl ∶= [ 0l,n′−l Il
0n′−l,n′−l 0n′−l,l

] ∈ g′.(6)

Proposition 3.3. Let Od ⊂ g′ ≅ gln′ denote the nilpotent orbit associated to a

partition d of n′. Then the symplectic reduction of W by G is W ///G = O[2N ,1n
′−2N ].

Proof. If f ∈ W ///G, then there exists (u1, u2) ∈ µ−1(0) such that f = u2 ○ u1, and
thus f ○ f = (u2 ○ u1) ○ (u2 ○ u1) = u2 ○ (u1 ○ u2) ○ u1 = 0, whence the inclusion "⊂".

Now, let f ∈ O[2N ,1n
′−2N ]. Up to conjugation by an element of G′, we can suppose

that f = fl for some l ≤ N , where fl is defined by (6). But then ul
2 ○ u

l
1 = fl and

ul
1 ○ u

l
2 = 0, where ul

1 and ul
2 are defined by (5), and thus f ∈W ///G. �

Corollary 3.4. The symplectic reduction W ///G ⊂ g′ is irreducible and decomposes
into N + 1 orbits for the adjoint action of G′:

Ui ∶= O[2i,1n′−2i], for i = 0, . . . ,N.

The closures of the nilpotent orbits Ui are nested in the following way:

{0} = U0 ⊂ ⋯ ⊂ UN =W ///G.

Hence, W ///G is a symplectic variety (see Section 2), of dimension 2N(n′ − N)
([CM93, Corollary 6.1.4]), and whose singular locus is UN−1 ([KP81, §3.2]).
By Corollary 3.2, the dimension of the general fibers of the quotient morphism ν is

(7)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
nn′ − 1

4
n′

2
if n′ < 2n and n′ is even;

nn′ − 1
4
(n′2 − 1) if n′ < 2n and n′ is odd;

n2 if n′ ≥ 2n.

If n′ < 2n, then N = E(n′
2
), and we denote

(8) H ∶= {[ M 0n−N,N

0N,n−N IN
] , M ∈ GLn−N} ≅ GLn−N ,

which is a reductive algebraic subgroup of G ≅ GLn.

Proposition 3.5. The general fibers of the quotient morphism ν ∶ µ−1(0)→W ///G
are isomorphic to

{ G if n′ ≥ 2n;
G/H if n′ < 2n and n′ is even;

where H ⊂ G is the subgroup defined by (8).

Proof. We first suppose that n′ < 2n and n′ is even (that is, N = n′

2
). With the

notation (5), and by a result of Luna (see [SB00, §I.6.2.5, Theorem 10]), we have
the equivalence

G.(uN
1 , uN

2 ) is closed in µ−1(0) ⇔ CG(H).(uN
1 , uN

2 ) is closed in µ−1(0).
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We have CG(H) = {[M 0

0 λIn−N
] , M ∈ GLN , λ ∈ Gm}, where Gm denotes the

multiplicative group. Hence

CG(H).(uN
1 , uN

2 ) = {([0 M

0 0
] , [M−1 0

0 0
]) , M ∈ GLN} ⊂ µ−1(0)

is a closed subset, and thus G.(uN
1 , uN

2 ) is the unique closed orbit contained in the
fiber ν−1(fN), where fN is defined by (6). One may check that StabG((uN

1 , uN
2 )) =

H . Furthermore, dim(G/H) = N(2n −N), which is also the dimension of the gen-
eral fibers of ν by (7), and thus ν−1(fN) ≅ G/H .
We now suppose that n′ ≥ 2n (that is, N = n). One may check that StabG((un

1 , u
n
2 )) =

Id, and thus the fiber ν−1(fn) contains a unique closed orbit isomorphic to G. But
dim(G) = n2 is the dimension of the general fibers of ν by (7), hence ν−1(fn) ≅
G. �

Corollary 3.6. The Hilbert function h0 of the general fibers of the quotient mor-
phism ν ∶ µ−1(0)→W ///G is given by:

∀M ∈ Irr(G), h0(M) = { dim(M) if n′ ≥ 2n;
dim(MH) if n′ < 2n and n′ is even;

where H ⊂ G is the subgroup defined by (8).

If n′ < 2n and n′ is odd, then the situation is more complicated (except the case
n′ = 1 which is trivial) because the general fibers of the quotient morphism ν are
reducible. From now on, we will only consider the cases where n′ ≥ 2n or (n′ < 2n
and n′ is even).

3.2. The reduction principle for the main component. In this section we
prove the reduction principle when G = GL(V ) (Proposition 3.8).

The subset µ−1(0) ⊂ W being G′ × G-stable, it follows from [Bri, Lemma 3.3]
that the invariant Hilbert scheme

H ∶= HilbGh0
(µ−1(0))

is a G′-stable closed subscheme of HilbG
h0
(W ). The scheme Hilb

G
h0
(W ) was studied

in [Tera]; let us recall

Proposition 3.7. ([Tera, §4.4]) Let h0 be the Hilbert function given by Corollary
3.6, and G′ = GL(V ′) acting naturally on Gr(n′−h0(V ), V ′∗)×Gr(n′−h0(V ∗), V ′).
Then there exists a G′-equivariant morphism

ρ ∶ HilbG
h0
(W ) → Gr(n′ − h0(V ), V ′∗) ×Gr(n′ − h0(V ∗), V ′)

given on closed points by Z ↦ (Ker(f1
Z), Ker(f2

Z)), where f1
Z ∶ V

′∗ ≅MorG(W,V )→
MorG(Z,V ) and f2

Z ∶ V
′ ≅MorG(W,V ∗)→MorG(Z,V ∗) are the restriction maps.

By Corollary 3.6, we have h0(V ) = h0(V ∗) = N . We identify Gr(n′ − N,V ′∗)
with Gr(N,V ′), and we denote

Ai ∶= {(L1, L2) ∈ Gr(N,V ′)×Gr(n′−N,V ′) ∣ dim(L1∩L2) = N−i}, for i = 0, . . . ,N.

The Ai are the N + 1 orbits for the action of G′ on Gr(N,V ′)×Gr(n′ −N,V ′), and

A0 = A0 ⊂ A1 ⊂ ⋯ ⊂ AN = Gr(N,V ′) ×Gr(n′ −N,V ′).
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In particular, AN is the unique open orbit and

(9) A0 = FN,n′−N ∶= {(L1, L2) ∈ Gr(N,V ′) ×Gr(n′ −N,V ′) ∣ L1 ⊂ L2},
which is a partial flag variety, is the unique closed orbit. Let

● a0 ∶= (L1, L2) ∈ A0, and P the parabolic subgroup of G′ stabilizing a0;
● W ′ ∶= {(u1, u2) ∈ W ∣ L2 ⊂ Ker(u1) and Im(u2) ⊂ L1}, which is a P ×G-

module contained in µ−1(0);
● H′ ∶= HilbGh0

(W ′), and H′main its main component.

Let us note that, if n′ ≥ 2n or (n′ < 2n and n′ is even), then h0 coincides with the
Hilbert function of the general fibers of the quotient morphism W ′ → W ′//G by
[Tera, Proposition 4.13]; in particular, H′main is well-defined. We are going to show

Proposition 3.8. If n′ ≥ 2n or (n′ < 2n and n′ is even), and with the above
notation, we have a G′-equivariant isomorphism

Hmain ≅ G′×PH′main.

First of all, we need

Lemma 3.9. If n′ ≥ 2n or (n′ < 2n and n′ is even), then the morphism ρ of
Proposition 3.7 sends Hmain onto A0, the G′-variety defined by (9).

Proof. As the quotient morphism ν ∶ µ−1(0) → W ///G is flat over the open orbit
UN , the restriction of the Hilbert-Chow morphism γ to γ−1(UN) is an isomorphism.
We fix fN ∈ UN , and we denote Q ∶= StabG′(fN), and ZN the unique point of H
such that γ(ZN) = fN . As γ is G′-equivariant, ZN is Q-stable. In addition, ρ is also
G′-equivariant, hence ρ(ZN) is a fixed point for the action of Q. But one may check
that Gr(N,V ′)×Gr(n′ −N,V ′) has a unique fixed point for Q, which is contained
in A0. Then, as A0 is G′-stable, we have ρ(Z) ∈ A0, for every Z ∈ γ−1(UN). Hence,

ρ−1(A0) is a closed subscheme of Hilb
G
h0
(W ) containing γ−1(UN), and the result

follows. �

The restriction ρ∣Hmain ∶ Hmain → A0 is G′-equivariant, hence Hmain is the total
space of a G′-homogeneous fiber bundle over A0. Let F be the scheme-theoretic
fiber of ρ∣Hmain over a0. The action of P on Hmain, induced by the action of G′,
stabilizes F , and we have a G′-equivariant isomorphism

(10) Hmain ≅ G′×PF.

Hence, to show Proposition 3.8, we have to determine F as a P -scheme. We start by
considering F ′, the scheme-theoretic fiber of the restriction ρ∣H ∶ H → Gr(N,V ′) ×
Gr(n′ −N,V ′) over a0, as a P -scheme. The proof of the next lemma is analogous
to the proof of [Tera, Lemma 3.7].

Lemma 3.10. With the above notation, we have a P -equivariant isomorphism

F ′ ≅H′,

where P acts on H′ via its action on W ′.

As Hmain is a variety of dimension 2N(n′ −N), we deduce from (10) that F is a
variety of dimension N2. By Lemma 3.10, the fiber F is isomorphic to a subvariety
of H′main, but dim(H′main) = N2, and thus we have a P -equivariant isomorphism

(11) F ≅H′main,

and Proposition 3.8 follows.
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Remark 3.11. The scheme H′ is P -stable and identifies with a closed subscheme of
H, hence we have an inclusion of G′-schemes G′ ×P H′ ⊂H.

3.3. Proof of Theorem A for GL(V ). First, we recall the following result:

Theorem 3.12. [Tera, §1, Theorem] Let G = GL(V ), W = Hom(V ′, V )×Hom(V,V ′),
and hW the Hilbert function of the general fibers of the quotient morphism W →
W //G. We denote n ∶= dim(V ), n′ ∶= dim(V ′), and Y0 the blow-up of W //G =
End(V ′)≤n ∶= {f ∈ End(V ′) ∣ rk(f) ≤ n} at 0. In the following cases, the invari-

ant Hilbert scheme H′ ∶= Hilb
G
hW
(W ) is a smooth variety and the Hilbert-Chow

morphism is the succession of blow-up described as follows:

● if n ≥ 2n′ − 1, then H′ ≅W //G = End(V ′);
● if n′ > n = 1 or n′ = n = 2, then H′ ≅ Y0;
● if n′ > n = 2, then H′ is isomorphic to the blow-up of Y0 along the strict

transform of End(V ′)≤1.
Let us now consider the following diagram

(12) FN,n′−N

p1

xxxxqq
qq
qq
qq
qq p2

'' ''O
OO

OO
OO

OO
OO

Gr(N,V ′) Gr(n′ −N,V ′)
where FN,n′−N is defined by (9), p1 and p2 being the natural projections. We denote
V ′ the constant vector bundle over FN,n′−N with fiber V ′, and T1 resp. T2, the
pull-back of the tautological bundle over Gr(N,V ′) by p1, resp. over Gr(n′−N,V ′)
by p2. In particular, if N = n′

2
, then FN,n′−N = Gr(N,V ′) and T ∶= T1 = T2 is the

tautological bundle over Gr(N,V ′).
We deduce from Proposition 3.8 and Theorem 3.12 that we have the following

G′-equivariant isomorphisms

(13) Hmain ≅

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Hom(V ′/T,T ) if n ≥ n′ − 1 and n′ is even;
Hom(V ′/T2, T1) if n = 1 and n′ ≥ 3;
Bl0(Hom(V ′/T2, T1)) if n = 2 and n′ ≥ 4;

where Bl0(.) denotes the blow-up along the zero section. In all these cases, Hmain

is smooth, and thus the Hilbert-Chow morphism γ ∶ Hmain →W ///G is a canonical
desingularization.

On the other hand, we saw in Section 2 that the Springer desingularizations of
W ///G are the cotangent bundles T ∗1 ∶= T

∗Gr(N,V ′) and T ∗2 ∶= T
∗Gr(n′ −N,V ′) ≅

T ∗Gr(N,V ′
∗). We then distinguish between two cases:

(1) If N < n′

2
, then let us show by contradiction that γ ∶ Hmain →W ///G cannot

be a Springer desingularization. First, we consider the isomorphism of
G′ ×G-modules W ≅W ∗. Denoting H∗ ∶= HilbGh0

(µ∗−1(0)), where µ∗ is the
moment map for the natural action of G on W ∗, we have an isomorphism
of G′-varieties Hmain ≅ H∗main. Now if we suppose that (say) Hmain ≅ T ∗1 ,
then we get that H∗main ≅ T ∗2 , and thus T ∗1 ≅ T

∗
2 as a G′-variety, which is

absurd.
However, one easily checks that if n ∈ {1,2} and n′ ≥ 2n + 1, then γ ∶
Hmain →W ///G dominates the two Springer desingularizations T ∗1 and T ∗2
(see [Terb, §A.2.2] for details).
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(2) If N = n′

2
, then T ∗ ∶= T ∗1 = T

∗
2 is the unique Springer desingularization of

W ///G. Let us show that γ ∶ Hmain →W ///G is the Springer desingulariza-
tion if and only if n ≥ n′ − 1. The implication "⇐" is given by (13) since
T ∗ ≅ Hom(V ′/T,T ). The other implication is given by:

Lemma 3.13. If N = n′

2
and the Hilbert-Chow morphism γ ∶ Hmain →

W ///G is the Springer desingularization, then n ≥ n′ − 1.

Proof. We suppose that γ ∶ Hmain → W ///G is the Springer desingular-
ization, that is, Hmain ≅ T ∗ as a G′-variety. We fix L ∈ Gr(N,V ′), and
we define P ⊂ G′, W ′, and H′main as in Section 3.2. We have T ∗ ≅ G′ ×P

Hom(V ′/L,L), and it follows from (10) and (11) that Hmain ≅ G′×PH′main.
Hence, H′main ≅ Hom(V ′/L,L) as a P -variety. We denote γ′ ∶ H′main →
W ′//G the restriction of the Hilbert-Chow morphism. As γ′ is projec-
tive and birational, and W ′//G = Hom(V ′/L,L) is smooth, Zariski’s Main
Theorem implies that γ′ is an isomorphism. It follows that the quotient
morphism ν′ ∶ W ′ →W ′//G is flat, and thus n ≥ 2N − 1 by [Tera, Corollary
4.12]. �

In addition, if n′ = 4 and n = 2, then by (13) we have Hmain ≅ Bl0(T ∗),
and thus γ dominates the unique Springer desingularization of W ///G.

3.4. Reducibility of the invariant Hilbert scheme. The aim of this section is
to show Proposition B for GL(V ), that is, to show

Proposition 3.14. If n′ ≥ 2n, then the invariant Hilbert scheme H is reducible.

We suppose that n′ ≥ 2n, then N = n. We fix

(14) an = (L′1, L′2) ∈ An

a point of the open G′-orbit of Gr(n,V ′) ×Gr(n′ − n,V ′), and we consider

W ′′ ∶= {(u1, u2) ∈W ∣ L′2 ⊂ Ker(u1) and Im(u2) ⊂ L′1}
≅ Hom(V ′/L′2, V ) ×Hom(V,L′1),

which is a G-submodule of W . As V ′ = L′1 ⊕ L′2, we have a natural identification
W ′′ ≅ Hom(L′1, V )×Hom(V,L′1) as a G-module. We saw at the beginning of Section
1 that the G-module W ′′ is symplectic and has a G-equivariant moment map that
we denote µ′′ ∶ W ′′ → g∗. The proof of the next lemma is analogous to the proof
of [Tera, Lemma 3.7].

Lemma 3.15. We suppose that n′ ≥ 2n, and let ρ ∶ H → Gr(n,V ′)×Gr(n′−n,V ′) be
the morphism of Proposition 3.7. The scheme-theoretic fiber F ′′ of ρ over the point

an, defined by (14), is isomorphic to the invariant Hilbert scheme Hilb
G
h0
(µ′′−1(0)),

where h0 is the Hilbert function defined by h0(M) = dim(M), for every M ∈ Irr(G),
and µ′′ ∶ W ′′ → g∗ is the moment map defined above.

Remark 3.16. The Hilbert function h0 of Lemma 3.15 does not generally coincide

with the Hilbert function of the general fibers of the quotient morphism µ′′
−1(0)→

µ′′
−1(0)//G.

By Lemma 3.9, the morphism ρ ∶ Hilb
G
h0
(W ) → Gr(n,V ′) × Gr(n′ − n,V ′) of

Proposition 3.7 sends Hmain onto A0. Hence, to show Proposition 3.14, it is enough,

by Lemma 3.15, to show that Hilb
G
h0
(µ′′−1(0)) is non-empty.
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We denote V ′′ ∶= L′1, and we equip W ′′ ≅ Hom(V ′′, V ) × Hom(V,V ′′) with the
natural action of G′′ ∶= GL(V ′′). Then we have

C[W ′′]2 ≅ (S2(V ′′)⊗ S2(V ∗))⊕ (S2(V ′′∗)⊗ S2(V ))(15)

⊕ (Λ2(V ′′)⊗Λ2(V ∗))⊕ (Λ2(V ′′∗)⊗Λ2(V ))
⊕ ((sl(V ′′)⊕M0)⊗ (sl(V )⊕ V0)) as a G′′ ×G-module,

where M0 resp. V0, is the trivial G′′-module resp. the trivial G-module, and
sl(V ′′) ∶= {f ∈ End(V ′′) ∣ tr(f) = 0}.
We denote I0 the ideal of C[W ′′] generated by (sl(V ′′)⊗ V0)⊕ (M0 ⊗ V0)⊕ (M0 ⊗
sl(V )) ⊂ C[W ′′]2. The ideal I0 is homogeneous, G′′ ×G-stable, and contains the
ideal generated by the homogeneous G′′-invariants of positive degree of C[W ′′]. In

particular, I0 identifies with an ideal of C[µ′′−1(0)].
Proposition 3.17. Let I0 ⊂ C[W ′′] be the ideal defined above, then I0 is a point

of the invariant Hilbert scheme Hilb
G
h0
(µ′′−1(0)) defined in Lemma 3.15.

Proof. We have to check that the ideal I0 has the Hilbert function h0, that is,

C[W ′′]/I0 ≅ ⊕
M∈Irr(G)

M⊕dim(M)

as a G-module. To do that that, we are going to adapt the method used by Kraft
and Schwarz to prove [KS, Theorem 9.1]. The result [loc. cit.] was used in [Terb,
§2.1.3 and §3.3.2].
We denote R ∶= V ′′∗⊗V , which is an irreducible G′′×G-submodule of W ′′∗ ≅ R⊕R∗.
Then R and R∗ are orthogonal modulo I0, which means that the image of the
G′′ × G-submodule R ⊗ R∗ ⊂ C[W ′′]2 in C[W ′′]/I0 is isomorphic to the highest
weight component of R ⊗R∗ (that is, sl(V ′′) ⊗ sl(V )). Then, by [Bri85, Lemme
4.1], any irreducible G′′ × G-submodule of C[R] is orthogonal to any irreducible
G′′ ×G-submodule of C[R∗], and thus the natural morphism

φ ∶ C[R]U ′′×U ⊗C[R∗]U ′′×U → (C[W ′′]/I0)U ′′×U
is surjective, where U ′′ resp. U , denotes the unipotent radical of a Borel subgroup
B′′ ⊂ G′′ resp. B ⊂ G. Furthermore, if T ′′ ⊂ B′′ resp. T ⊂ B, is a maximal torus,
then φ is T ′′ × T -equivariant.
Now by [Pro07, §13.5.1] we have the following isomorphisms of T ′′ × T -algebras

C[R]U ′′×U ≅ C[x1, . . . , xn], where xi ∈ Λ
iV ′′ ⊗ΛiV ∗ is a highest weight vector, and

C[R∗]U ′′×U ≅ C[y1, . . . , yn], where yj ∈ Λ
jV ′′

∗ ⊗ ΛjV is a highest weight vector.
Hence, we have an exact sequence

0→K0 → C[x1, . . . , xn, y1, . . . , yn]→ (C[W ′′]/I0)U ′′×U → 0,

where K0 is the kernel of φ. One may check that the ideal K0 is generated by the
products xrys with r + s > n (see [KS, §9, Proof of Theorem 9.1(1)]).
We denote Λ = ⟨ǫ1, . . . , ǫn⟩ the weight lattice of the linear group GLn with its natural
basis, and Λ+ ⊂ Λ the subset of dominant weights, that is, weights of the form
r1ǫ1+ . . .+rnǫn, with r1 ≥ . . . ≥ rn. If λ ∈ Λ+, then we denote Sλ(Cn) the irreducible
GLn-module of highest weight λ. We fix λ = k1ǫ1+. . .+ktǫt−kt+1ǫt+1−. . .−knǫn ∈ Λ+,
where each ki is a nonnegative integer. One easily checks that the weight of the
monomial

xkt+1

n−t x
kt+2−kt+1

n−t−1 xkt+3−kt+2

n−t−2 ⋯xkn−kn−1

1 ykt

t ykt−1−kt

t−1 ykt−2−kt−1

t−2 ⋯yk1−k2

1



14 RONAN TERPEREAU

for the action of T ′′ × T is (λ∗, λ), where λ∗ denotes the highest weight of the
GLn-module Sλ(Cn∗), and that λ uniquely determines this monomial. We get
that the isotypic component of the G-module Sλ(V ) in C[W ′′]/I0 is the G′′ ×G-
module Sλ(V ′′∗) ⊗ Sλ(V ). As dim(V ) = dim(V ′′) = n, we have dim(Sλ(V )) =
dim(Sλ(V ′′∗)) for every λ ∈ Λ+. In other words, each irreducible G-module M

occurs in C[W ′′]/I0 with multiplicity dim(M). �

By Proposition 3.17, the scheme Hilb
G
h0
(µ′−1(0)) is non-empty, and thus H has

an irreducible component, different from Hmain, of dimension greater or equal to
dim(An) = 2n(n′ − n), which implies Proposition 3.14.

3.5. Study of the case n = 1. We saw in Section 3.3 that Hmain is a smooth
variety, and in Section 3.4 that H is always reducible. In this section, we determine
the irreducible components of H when n = 1.

We suppose that n′ ≥ 2 (the case n′ = 1 being trivial). Then G = Gm is the

multiplicative group, W ///G = O[2,1n′−2] ⊂ g′, and the morphism of Proposition 3.7

is ρ ∶ Hilb
G
h0
(W ) → P(V ′) × P(V ′∗). The Segre embedding gives a G′-equivariant

isomorphism P(V ′) × P(V ′∗) ≅ P(g′≤1), where g′≤1 ∶= {f ∈ g′ ∣ rk(f) ≤ 1}, and thus

we can consider ρ′ ∶ HilbG
h0
(W )→ P(g′≤1), the morphism induced by ρ.

Proposition 3.18. We equip H with its reduced structure. If n′ > n = 1 and with
the above notation, we have a G′-equivariant isomorphism

H ≅ {(f,L) ∈ O[2,1n′−2] × P(g′≤1) ∣ f ∈ L} .
In particular, H is the union of two smooth irreducible components of dimension
2n′ − 2 defined by:

● C1 ∶= {(f,L) ∈ O[2,1n′−2] × P(O[2,1n′−2]) ∣ f ∈ L} = Hmain, and the Hilbert-

Chow morphism γ ∶ Hmain →O[2,1n′−2] is the blow-up of O[2,1n′−2] at 0;

● C2 ∶= {(0, L) ∈ O[2,1n′−2] × P(g′≤1)} ≅ P(g′≤1), and the Hilbert-Chow mor-

phism is the zero map.

Proof. By [Tera, §1,Theorem], we have a G′-equivariant isomorphism

γ × ρ′ ∶ HilbGh0
(W )→ {(f,L) ∈ g′≤1 × P(g′≤1) ∣ f ∈ L} .

Since H ↪ Hilb
G
h0
(W ), we have a G′-equivariant closed embedding

γ × ρ′ ∶ H ↪ Y ∶= {(f,L) ∈ O[2,1n′−2] × P(g′≤1) ∣ f ∈ L} .
One may check that Y is the union of the two closed subset C1 and C2, both of
dimension 2n′−2. The morphism γ×ρ′ sends Hmain into C1; the varietiesHmain and
C1 have the same dimension, hence γ × ρ′ ∶ Hmain → C1 is an isomorphism. On the
other hand, we saw in Section 3.4 that H admits another irreducible component,
denoted H2, of dimension at least 2n′ − 2, which is the dimension of C2, and thus
γ × ρ′ is an isomorphism between H2 and C2. �

Remark 3.19. One may check that the component C2 of Proposition 3.18 consists
of the homogeneous ideals of C[µ−1(0)].
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When n′ ≥ 2n ≥ 4, irreducible components of dimension greater than dim(Hmain)
may appear. For instance, if n = 2 and n′ ≥ 4, then one may check that the irre-
ducible component consisting of the homogeneous ideals of C[µ−1(0)] is of dimen-
sion 4n′−5, whereas the main component Hmain is of dimension 4n′−8. In addition,
we showed in Section 3.4 thatH has at least two components, but H may have more
components.

4. Case of Spn

In this section, we denote E ∶= V ′ ⊕ V ′∗ on which we fix a non-degenerate
quadratic form q, and we take G = Sp(V ) and G′ = SO(E). We identify W =
Hom(V ′, V )×Hom(V,V ′) ≅ Hom(E,V ), equipped with the naturel action of G′×G.
We denote g resp. g′, the Lie algebra of G resp. of G′, and we recall that we denote
n ∶= dim(V ) (which is even), and n′ ∶= dim(V ′).
4.1. The quotient morphism. The main results of this section are Proposi-
tion 4.3, which describes the irreducible components of the symplectic reduction
W ///G ∶= µ−1(0)//G, and Corollary 4.6, which gives the Hilbert function of the
general fibers of the quotient morphism for each irreducible component of W ///G.
Contrary to the case of GL(V ) studied in Section 3, we will see that W ///G is
reducible when n′ ≤ n and n′ is even.

As G resp. G′, preserves a non-degenerate bilinear form on V resp. on E, we
have a canonical isomorphism V ≅ V ∗ resp. E ≅ E∗. If w ∈ Hom(E,V ), we denote
tw ∈ Hom(V ∗,E∗) ≅ Hom(V,E) the transpose of w. Then, by [Bec09, Proposition
3.1], the zero fiber of the moment map µ ∶ W → g∗ is

µ−1(0) = {w ∈W ∣ w ○ tw = 0},
which is a G′ ×G-stable closed subset of W .

Remark 4.1. One may check that the biggest subgroup of GL(E) that stabilizes
µ−1(0) in W is the orthogonal group O(E). However, we prefer to consider the
action of G′ = SO(E) for practical reasons.

The proof of the next proposition is analogous to those of Proposition 3.1 and
Corollary 3.2.

Proposition 4.2. The zero fiber of the moment map µ ∶ W → g∗ is

● a variety of dimension 2n′n − 1
2
n(n + 1) if n′ > n;

● the union of two varieties of dimension n′n + 1
2
n′(n′ − 1) if n′ ≤ n.

The following result was proved by Becker ([Bec09, Proposition 3.6]):

Proposition 4.3. Let d be a partition of 2n′, and Od resp. OI
d

and OII
d

, denote
the nilpotent orbit(s) of g′ ≅ so2n′ associated to d. Then the symplectic reduction
of W by G is

W ///G =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

O[2n,12(n′−n)] if n′ > n;

O[2n′−1,12] if n′ < n and n′ is odd;

OI

[2n′ ]
∪OII

[2n′ ]
if n′ ≤ n and n′ is even.

Corollary 4.4. The orbits for the adjoint action of G′ on W ///G are

● Ui ∶= O[2i,12(n′−i)], for i = 0,2, . . . , n, if n′ > n;

● Ui ∶= O[2i,12(n′−i)], for i = 0,2, . . . , n′ − 1, if n′ < n and n′ is odd;
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● Ui ∶= O[2i,12(n′−i)], for i = 0,2, . . . , n′ − 2, and U I
n′ ∶= OI

[2n′ ]
, U II

n′ ∶= OII

[2n′ ]
, if

n′ ≤ n and n′ is even.

The closures of the nilpotent orbits Ui are nested in the following way:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
{0} = U0 ⊂ U2 ⊂⋯ ⊂ Un if n′ > n;

{0} = U0 ⊂ U2 ⊂⋯ ⊂ Un′−1 if n′ < n and n′ is odd;

{0} = U0 ⊂ U2 ⊂⋯ ⊂ Un′−2 = U I
n′ ∩U

II
n′ if n′ ≤ n and n′ is even.

If (n′ > n or n′ is odd) resp. if (n′ ≤ n and n′ is even), then the symplectic
reduction W ///G is the closure of a nilpotent orbit resp. the union of two closures
of nilpotent orbits, and thus the irreducible components of W ///G are symplectic
varieties (see Section 2). If n′ > n, then W ///G is of dimension 2n′n − n(n + 1),
and its singular locus is Un−2. On the other hand, if n′ ≤ n, then each irreducible
component of W ///G is of dimension n′(n′ − 1), and the singular locus of W ///G
is Un′−2 resp. Un′−3, when n′ is even resp. when n′ is odd. The dimension of
the irreducible components of W ///G is given by [CM93, Corollary 6.1.4], and the
singular locus of W ///G is given by [KP82, Theorem 2].

We are now interested by the Hilbert function of the general fibers of the quotient
morphism for each irreducible component of W ///G. We will distinguish between
the following cases:

● If n′ > n, then W ///G is irreducible, and we denote h0 the Hilbert function
of the general fibers of the quotient morphism ν ∶ µ−1(0) → W ///G. By
Proposition 4.2, the dimension of these fibers is 1

2
n(n + 1).

● If n′ ≤ n and n′ is even, then by Proposition 4.2, the zero fiber µ−1(0)
is the union of two irreducible components that we denote XI and XII .
Let νI ∶ XI → YI and νII ∶ XII → YII be the quotient morphisms. Up

to the exchange of XI and XII , we can suppose that YI = U I
n′ and YII =

U II
n′ . The orthogonal group O(E) acts transitively on U I

n′ ∪U
II
n′ , hence the

general fibers of νI and νII are isomorphic. In particular, these fibers have
the same Hilbert function, denoted h0, and the same dimension, which is
n′n − 1

2
n′(n′ − 1).

● If n′ < n and n′ is odd, then W ///G is irreducible, and we denote h0 the
Hilbert function of the general fibers of the quotient morphism ν ∶ µ−1(0)→
W ///G. These fibers being reducible, determining h0 is is more complicated
than in the previous cases (except the case n′ = 1 which is trivial). From
now on, we will always exclude the case n′ < n and n′ is odd.

If n′ < n and n′ is even, then we denote

(16) H ∶= {[ M 0n−n′,n′

0n′,n−n′ In′
] , M ∈ Spn−n′} ≅ Spn−n′ ,

which is a reductive algebraic subgroup of G ≅ Spn. The proof of the next propo-
sition is analogous to the proof of Proposition 3.5:

Proposition 4.5. If n′ > n, then the general fibers of the quotient morphism ν ∶
µ−1(0)→W ///G are isomorphic to G.
If n′ = n, then the general fibers of the quotient morphisms νI ∶ XI → YI and
νII ∶ XII → YII are isomorphic to G.
If n′ < n and n′ is even, then the general fibers of νI and νII are isomorphic to
G/H, where H ⊂ G is the subgroup defined by (16).
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Corollary 4.6. The Hilbert function h0 defined above is given by:

∀M ∈ Irr(G), h0(M) = { dim(M) if n′ ≥ n;
dim(MH) if n′ < n and n′ is even;

where H ⊂ G is the subgroup defined by (16).

4.2. The reduction principle for the main component. In this section, we
give the guidelines to prove the reduction principle when G = Sp(V ) (Proposition
4.8). The strategy is the same as for GL(V ) (see Section 3.2), but as the symplectic
reduction W ///G is reducible when n′ ≤ n and n′ is even, it seems necessary to give
some additional details.

As µ−1(0) is a G′×G-stable closed subset of W , it follows from [Bri, Lemma 3.3]
that the invariant Hilbert scheme

H ∶= HilbGh0
(µ−1(0))

is a G′-stable closed subscheme of HilbGh0
(W ). As we aim at constructing canonical

desingularizations of the irreducible components of W ///G, we consider the two

G′-stable closed subschemes HI ∶= Hilb
G
h0
(XI) and HII ∶= Hilb

G
h0
(XII) instead ofH when n′ ≤ n and n′ is even. Let us note that if we fix g′0 ∈ O(E)/SO(E) and

make G′ act on XII by (g′0g′g′0−1).x for every g′ ∈ G′ and every x ∈ XII , then
φ ∶ XI →XII , x↦ g′0.x is a G′ ×G-equivariant isomorphism, and thus HI ≅HII as
a G′-scheme. We denote Hmain

I resp. Hmain
II , the main component of HI resp. ofHII . We always have the (set-theoretic) inclusion HI ∪HII ⊂ H, but this may not

be an equality. If n′ > n, then W ///G is irreducible, and we denote Hmain the main
component of H.

The scheme Hilb
G
h0
(W ) was studied in [Terb]. In particular, we obtained

Proposition 4.7. ([Terb, §1.5.1]) Let h0 be the Hilbert function given by Corollary
4.6, and G′ = SO(E) acting naturally on Gr(2n′ −h0(V ∗),E). Then there exists a
G′-equivariant morphism

ρ ∶ HilbGh0
(W )→ Gr(2n′ − h0(V ∗),E)

given on closed points by Z ↦ Ker(fZ), where fZ ∶ E ≅MorG(W,V ∗) →MorG(Z,V ∗)
is the restriction map.

We identify Gr(2n′−h0(V ∗),E) with Gr(h0(V ∗),E∗). By Corollary 4.6, if n′ > n
or (n′ ≤ n and n′ is even), then h0(V ∗) = N ∶= min(n′, n). We have a canonical
isomorphism E ≅ E∗, and thus the non-degenerate quadratic form q on E identifies
with a non-degenerate quadratic form on E∗. For i = 0, . . . ,N , we denote

Ai ∶= {L ∈ Gr(N,E∗) ∣ q∣L is of rank i}.
If n′ > n, then the Ai are the n + 1 orbits for the action of G′ on Gr(n,E∗).
However, if n′ ≤ n, then the Ai are G′-orbits for i = 1, . . . , n′, but the isotropic
Grassmannian A0 = OGr(n′,E∗) is the union of two G′-orbits, denoted OGr

I and

OGrII , which are exchanged by the action of any element of O(E)/SO(E).
In any case, we have

OGr(N,E∗) = A0 ⊂ A1 ⊂ ⋯ ⊂ AN = Gr(N,E∗).
Let us now fix some notation:

● L0 ∈ A0, and P the parabolic subgroup of G′ stabilizing L0;
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● W ′ ∶= Hom(E/L⊥0, V ), which identifies with a P × G-module contained in
µ−1(0);
● H′ ∶= HilbGh0

(W ′), and H′main its main component.

It must be emphasized that, if n′ > n or (n′ ≤ n and n′ is even), then the Hilbert
function of the general fibers of the quotient morphism W ′ →W ′//G coincides with
the Hilbert function h0 of Corollary 4.6 (in particular, H′main is well defined).

Proceeding as for Lemma 3.9, one may check that, if n′ > n resp. if (n′ ≤ n and
n′ is even), then the morphism ρ of Proposition 4.7 sends Hmain resp. Hmain

I andHmain
II , onto A0. More precisely, if n′ ≤ n and n′ is even, then ρ sends Hmain

I onto
one of the irreducible component of A0, and Hmain

II onto the other component. Up
to the exchange of these two components, we can suppose that ρ sends Hmain

I onto

OGr
I , and Hmain

II onto OGr
II .

It follows that the restriction of ρ equips Hmain resp. Hmain
I , resp. Hmain

II , with a

structure of a G′-homogeneous fiber bundle over A0 resp. over OGrI , resp. over
OGrII . Hence, it is enough to determine the fiber F0 over L0 to determine Hmain

resp. Hmain
I , resp. Hmain

II . Proceeding as in Section 3.2, we obtain that F0 is
isomorphic to H′main as a P -scheme. We deduce

Proposition 4.8. With the above notation, we have the following G′-equivariant
isomorphisms:

● If n′ > n, then Hmain ≅ G′×PH′main.

● If (n′ ≤ n and n′ is even) and L0 ∈ OGrI resp. L0 ∈ OGrII , then

Hmain
I ≅ G′×PH′main resp. Hmain

II ≅ G′×PH′main.

4.3. Proof of Theorem A for Sp(V). Let us start by recalling

Theorem 4.9. [Tera, §1, Theorem] Let G = Sp(V ), W = Hom(E,V ), and hW

the Hilbert function of the general fibers of the quotient morphism W → W //G.
We denote n ∶= dim(V ), e ∶= dim(E), and Y0 the blow-up of W //G = Λ2(E∗)≤n ∶={Q ∈ Λ2(E∗) ∣ rk(Q) ≤ n} at 0. In the following cases, the invariant Hilbert

scheme H′ ∶= Hilb
G
hW
(W ) is a smooth variety, and the Hilbert-Chow morphism is

the succession of blow-up described as follows:

● if n ≥ 2e − 2, then H′ ≅W //G = Λ2(E∗);
● if e > n = 2 or e = n = 4, then H′ ≅ Y0;
● if e > n = 4, then H′ is isomorphic to the blow-up of Y0 along the strict

transform of Λ2(E∗)≤2.
If n′ > n, then we denote T the tautological bundle over A0 = OGr(n,E∗). If

n′ ≤ n and n′ is even, then we denote TI resp. TII , the tautological bundle over
OGr

I resp. over OGr
II . We deduce from Proposition 4.8 and Theorem 4.9 that we

have the following G′-equivariant isomorphisms

(17) Hmain ≅ { Λ2(T ) if n′ > n = 2;
Bl0(Λ2(T )) if n′ > n = 4;

(18) Hmain
● ≅ { Λ2(T●) if n ≥ 2n′ − 2 and n′ is even;

Bl0(Λ2(T●)) if n′ = n = 4;

where ● stands for I or II, and Bl0(.) denotes the blow-up along the zero section.
In all these cases, the main component of the invariant Hilbert scheme is smooth,
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and thus the Hilbert-Chow morphism γ ∶ Hmain →W ///G resp. γ ∶ Hmain
● → Y●, is

a canonical desingularization.
It remains to compare γ with the Springer desingularizations (when they exist)

of the irreducible components of W ///G. We saw in Section 2 that the irreducible
components of W ///G have Springer desingularizations if and only if n′ ≤ n+ 1. We
then distinguish between the following cases:

(1) If n′ ≤ n + 1 and n′ is odd, then W ///G admits two Springer desingular-

izations, which are given by the cotangent bundles T ∗I and T ∗II over OGrI

and OGr
II respectively. The natural action of the orthogonal group O(E)

on OGr(n′,E∗) induces an action on the cotangent bundle T ∗OGr(n′,E∗)
that exchanges T ∗I and T ∗II . On the other hand, it follows from Remark 4.1,
that the group O(E) stabilizes Hmain, and thus γ ∶ Hmain →W ///G cannot
be a Springer desingularization.
However, if n ∈ {2,4} and n′ = n + 1, then one may show that γ dominates
the two Springer desingularizations of W ///G (see [Bec11, Introduction] for
the case n = 2, the case n = 4 being analogous).

(2) If n′ ≤ n and n′ is even, then Y● has a unique Springer desingularization,
which is given by the cotangent bundle T ∗● ≅ Λ2(T●) over OGr

●. Proceeding
as we did for GL(V ) in Section 3.3, one may show that γ ∶ Hmain

● → Y● is
the Springer desingularization if and only if n ≥ 2n′ − 2.
In addition, if n′ = n = 4, then by (18) we have Hmain

● ≅ Bl0(T ∗● ), and thus
γ dominates the unique Springer desingularization of Y●.

4.4. Study of the case n = 2. In this section, we suppose that n′ ≥ n = 2 (the case
n′ = 1 being trivial). We will show that if n′ ≥ 3 resp. if n′ = 2, then H resp. H●
(where ● stands for I or II), is irreducible. In particular, the geometric properties
of the invariant Hilbert scheme for G = Sp(V ) are quite different from the case of
G = GL(V ) studied in Section 3. Let us recall that the case (n′ = 3 and n = 2) was
treated by Becker in [Bec11]; she showed that H is the total space of a line bundle
over OGr(2,E∗).

Then G ≅ Sp2 = SL2, and the morphism of Proposition 4.7 is ρ ∶ HilbGh0
(W ) →

Gr(2,E∗). Denoting g′≤2 ∶= {f ∈ g′ ∣ rk(f) ≤ 2}, we have a G′-equivariant isomor-
phism

(19) P(g′≤2) ≅ Gr(2,E∗),
and thus we can consider the morphism ρ′ ∶ Hilb

G
h0
(W ) → P(g′≤2) induced by ρ.

By Proposition 4.3, we have

W ///G = ⎧⎪⎪⎨⎪⎪⎩
O[22,12n′−4] if n′ ≥ 3;

OI
[22]
∪OII

[22]
if n′ = 2.

Proposition 4.10. We equip all the invariant Hilbert schemes with their reduced
structures. If n′ > n = 2, then H =Hmain is a smooth variety isomorphic to

Bl0(O[22,12n′−4]) ∶= {(f,L) ∈ O[22,12n′−4] × P(O[22,12n′−4]) ∣ f ∈ L} ,
and the Hilbert-Chow morphism γ ∶ H →W ///G is the blow-up of O[22,12n′−4] at 0.

If n′ = n = 2, then Hilb
G
h0
(µ−1(0)) = HI ∪HII is the union of two smooth varieties

isomorphic to Bl0(OI
[22]
) and Bl0(OII

[22]
) respectively, and the set-theoretic inter-

section HI ∩HII is formed by the homogeneous ideals of C[µ−1(0)]. Moreover, the
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Hilbert-Chow morphism γ ∶ HI → OI
[22]

resp. γ ∶ HII → OII
[22]

, is the blow-up of

OII
[22]

resp. of OII
[22]

, at 0.

Proof. The proofs for the cases n′ = 2 and n′ ≥ 3 are quite similar, and thus
we will only consider the case n′ ≥ 3 (which is simpler in terms of notation!).
Using arguments similar to those used to show Proposition 3.18, we obtain a closed
embedding

γ × ρ′ ∶ H ↪ Y ∶= {(f,L) ∈ O[22,12n′−4] × P(g′≤2) ∣ f ∈ L} .
One may check that Y is the union of the two subvarieties C1 and C2 defined by:

● C1 ∶= Bl0(O[22,12n′−4]);
● C2 ∶= {(0, L) ∈ O[22,12n′−4] × P(g′≤2)} ≅ P(g′≤2).

The subvarieties C1 and C2 are of dimension 4n′ − 6 and 4n′ − 4 respectively. The
morphism γ × ρ′ sends Hmain into C1; the varieties Hmain and C1 have the same
dimension, hence γ × ρ′ ∶ Hmain → C1 is an isomorphism.
Now it follows from [Terb, Proposition 3.3.13] that the component C2 identifies with

the closed subset of HilbGh0
(W ) formed by the homogeneous ideals of C[W ]. Let us

describe this identification. If L ∈ C2 ≅ P(g′≤2), then we denote IL the ideal of C[W ]
generated by the homogeneous G-invariants of positive degree of C[W ], and by the
G-module L⊥ ⊗ V ⊂ C[W ]1 ≅ E ⊗ V , where L is identified with a 2-dimensional
subspace of E∗ via (19). Let us show that IL is a point of H if and only if L ∈

OGr(2,E∗); the result will follow since P(O[22,12n′−4]) identifies with OGr(2,E∗)
via the isomorphism (19), and since {(0, L) ∈ O[22,12n′−4] × P(O[22,12n′−4])} is a sub-
variety of C1.
We denote W ′ ∶= Hom(E/L⊥, V ), then

C[W ′]2 ≅ (S2(E/L⊥)⊗ S2(V ))⊕ (Λ2(E/L⊥)⊗Λ2(V ))
as a G-module. Let I ′L be the ideal of C[W ′] generated by Λ2(E/L⊥) ⊗ Λ2(V ) ⊂
C[W ′]2, then one may check (using [Terb, Proposition 3.3.13]) that

C[W ]/IL ≅ C[W ′]/I ′L ≅ ⊕
M∈Irr(G)

M⊕dim(M)

as a G-module. Hence

IL ∈H⇔ IL ∩C[W ]2 ⊃ E0 ⊗ S2(V ), where E0 is the trivial representation of G′;

⇔ q∣L = 0, where q is the quadratic form preserved by G′;

⇔ L ∈ OGr(2,E∗).
�

Remark 4.11. In the proof of Proposition 4.10, we showed that if n′ > n = 2, then
the homogeneous ideals of H are contained in Hmain. Using analogous arguments,
one may check that this statement is true more generally when n′ > n ≥ 2.
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