Invariant Hilbert schemes and desingularizations of symplectic reductions for classical groups

Ronan Terpereau

To cite this version:

Ronan Terpereau. Invariant Hilbert schemes and desingularizations of symplectic reductions for classical groups. 2013. hal-00799369v1

HAL Id: hal-00799369
https://hal.science/hal-00799369v1
Preprint submitted on 12 Mar 2013 (v1), last revised 21 Dec 2013 (v3)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

INVARIANT HILBERT SCHEMES AND DESINGULARIZATIONS OF SYMPLECTIC REDUCTIONS FOR CLASSICAL GROUPS

RONAN TERPEREAU

Abstract

Let $G \subset G L(V)$ be a classical group acting on the symplectic vector space $W=V^{\oplus n^{\prime}} \oplus V^{* \oplus n^{\prime}}$, and $\mu: W \rightarrow \operatorname{Lie}(G)^{*}$ the corresponding moment map. In this article, we use the theory of invariant Hilbert schemes to construct canonical desingularizations of the irreducible components of the symplectic reduction $\mu^{-1}(0) / / G$ for classes of examples where $G=G L(V)$, $O(V)$, or $S p(V)$. It is known that such components are isomorphic to closures of nilpotent orbits in simple Lie algebras, and we determine all the cases where the Hilbert-Chow morphism is a symplectic desingularization.

Contents

1. Introduction and statement of the main results 1
2. Generalities on symplectic varieties and closures of nilpotent orbits 4
3. Case of $G L_{n}$ 6
4. Case of $S p_{n}$ (n even) 14
References 20

1. Introduction and statement of the main Results

We work over the field of complex numbers \mathbb{C}. Let V and V^{\prime} be two vector spaces of dimensions n and n^{\prime} respectively, and let

$$
\begin{equation*}
W:=\operatorname{Hom}\left(V^{\prime}, V\right) \times \operatorname{Hom}\left(V, V^{\prime}\right), \tag{1}
\end{equation*}
$$

which is naturally equipped with an action of $G L\left(V^{\prime}\right) \times G L(V)$:
$\forall\left(g^{\prime}, g\right) \in G L\left(V^{\prime}\right) \times G L(V), \forall\left(u_{1}, u_{2}\right) \in W,\left(g^{\prime}, g\right) .\left(u_{1}, u_{2}\right):=\left(g \circ u_{1} \circ g^{\prime-1}, g^{\prime} \circ u_{2} \circ g^{-1}\right)$.
The $G L(V)$-module W is symplectic, that is, equipped with a $G L(V)$-invariant non-degenerate skew-symmetric bilinear form Ω defined by:

$$
\begin{equation*}
\forall\left(u_{1}, u_{2}\right),\left(u_{1}^{\prime}, u_{2}^{\prime}\right) \in W, \Omega\left(\left(u_{1}, u_{2}\right),\left(u_{1}^{\prime}, u_{2}^{\prime}\right)\right):=\operatorname{tr}\left(u_{1}^{\prime} \circ u_{2}\right)-\operatorname{tr}\left(u_{1} \circ u_{2}^{\prime}\right) \tag{2}
\end{equation*}
$$

where $\operatorname{tr}($.$) denotes the trace. The symplectic G L(V)$-module W has a $G L(V)$ equivariant moment map defined by:

$$
\begin{array}{cccc}
\mu_{G L(V)}: & W & \rightarrow & \mathfrak{g l}(V)^{*} \tag{3}\\
& \left(u_{1}, u_{2}\right) & \mapsto & \left(h \mapsto \operatorname{tr}\left(u_{2} \circ h \circ u_{1}\right)\right)
\end{array}
$$

where $\mathfrak{g l}(V)$ denotes the Lie algebra of $G L(V)$. If $G \subset G L(V)$ is any algebraic subgroup, and \mathfrak{g} is the Lie algebra of G, then the moment map $\mu_{G}: W \rightarrow \mathfrak{g}^{*}$ for the action of G on W is obtained by composing $\mu_{G L(V)}$ with the linear projection $\mathfrak{g l}(V)^{*} \rightarrow \mathfrak{g}^{*}$. To simplify the notation, we will denote μ instead of μ_{G}.

The map μ is G-equivariant, and thus the set-theoretic fiber $\mu^{-1}(0)$ is a G-stable closed subset of W. From now on, we suppose that G is reductive, and we denote $W / / / G$ the symplectic reduction of W by G, that is, the categorical quotient $\mu^{-1}(0) / / G:=\operatorname{Spec}\left(\mathbb{C}\left[\mu^{-1}(0)\right]^{G}\right)$. Let us mention that if G^{\prime} is an algebraic subgroup of the G-automorphism group Aut ${ }^{G}\left(\mu^{-1}(0)\right)$, then G^{\prime} acts on $W / / / G$ and the quotient morphism $\mu^{-1}(0) \rightarrow W / / / G$ is G^{\prime}-equivariant. The aim of this article is to construct canonical desingularizations of the irreducible components of $W / / / G$ for classes of examples where $G=G L(V), O(V)$, or $S p(V)$. In these three cases, it is known that the irreducible components of $W / / / G$ are closures of nilpotent orbits in simple Lie algebras of type A, C and D respectively. The geometry of such closures has been extensively studied (KP79, KP81, KP82, Fu03a, Fu03b, Fu06b, Nam06]). In particular, the normalizations of such closures are symplectic varieties (as defined by Beauville in [Bea00]) whose symplectic desingularizations are the so-called Springer desingularizations, obtained by collapsing the cotangent bundle over some Grassmannians (see Section 2 for details).

Before stating our results, we need to recall briefly the definition of the invariant Hilbert scheme, constructed by Alexeev and Brion (see AB05, Bri for more details), in the particular case we are interested. Let $G \subset G L(V)$ be a reductive algebraic subgroup, $\operatorname{Irr}(G)$ the set of isomorphism classes of irreducible representations of G, and $h: \operatorname{Irr}(G) \rightarrow \mathbb{N}$ a Hilbert function. If $X \subset W$ a G-stable closed subscheme, then the invariant Hilbert scheme $\operatorname{Hilb}_{h}^{G}(X)$ is the moduli space that parametrizes the G-stable closed subschemes Z of X such that

$$
\mathbb{C}[Z] \cong \bigoplus_{M \in \operatorname{Irr}(G)} M^{\oplus h(M)}
$$

as a G-module. We now suppose that X is reduced and that $X / / G$ is irreducible. If $h=h_{0}$ is the Hilbert function of the general fiber of the quotient morphism $\nu: X \rightarrow X / / G$, then there exists a projective morphism

$$
\gamma: \operatorname{Hilb}_{h_{0}}^{G}(X) \rightarrow X / / G
$$

called the Hilbert-Chow morphism, that sends a closed subscheme $Z \subset X$ to the point $Z / / G \subset X / / G$. If $G^{\prime} \subset \operatorname{Aut}^{G}(X)$ is any algebraic subgroup, then it is known that G^{\prime} acts on $X / / G$ and on $\operatorname{Hilb}_{h_{0}}^{G}(X)$ such that ν and γ are G^{\prime}-equivariant. The Hilbert-Chow morphism induces an isomorphism over the flat locus $U \subset X / / G$ of ν. The main component of $\operatorname{Hilb}_{h_{0}}^{G}(X)$ is the irreducible component defined by

$$
\operatorname{Hilb}_{h_{0}}^{G}(X)^{\text {main }}:=\overline{\gamma^{-1}(U)}
$$

Then the restriction $\gamma: \operatorname{Hilb}_{h_{0}}^{G}(X)^{\text {main }} \rightarrow X / / G$ is a projective birational morphism, and thus γ is a candidate for a canonical desingularization of $X / / G$.

We can now state the main result of this paper:
Theorem A. [Sections 3.3 and 4.3 With the above notation, let $G=G L(V), O(V)$ or $S p(V)$, then $W / / / G$ is
(1) irreducible if $G=G L(V), O(V)$, or $\operatorname{Sp}(V)$ with $\left(n^{\prime}>n\right.$ or n^{\prime} odd);
(2) the union of two isomorphic irreducible components if $G=S p(V)$ with ($n^{\prime} \leq n$ and n^{\prime} even).
Let X denote $\mu^{-1}(0)$ in Case (1) resp. the preimage of one of the two irreducible components of $W / / / G$ by the quotient morphism $\mu^{-1}(0) \rightarrow W / / / G$ in Case (2). Then
the Hilbert-Chow morphism $\gamma: \operatorname{Hilb}_{h_{0}}^{G}(X)^{\text {main }} \rightarrow X / / G$ is a Springer desingularization (and the unique one) if and only if

- $G=G L(V), n \geq n^{\prime}-1$, and n^{\prime} is even; or
- $G=O(V)$, and $n \geq 2 n^{\prime}-1$; or
- $G=\operatorname{Sp}(V), n$ and n^{\prime} are even, and $n \geq 2 n^{\prime}-2$.

Moreover, γ is still a desingularization (that strictly dominates the Springer desingularizations when they exist) if

- $G=G L(V)$ and $\left(\left(n=1\right.\right.$ and $\left.n^{\prime} \geq 3\right)$ or $\left(n=2\right.$ and $\left.\left.n^{\prime} \geq 4\right)\right)$; or
- $G=O(V)$ and ($n=1<n^{\prime}$ or $n=2 \leq n^{\prime}$); or
- $G=S p(V)$ and $\left(n=2<n^{\prime}\right.$ or $\left.n=4 \leq n^{\prime}\right)$.

With the notation of Theorem A, we have no idea whether the Hilbert-Chow morphism $\gamma: \operatorname{Hilb}_{h_{0}}^{G}(X)^{\text {main }} \rightarrow X / / G$ is always a desingularization or not. Let us mention that the case $G=S p(V)$ with ($n=2$ and $n^{\prime}=3$) was already handled by Becker in Bec11. In this case, $W / / / G$ is a closure of a nilpotent orbit that admits two Springer desingularizations, and Becker showed that $\gamma: \operatorname{Hilb}_{h_{0}}^{G}\left(\mu^{-1}(0)\right) \rightarrow W / / / G$ is a desingularization that dominates them both. To obtain this result, Becker first used the existence of natural morphisms from the invariant Hilbert scheme to Grassmannians to identify $\operatorname{Hilb}_{h_{0}}^{G}\left(\mu^{-1}(0)\right)^{\text {main }}$ with the total space of a homogeneous line bundle over a Grassmannian, and then she showed that $\operatorname{Hilb}_{h_{0}}^{G}\left(\mu^{-1}(0)\right)=$ $\operatorname{Hilb}_{h_{0}}^{G}\left(\mu^{-1}(0)\right)^{\text {main }}$ by computing the tangent space of $\operatorname{Hilb}_{h_{0}}^{G}\left(\mu^{-1}(0)\right)$ at every point of $\operatorname{Hilb}_{h_{0}}^{G}\left(\mu^{-1}(0)\right)^{\text {main }}$. In the present article, our most important theoretical result is a reduction principle that generalizes the first step of Becker's method.

Reduction Principle. [Propositions 3.8 and 4.8 We take the notation of Theorem A, and we make the extra assumption that $n^{\prime} \geq 2 n$ or ($n^{\prime}<2 n$ and n^{\prime} is even) when $G=G L(V)$, and $n^{\prime} \geq n$ or ($n^{\prime}<n$ and n^{\prime}, n are even) when $G=S p(V)$.
Then the main component $\operatorname{Hilb}_{h_{0}}^{G}(X)^{\text {main }}$ is the total space of a homogeneous fiber bundle over a flag variety whose fiber is isomorphic to $\operatorname{Hilb}_{h_{W^{\prime}}}^{G}\left(W^{\prime}\right)^{\text {main }}$, where $W^{\prime}=V^{\oplus N} \oplus V^{* \oplus N}$ with $N:=h_{0}\left(V^{*}\right)$, and $h_{W^{\prime}}$ is the Hilbert function of the general fiber of the quotient morphism $W^{\prime} \rightarrow W^{\prime} / / G$.

A similar reduction principle (but in a different setting) was already obtained and used in Tera]. Once we have performed the reduction step, we use [Tera, §1, Theorem] to identify the fiber $\operatorname{Hilb}_{h_{W^{\prime}}}^{G}\left(W^{\prime}\right)^{\text {main }}$. Unfortunately, the results that we get in Tera are very partial and that is why we are able to determine $\operatorname{Hilb}_{h_{0}}^{G}(X)^{\text {main }}$ only in the cases given by Theorem A. The last step to prove Theorem A is then to compare the Hilbert-Chow morphism $\gamma: \operatorname{Hilb}_{h_{0}}^{G}(X)^{\text {main }} \rightarrow X / / G$ with the Springer desingularizations of $X / / G$. We thus have a general method to determine $\operatorname{Hilb}_{h_{0}}^{G}(X)^{\text {main }}$ that will certainly be helpful to determine further examples when $G=G L(V), O(V)$ or $S p(V)$. In addition, the author thinks that the same method can be used to treat the case of $G=S L(V)$. However, when $G=S O(V)$, we do not know how to obtain a reduction principle as above.

Let now $G \subset G L(V)$ be any reductive algebraic subgroup, $X \subset \mu^{-1}(0)$ a maximal G-stable closed subset such that $X / / G$ is an irreducible component of $W / / / G$, and h_{0} the Hilbert function of the general fiber of the quotient morphism $X \rightarrow X / / G$. Then it is generally a difficult problem to determine whether the main component
$\operatorname{Hilb}_{h_{0}}^{G}(X)^{\text {main }}$ coincides with the whole invariant Hilbert scheme $\operatorname{Hilb}_{h_{0}}^{G}(X)$ or not. In this direction, we obtain

Proposition B. [Propositions 3.18 and 4.10 With the notation of Theorem A, if $G=G L(V)$ and $n^{\prime} \geq 2 n$, then the invariant Hilbert scheme $\operatorname{Hilb}_{h_{0}}^{G}(X)$ has at least two irreducible components (and exactly two when $n=1$). On the other hand, if $G=O(V)$ or $S p(V)$, and $n^{\prime} \geq n=2$, then $\operatorname{Hilb}_{h_{0}}^{G}(X)$ is irreducible.

In Section 2, we recall some basic facts about symplectic varieties and closures of nilpotent orbits in simple Lie algebras. The case of $G L(V)$ is treated in Section 3, and the case of $S p(V)$ is treated in Section 4. The case of $O(V)$ is quite similar to the case of $G L(V)$, and details can be found in the thesis Terb from which this article is extracted: the Reduction Principle is Terb, Proposition 3.4.10], Theorem A is Terb, Corollaire 3.4.11 and Proposition A.2.5], and Proposition B is Terb, Proposition 3.4.17].

Acknowledgments: I am deeply thankful to Michel Brion for proposing this subject to me, for a lot of helpful discussions, and for his patience. I thank Tanja Becker for exchange of knowledge on invariant Hilbert schemes by e-mail and during her stay in Grenoble in October 2010. I also thank Bart Van Steirteghem for helpful discussions during his stay in Grenoble in Summer 2011.

2. Generalities on symplectic varieties and closures of nilpotent ORBITS

2.1. Symplectic varieties and symplectic desingularizations. Let us first recall the definitions of symplectic variety and symplectic desingularization (see [Bea00] or the survey [Fu06a] for more details). Let Y be a normal variety whose the regular part $Y_{\text {reg }}$ admits a symplectic form Ω (that is, Ω is a holomorphic 2-form which is closed and non-degenerate at every point of $Y_{\text {reg }}$) such that, for any desingularization $f: \widetilde{Y} \rightarrow Y$, the 2 -form $f^{*}(\Omega)$ extends to a 2-form on the whole \widetilde{Y}, then we say that Y is a symplectic variety. Moreover, if $f: \widetilde{\widetilde{Y}} \rightarrow Y$ is a desingularization such that $f^{*}(\Omega)$ extends to a symplectic form on \widetilde{Y}, then we say that f is a symplectic desingularization of Y. It must be underlined that symplectic varieties do not always admit symplectic desingularizations, and when they do, there may be several of them.

Let $W=\operatorname{Hom}\left(V^{\prime}, V\right) \times \operatorname{Hom}\left(V, V^{\prime}\right)$, and $G \subset G L(V)$ a reductive algebraic subgroup. We consider the symplectic reduction $W / / / G$ as in the introduction. The following conjecture motivates the study (and the name!) of $W / / / G$:

Conjecture 2.1 (Kaledin, Lehn, Sorger). With the above notation, the irreducible components Y_{1}, \ldots, Y_{r} of $W / / / G$ are symplectic varieties. Moreover, if every Y_{i} admits a symplectic desingularization, then the quotient $\operatorname{Hom}\left(V^{\prime}, V\right) / / G$ is smooth.

When G is a finite group, Conjecture 2.1 was proved by Kaledin and Verbitsky, but the general case remains open. Let us mention that Becker showed in Bec09] that the converse of the second part of Conjecture 2.1 holds for $G=S p(V)$ with $n=2$. In our setting, that is when $G=G L(V), O(V)$ or $S p(V)$, one easily checks that Conjecture 2.1 holds (see Terb, §A.2] for details).
2.2. Closures of nilpotent orbits. We now recall some basic facts concerning the closures of nilpotent orbits (see CM93, Fu03a] for more details). Let \mathfrak{g}^{\prime} be a semi-simple Lie algebra, and G^{\prime} the adjoint group of \mathfrak{g}^{\prime}. The following (well-known) result is due to Kostant, Kirillov, Souriau, and Panyushev:

Theorem 2.2. The normalization of the closure of an adjoint orbit in a semisimple Lie algebra is a symplectic variety.

When \mathfrak{g}^{\prime} is a simple Lie algebra of type A, C or D, one can associate partitions to nilpotent orbits. More precisely:

- If $\mathfrak{g}^{\prime}=\mathfrak{s l}_{n^{\prime}}$, then there exists a one-to-one correspondence between the partitions $\mathbf{d}=\left(d_{1} \geq \cdots \geq d_{k}\right)$ of n^{\prime} and the nilpotent orbits $\mathcal{O}_{\left[d_{1}, \ldots, d_{k}\right]}$ of \mathfrak{g}^{\prime} ([CM93, §3.1]).
- If $\mathfrak{g}^{\prime}=\mathfrak{s p}_{2 n^{\prime}}$, then there exists a one-to-one correspondence between the partitions $\mathbf{d}=\left(d_{1} \geq \cdots \geq d_{k}\right)$ of $2 n^{\prime}$, in which every odd d_{i} occurs with even multiplicity, and the nilpotent orbits $\mathcal{O}_{\left[d_{1}, \ldots, d_{k}\right]}$ of \mathfrak{g}^{\prime} (CM93, §5.1]).
- If $\mathfrak{g}^{\prime}=\mathfrak{s o}_{2 n^{\prime}}$, then there exists a correspondence (which is not bijective anymore) between some partitions of $2 n^{\prime}$ and the nilpotent orbits of \mathfrak{g}^{\prime} (CM93, §5.1]). Let $\mathbf{d}=\left(d_{1} \geq \cdots \geq d_{k}\right)$ be a partition of $2 n^{\prime}$ such that each even d_{i} occurs with even multiplicity. If at least one of the d_{i} is odd, then one associates to \mathbf{d} a unique nilpotent orbit $\mathcal{O}_{\left[d_{1}, \ldots, d_{k}\right]}$; else, one associates to \mathbf{d} two distinct nilpotent orbits $\mathcal{O}_{\left[d_{1}, \ldots, d_{k}\right]}^{I}$ and $\mathcal{O}_{\left[d_{1}, \ldots, d_{k}\right]}^{I I}$.
If \mathfrak{g}^{\prime} is of type A, then $\overline{\mathcal{O}_{\mathbf{d}}}$ is always normal $(\overline{\text { KP79 }})$. In types B, C and D , the geometry of $\overline{\mathcal{O}_{\mathbf{d}}}$ was studied in [KP82; in particular, if \mathfrak{g}^{\prime} is of type C and $d_{1}+d_{2} \leq 4$ resp. of type D and $d_{1} \leq 2$, then $\overline{\mathcal{O}_{\mathbf{d}}}$ is normal. From now on, we only consider partitions \mathbf{d} such that each $d_{i} \leq 2$. By Theorem [2.2, the variety $\overline{\mathcal{O}_{\mathbf{d}}}$ is symplectic, and we are going to describe its symplectic desingularizations (see Fu03a, Fu06b, FN04] for details).

Let $f: Z \rightarrow \overline{\mathcal{O}_{\mathbf{d}}}$ be a symplectic desingularization. Then, by Fu03a, Proposition 3.1], the group G^{\prime} acts naturally on Z in such a way that f is G^{\prime}-equivariant. One says that f is a Springer desingularization if there exists a parabolic subgroup $P \subset G^{\prime}$ and a G^{\prime}-equivariant isomorphism between Z and the total space of the cotangent bundle over G^{\prime} / P, denoted $\mathcal{T}^{*}\left(G^{\prime} / P\right)$. Then, under this isomorphism, the map f becomes

$$
\mathcal{T}^{*}\left(G^{\prime} / P\right) \cong G^{\prime} \times^{P} \mathfrak{u} \longrightarrow \mathfrak{g}^{\prime}, \quad\left(g^{\prime}, x\right) \longmapsto A d\left(g^{\prime}\right) \cdot x
$$

where \mathfrak{u} is the nilradical of the Lie algebra of P, and $G^{\prime} \times^{P} \mathfrak{u}:=\left(G^{\prime} \times \mathfrak{u}\right) / \equiv$ with $\left(g^{\prime}, u\right) \equiv\left(g^{\prime} \circ p^{-1}, A d(p) . u\right)$.
Theorem 2.3. ([Fu03a, Theorem 3.3]) With the above notation, if $f: Z \rightarrow \overline{\mathcal{O}_{\mathbf{d}}}$ is a symplectic desingularization, then f is a Springer desingularization.

When \mathfrak{g}^{\prime} is of type A, C or D , the Springer desingularizations of $\overline{\mathcal{O}_{\mathbf{d}}}$ are known (up to isomorphism):

- Let $\mathfrak{g}^{\prime}=\mathfrak{s l}_{n^{\prime}}$ and $\mathbf{d}=\left[2^{N}, 1^{n^{\prime}-2 N}\right]$. We denote $\operatorname{Gr}\left(p, \mathbb{C}^{n^{\prime}}\right)$ the Grassmannian of p-dimensional subspaces of $\mathbb{C}^{n^{\prime}}$, and \mathcal{T}_{1}^{*} resp. \mathcal{T}_{2}^{*}, the cotangent bundle over $\operatorname{Gr}\left(N, \mathbb{C}^{n^{\prime}}\right)$ resp. over $\operatorname{Gr}\left(n^{\prime}-N, \mathbb{C}^{n^{\prime}}\right)$. By Fu06b, §2], if $N<\frac{n^{\prime}}{2}$, then \mathcal{T}_{1}^{*} and \mathcal{T}_{2}^{*} are the two Springer desingularizations of $\overline{\mathcal{O}_{\mathrm{d}}}$; else, $\mathcal{T}_{1}^{*}=\mathcal{T}_{2}^{*}$ is the unique Springer desingularization of $\overline{\mathcal{O}_{\mathrm{d}}}$.
- Let $\mathfrak{g}^{\prime}=\mathfrak{s p}_{2 n^{\prime}}$ and $\mathbf{d}=\left[2^{N}, 1^{2\left(n^{\prime}-N\right)}\right]$. Then $\overline{\mathcal{O}_{\mathbf{d}}}$ admits a Springer desingularization if and only if $N=n^{\prime}$ ([Fu03a, Proposition 3.19]). We denote $\operatorname{IGr}\left(p, \mathbb{C}^{2 n^{\prime}}\right)$ the Grassmannian of isotropic p-dimensional subspaces of $\mathbb{C}^{2 n^{\prime}}$, and \mathcal{T}^{*} the cotangent bundle over $\operatorname{IGr}\left(n^{\prime}, \mathbb{C}^{2 n^{\prime}}\right)$. By [FN04, Proposition 3.5], if $N=n^{\prime}$, then \mathcal{T}^{*} is the unique Springer desingularization of $\overline{\mathcal{O}_{\mathbf{d}}}$.
- Let $\mathfrak{g}^{\prime}=\mathfrak{s o}_{2 n^{\prime}}$ and $\mathbf{d}=\left[2^{N}, 1^{2\left(n^{\prime}-N\right)}\right]$ (with N even). We recall that if $d_{1}=\ldots=d_{k}=2$, then one associates to \mathbf{d} two distinct nilpotent orbits $\mathcal{O}_{\mathbf{d}}^{I}$ and $\mathcal{O}_{\mathbf{d}}^{I I}$. By [Fu03a Proposition 3.20], the variety $\overline{\mathcal{O}_{\mathbf{d}}}$ admits a Springer desingularization if and only if $N \in\left\{n^{\prime}-1, n^{\prime}\right\}$. We denote $\operatorname{OGr}\left(p, \mathbb{C}^{2 n^{\prime}}\right)$ the Grassmannian of isotropic p-dimensional subspaces of $\mathbb{C}^{2 n^{\prime}}$. The Grassmannian $\operatorname{OGr}\left(p, \mathbb{C}^{2 n^{\prime}}\right)$ is irreducible except if $p=n^{\prime}$, in which case $\operatorname{OGr}\left(n^{\prime}, \mathbb{C}^{2 n^{\prime}}\right)=O G^{I} \cup O G^{I I}$ is the union of two irreducible components (exchanged by the natural action of the orthogonal group $O\left(\mathbb{C}^{2 n^{\prime}}\right)$). We denote \mathcal{T}_{I}^{*} resp. $\mathcal{T}_{I I}^{*}$, the cotangent bundle over over $O G^{I}$, resp. over $O G^{I I}$. If $N=n^{\prime}-1$, then \mathcal{T}_{I}^{*} and $\mathcal{T}_{I I}^{*}$ are the two Springer desingularizations of $\overline{\mathcal{O}_{\left[2^{n^{\prime}-1}, 1^{2}\right]}}$ by [Fu06b, §2]. If $N=n^{\prime}$, then \mathcal{T}_{I}^{*} resp. $\mathcal{T}_{I I}^{*}$, is the unique Springer desingularization of $\overline{\mathcal{O}_{\left[2^{n^{\prime}}\right]}^{I}}$ resp. of $\overline{\mathcal{O}_{\left[2^{n^{\prime}}\right]}^{I I}}$, by [FN04, Proposition 3.5].

Remark 2.4. We will see in Sections 3 and 4 that the irreducible components of the symplectic reduction $W / / / G$, when $G=G L(V)$ or $S p(V)$, are closures of nilpotent orbits $\mathcal{O}_{\mathbf{d}}$ in simple Lie algebras of type A and C respectively, where every $d_{i} \leq 2$. If $G=O(V)$, then it is shown in [Terb, §3.4] that $W / / / G$ is the closure of the nilpotent orbit $\mathcal{O}_{\left[2^{N}, 1^{2\left(n^{\prime}-N\right)}\right]}$ in type D, where $N:=\min \left(n^{\prime}, n\right)$.

3. Case of $G L_{n}$

In this section, we take $G=G L(V)$ and $G^{\prime}=G L\left(V^{\prime}\right)$, both acting on $W=$ $\operatorname{Hom}\left(V^{\prime}, V\right) \times \operatorname{Hom}\left(V, V^{\prime}\right)$ as in the introduction. We denote \mathfrak{g} resp. \mathfrak{g}^{\prime}, the Lie algebra of G resp. of G^{\prime}, and $N:=\min \left(E\left(\frac{n^{\prime}}{2}\right), n\right)$, where $n:=\operatorname{dim}(V), n^{\prime}:=\operatorname{dim}\left(V^{\prime}\right)$, and $E($.$) is the lower integer part.$
3.1. The quotient morphism. The two main results of this section are Proposition 3.3, which describes the symplectic reduction $W / / / G:=\mu^{-1}(0) / / G$, and Corollary 3.6, which gives the Hilbert function h_{0} of the general fiber of the quotient morphism $\nu: \mu^{-1}(0) \rightarrow W / / / G$.

By (3), the zero fiber of the moment map $\mu: W \rightarrow \mathfrak{g}^{*}$ is

$$
\mu^{-1}(0)=\left\{\left(u_{1}, u_{2}\right) \in W \mid u_{1} \circ u_{2}=0\right\},
$$

which is a $G^{\prime} \times G$-stable closed subset of W. Let us determine the irreducible components of $\mu^{-1}(0)$ as well as their dimensions. Let $m \in\left\{0, \ldots, n^{\prime}\right\}$; we define the closed subset

$$
X_{m}:=\left\{\begin{array}{l|l}
\left(u_{1}, u_{2}\right) \in W & \begin{array}{l}
\operatorname{Im}\left(u_{2}\right) \subset \operatorname{Ker}\left(u_{1}\right) \\
\mathrm{rk}\left(u_{2}\right) \leq \min (n, m) \\
\operatorname{dim}\left(\operatorname{Ker}\left(u_{1}\right)\right) \geq \max \left(n^{\prime}-n, m\right)
\end{array} \tag{4}
\end{array}\right\} \subset \mu^{-1}(0)
$$

and we consider the diagram

where the p_{i} are the natural projections. We fix $L_{0} \in \operatorname{Gr}\left(m, V^{\prime}\right)$; the second projection equips Z_{m} with a structure of homogeneous vector bundle over $\operatorname{Gr}\left(m, V^{\prime}\right)$ whose fiber over L_{0} is isomorphic to $F_{m}:=\operatorname{Hom}\left(V^{\prime} / L_{0}, V\right) \times \operatorname{Hom}\left(V, L_{0}\right)$. Hence, Z_{m} is a smooth variety of dimension $m\left(n^{\prime}-m\right)+n^{\prime} n$.

Proposition 3.1. The irreducible components of $\mu^{-1}(0)$ are

$$
\begin{cases}X_{0}, \ldots, X_{n^{\prime}} & \text { if } n^{\prime} \leq n \\ X_{n^{\prime}-n}, \ldots, X_{n} & \text { if } n<n^{\prime}<2 n \\ X_{n} & \text { if } n^{\prime} \geq 2 n\end{cases}
$$

where X_{m} is defined by (4).
Proof. We have

$$
\mu^{-1}(0)=\left\{\left(u_{1}, u_{2}\right) \in W \quad \mid \operatorname{Im}\left(u_{2}\right) \subset \operatorname{Ker}\left(u_{1}\right)\right\}=\bigcup_{i=0}^{n^{\prime}} X_{i}
$$

Furthermore, for every $m \in\left\{0, \ldots, n^{\prime}\right\}$, the morphism p_{1} is surjective and Z_{m} is irreducible, hence X_{m} is irreducible.
If $n^{\prime} \geq 2 n$, then

$$
\left\{\begin{array}{l}
X_{0} \subset \cdots \subset X_{n} \\
X_{n}=\cdots=X_{n^{\prime}-n} \\
X_{n^{\prime}-n} \supset \cdots \supset X_{n^{\prime}} ;
\end{array}\right.
$$

and thus $\mu^{-1}(0)=X_{n}$.
If $n^{\prime}<2 n$, then

$$
\left\{\begin{array}{l}
X_{0} \subset \cdots \subset X_{\max \left(0, n^{\prime}-n\right)} \\
X_{\min \left(n^{\prime}, n\right)} \supset \cdots \supset X_{n^{\prime}}
\end{array}\right.
$$

and one easily checks that there is no other inclusion relation between the X_{m}.

Corollary 3.2. The dimension of $\mu^{-1}(0)$ is

$$
\operatorname{dim}\left(\mu^{-1}(0)\right)= \begin{cases}n n^{\prime}+\frac{1}{4} n^{\prime 2} & \text { if } n^{\prime}<2 n \text { and } n^{\prime} \text { is even } ; \\ n n^{\prime}+\frac{1}{4}\left(n^{\prime 2}-1\right) & \text { if } n^{\prime}<2 n \text { and } n^{\prime} \text { is odd } \\ 2 n n^{\prime}-n^{2} & \text { if } n^{\prime} \geq 2 n .\end{cases}
$$

Proof. By Proposition 3.1, it is sufficient to compute the dimension of X_{m} for some m. If $m \leq n$ or $m \geq n^{\prime}-n$, one may check that the map $p_{1}: Z_{m} \rightarrow X_{m}$ is birational, and thus $P(m):=\operatorname{dim}\left(X_{m}\right)=\operatorname{dim}\left(Z_{m}\right)=m\left(n^{\prime}-m\right)+n^{\prime} n$. It remains simply to study the variations of the polynomial P to obtain the result.

Let $l \in\{0, \ldots, N\}$. We fix a basis \mathcal{B} of V resp. \mathcal{B}^{\prime} of V^{\prime}, and we introduce some notation that we will use in the proofs of Proposition 3.3 and Lemma 3.5.

$$
\begin{align*}
& \text { - }\left(u_{1}^{l}, u_{2}^{l}\right):=\left(\left[\begin{array}{cc}
0_{l, n^{\prime}-l} & I_{l} \\
0_{n-l, n^{\prime}-l} & 0_{n-l, l}
\end{array}\right],\left[\begin{array}{cc}
I_{l} & 0_{l, n-l} \\
0_{n^{\prime}-l, l} & 0_{n^{\prime}-l, n-l}
\end{array}\right]\right) \in W \tag{5}\\
& \text { - } f_{l}:=\left[\begin{array}{cc}
0_{l, n^{\prime}-l} & I_{l} \\
0_{n^{\prime}-l, n^{\prime}-l} & 0_{n^{\prime}-l, l}
\end{array}\right] \in \mathfrak{g}^{\prime} \tag{6}
\end{align*}
$$

Proposition 3.3. Let $\mathcal{O}_{\mathbf{d}} \subset \mathfrak{g}^{\prime} \cong \mathfrak{g l}_{n^{\prime}}$ denote the nilpotent orbit associated to a partition \mathbf{d} of n^{\prime}. Then the symplectic reduction of W by G is $W / / / G=\overline{\mathcal{O}_{\left[2^{N}, 1^{n^{\prime}-2 N}\right]}}$.

Proof. If $f \in W / / / G$, then there exists $\left(u_{1}, u_{2}\right) \in \mu^{-1}(0)$ such that $f=u_{2} \circ u_{1}$, and thus $f \circ f=\left(u_{2} \circ u_{1}\right) \circ\left(u_{2} \circ u_{1}\right)=u_{2} \circ\left(u_{1} \circ u_{2}\right) \circ u_{1}=0$, whence the inclusion " \subset ". Now, let $f \in \overline{\mathcal{O}_{\left[2^{N}, 1^{n^{\prime}-2 N}\right]}}$. Up to conjugation by an element of G^{\prime}, we can suppose that $f=f_{l}$ for some $l \leq N$, where f_{l} is defined by (6). But then $u_{2}^{l} \circ u_{1}^{l}=f_{l}$ and $u_{1}^{l} \circ u_{2}^{l}=0$, where u_{1}^{l} and u_{2}^{l} are defined by (5), and thus $f \in W / / / G$.

Corollary 3.4. The symplectic reduction $W / / / G \subset \mathfrak{g}^{\prime}$ decomposes into $N+1$ orbits for the adjoint action of G^{\prime} :

$$
U_{i}:=\mathcal{O}_{\left[2^{i}, 1^{n^{\prime}-2 i}\right]}, \quad \text { for } i=0, \ldots, N .
$$

The closures of the nilpotent orbits U_{i} are nested in the following way:

$$
\{0\}=\overline{U_{0}} \subset \cdots \subset \overline{U_{N}}=W / / / G
$$

Hence, $W / / / G$ is a symplectic variety (see Section 2), of dimension $2 N\left(n^{\prime}-N\right)$ ($\left[\right.$ CM93, Corollary 6.1.4]), and whose singular locus is $\overline{U_{N-1}}([$ KP81, §3.2]).
By Corollary 3.2, the dimension of the general fiber of the quotient morphism ν is

$$
\begin{cases}n n^{\prime}-\frac{1}{4} n^{\prime 2} & \text { if } n^{\prime}<2 n \text { and } n^{\prime} \text { is even } \tag{7}\\ n n^{\prime}-\frac{1}{4}\left(n^{\prime 2}-1\right) & \text { if } n^{\prime}<2 n \text { and } n^{\prime} \text { is odd } \\ n^{2} & \text { if } n^{\prime} \geq 2 n\end{cases}
$$

If $n^{\prime}<2 n$, then $N=E\left(\frac{n^{\prime}}{2}\right)$, and we denote

$$
H:=\left\{\left[\begin{array}{cc}
M & 0_{n-N, N} \tag{8}\\
0_{N, n-N} & I_{N}
\end{array}\right], M \in G L_{n-N}\right\} \cong G L_{n-N}
$$

which is a reductive algebraic subgroup of $G \cong G L_{n}$.
Proposition 3.5. The general fiber of the quotient morphism $\nu: \mu^{-1}(0) \rightarrow W / / / G$ is isomorphic to

$$
\begin{cases}G & \text { if } n^{\prime} \geq 2 n ; \\ G / H & \text { if } n^{\prime}<2 n \text { and } n^{\prime} \text { is even; }\end{cases}
$$

where $H \subset G$ is the subgroup defined by (8).
Proof. We first suppose that $n^{\prime}<2 n$ and n^{\prime} is even (that is, $N=\frac{n^{\prime}}{2}$). With the notation (5), and by [SB00, §I.6.2.5, Theorem 10], we have the equivalence

$$
G \cdot\left(u_{1}^{N}, u_{2}^{N}\right) \text { is closed in } \mu^{-1}(0) \Leftrightarrow C_{G}(H) \cdot\left(u_{1}^{N}, u_{2}^{N}\right) \text { is closed in } \mu^{-1}(0) .
$$

We have $C_{G}(H)=\left\{\left[\begin{array}{cc}M & 0 \\ 0 & \lambda I_{n-N}\end{array}\right], M \in G L_{N}, \lambda \in \mathbb{G}_{m}\right\}$, where \mathbb{G}_{m} denotes the multiplicative group. Hence

$$
C_{G}(H) \cdot\left(u_{1}^{N}, u_{2}^{N}\right)=\left\{\left(\left[\begin{array}{cc}
0 & M \\
0 & 0
\end{array}\right],\left[\begin{array}{cc}
M^{-1} & 0 \\
0 & 0
\end{array}\right]\right), M \in G L_{N}\right\} \subset \mu^{-1}(0)
$$

is a closed subset, and thus $G .\left(u_{1}^{N}, u_{2}^{N}\right)$ is the unique closed orbit contained in the fiber $\nu^{-1}\left(f_{N}\right)$, where f_{N} is defined by (6). One may check that $\operatorname{Stab}_{G}\left(\left(u_{1}^{N}, u_{2}^{N}\right)\right)=$ H. Furthermore, $\operatorname{dim}(G / H)=N(2 n-N)$, which is also the dimension of the general fiber of ν by (7), and thus $\nu^{-1}\left(f_{N}\right) \cong G / H$.
We now suppose that $n^{\prime} \geq 2 n$ (that is, $N=n$). One may check that $\operatorname{Stab}_{G}\left(\left(u_{1}^{n}, u_{2}^{n}\right)\right)=$ $I d$, and thus the fiber $\nu^{-1}\left(f_{n}\right)$ contains a unique closed orbit isomorphic to G. But $\operatorname{dim}(G)=n^{2}$ is the dimension of the general fiber of ν by (17), hence $\nu^{-1}\left(f_{n}\right) \cong G$.

If $n^{\prime}<2 n$ and n^{\prime} is odd, then the situation is more complicated (except the case $n^{\prime}=1$ which is trivial) because the general fiber of the quotient morphism ν is reducible. From now on, we will only consider the cases where $n^{\prime} \geq 2 n$ or ($n^{\prime}<2 n$ and n^{\prime} is even).

Corollary 3.6. The Hilbert function h_{0} of the general fiber of the quotient morphism $\nu: \mu^{-1}(0) \rightarrow W / / / G$ is given by:

$$
\forall M \in \operatorname{Irr}(G), h_{0}(M)= \begin{cases}\operatorname{dim}(M) & \text { if } n^{\prime} \geq 2 n \\ \operatorname{dim}\left(M^{H}\right) & \text { if } n^{\prime}<2 n \text { and } n^{\prime} \text { is even } ;\end{cases}
$$

where $H \subset G$ is the subgroup defined by (8).
3.2. The reduction principle for the main component. In this section we prove the reduction principle when $G=G L(V)$ (Proposition 3.8).

The subset $\mu^{-1}(0) \subset W$ being $G^{\prime} \times G$-stable, it follows from Bri, Lemma 3.3] that the invariant Hilbert scheme

$$
\mathcal{H}:=\operatorname{Hilb}_{h_{0}}^{G}\left(\mu^{-1}(0)\right)
$$

is a G^{\prime}-stable closed subscheme of $\operatorname{Hilb}_{h_{0}}^{G}(W)$. The scheme $\operatorname{Hilb}_{h_{0}}^{G}(W)$ was studied in Tera; let us recall

Proposition 3.7. (Tera, §4.4]) Let h_{0} be the Hilbert function given by Corollary 3.6, and $G^{\prime}=G L\left(V^{\prime}\right)$ acting naturally on $\operatorname{Gr}\left(n^{\prime}-h_{0}(V), V^{* *}\right) \times \operatorname{Gr}\left(n^{\prime}-h_{0}\left(V^{*}\right), V^{\prime}\right)$. Then there exists a G^{\prime}-equivariant morphism

$$
\begin{array}{cccc}
\rho: \operatorname{Hilb}_{h_{0}}^{G}(W) & \rightarrow & \operatorname{Gr}\left(n^{\prime}-h_{0}(V), V^{\prime *}\right) \times \operatorname{Gr}\left(n^{\prime}-h_{0}\left(V^{*}\right), V^{\prime}\right) \\
Z & \mapsto & \left(\operatorname{Ker}\left(f_{Z}^{1}\right), \operatorname{Ker}\left(f_{Z}^{2}\right)\right)
\end{array}
$$

where $f_{Z}^{1}: \quad V^{\prime *} \cong \operatorname{Mor}^{G}(W, V) \rightarrow \operatorname{Mor}^{G}(Z, V)$ and $f_{Z}^{2}: \quad V^{\prime} \cong \operatorname{Mor}^{G}\left(W, V^{*}\right) \rightarrow$ $\operatorname{Mor}^{G}\left(Z, V^{*}\right)$ are the restriction maps.

By Corollary 3.6. we have $h_{0}(V)=h_{0}\left(V^{*}\right)=N$. We identify $\operatorname{Gr}\left(n^{\prime}-N, V^{* *}\right)$ with $\operatorname{Gr}\left(N, V^{\prime}\right)$, and we denote
$A_{i}:=\left\{\left(L_{1}, L_{2}\right) \in \operatorname{Gr}\left(N, V^{\prime}\right) \times \operatorname{Gr}\left(n^{\prime}-N, V^{\prime}\right) \mid \operatorname{dim}\left(L_{1} \cap L_{2}\right)=N-i\right\}$, for $i=0, \ldots, N$. The A_{i} are the $N+1$ orbits for the action of G^{\prime} on $\operatorname{Gr}\left(N, V^{\prime}\right) \times \operatorname{Gr}\left(n^{\prime}-N, V^{\prime}\right)$, and

$$
A_{0}=\overline{A_{0}} \subset \overline{A_{1}} \subset \cdots \subset \overline{A_{N}}=\operatorname{Gr}\left(N, V^{\prime}\right) \times \operatorname{Gr}\left(n^{\prime}-N, V^{\prime}\right)
$$

In particular, A_{N} is the unique open orbit and

$$
\begin{equation*}
A_{0}=\mathcal{F}_{N, n^{\prime}-N}:=\left\{\left(L_{1}, L_{2}\right) \in \operatorname{Gr}\left(N, V^{\prime}\right) \times \operatorname{Gr}\left(n^{\prime}-N, V^{\prime}\right) \mid L_{1} \subset L_{2}\right\} \tag{9}
\end{equation*}
$$

which is a partial flag variety, is the unique closed orbit. Let

- $a_{0}:=\left(L_{1}, L_{2}\right) \in A_{0}$, and P the parabolic subgroup of G^{\prime} stabilizing a_{0};
- $W^{\prime}:=\left\{\left(u_{1}, u_{2}\right) \in W \mid L_{2} \subset \operatorname{Ker}\left(u_{1}\right)\right.$ and $\left.\operatorname{Im}\left(u_{2}\right) \subset L_{1}\right\}$, which is a $P \times G$ module contained in $\mu^{-1}(0)$;
- $\mathcal{H}^{\prime}:=\operatorname{Hilb}_{h_{0}}^{G}\left(W^{\prime}\right)$, and $\mathcal{H}^{\prime \text { main }}$ its main component.

Let us note that, if $n^{\prime} \geq 2 n$ or ($n^{\prime}<2 n$ and n^{\prime} is even), then h_{0} coincides with the Hilbert function of the general fiber of the quotient morphism $W^{\prime} \rightarrow W^{\prime} / / G$ by [Tera, Proposition 4.13]; in particular, $\mathcal{H}^{\prime \text { main }}$ is well-defined. We are going to show
Proposition 3.8. If $n^{\prime} \geq 2 n$ or ($n^{\prime}<2 n$ and n^{\prime} is even), and with the above notation, we have a G^{\prime}-equivariant isomorphism

$$
\mathcal{H}^{\text {main }} \cong G^{\prime} \times^{P} \mathcal{H}^{\prime \text { main }}
$$

First of all, we need
Lemma 3.9. If $n^{\prime} \geq 2 n$ or ($n^{\prime}<2 n$ and n^{\prime} is even), then the morphism ρ of Proposition 3.7 sends $\mathcal{H}^{\text {main }}$ onto A_{0}, the G^{\prime}-variety defined by (9).
Proof. As the quotient morphism $\nu: \mu^{-1}(0) \rightarrow W / / / G$ is flat over the open orbit U_{N}, the restriction of the Hilbert-Chow morphism γ to $\gamma^{-1}\left(U_{N}\right)$ is an isomorphism. We fix $f_{N} \in U_{N}$, and we denote $Q:=\operatorname{Stab}_{G^{\prime}}\left(f_{N}\right)$, and Z_{N} the unique point of \mathcal{H} such that $\gamma\left(Z_{N}\right)=f_{N}$. As γ is G^{\prime}-equivariant, Z_{N} is Q-stable. In addition, ρ is also G^{\prime}-equivariant, hence $\rho\left(Z_{N}\right)$ is a fixed point for the action of Q. But one may check that $\operatorname{Gr}\left(N, V^{\prime}\right) \times \operatorname{Gr}\left(n^{\prime}-N, V^{\prime}\right)$ has a unique fixed point for Q, which is contained in A_{0}. Then, as A_{0} is G^{\prime}-stable, we have $\rho(Z) \in A_{0}$, for every $Z \in \gamma^{-1}\left(U_{N}\right)$. Hence, $\rho^{-1}\left(A_{0}\right)$ is a closed subset of $\operatorname{Hilb}_{h_{0}}^{G}(W)$ containing $\gamma^{-1}\left(U_{N}\right)$, and the result follows.

The restriction $\rho_{\mid \mathcal{H}^{\text {main }}}: \mathcal{H}^{\text {main }} \rightarrow A_{0}$ is G^{\prime}-equivariant, hence $\mathcal{H}^{\text {main }}$ is the total space of a G^{\prime}-homogeneous fiber bundle over A_{0}. Let F be the scheme-theoretic fiber of $\rho_{\mid \mathcal{H}^{\text {main }}}$ over a_{0}. The action of P on $\mathcal{H}^{\text {main }}$, induced by the action of G^{\prime}, stabilizes F, and we have a G^{\prime}-equivariant isomorphism

$$
\begin{equation*}
\mathcal{H}^{\text {main }} \cong G^{\prime} \times^{P} F \tag{10}
\end{equation*}
$$

Hence, to show Proposition 3.8, we have to determine F as a P-scheme. We start by considering F^{\prime}, the scheme-theoretic fiber of the restriction $\rho_{\mid \mathcal{H}}: \mathcal{H} \rightarrow \operatorname{Gr}\left(N, V^{\prime}\right) \times$ $\operatorname{Gr}\left(n^{\prime}-N, V^{\prime}\right)$ over a_{0}, as a P-scheme. The proof of the next lemma is analogous to the proof of [Tera, Lemma 3.7].
Lemma 3.10. With the above notation, we have a P-equivariant isomorphism

$$
F^{\prime} \cong \mathcal{H}^{\prime}
$$

where P acts on \mathcal{H}^{\prime} via its action on W^{\prime}.
As $\mathcal{H}^{\text {main }}$ is a variety of dimension $2 N\left(n^{\prime}-N\right)$, we deduce that F is a variety of dimension N^{2}. By Lemma 3.10, the fiber F is isomorphic to a subvariety of $\mathcal{H}^{\text {main }}$, but $\operatorname{dim}\left(\mathcal{H}^{\prime \text { main }}\right)=N^{2}$, and thus we have a P-equivariant isomorphism

$$
\begin{equation*}
F \cong \mathcal{H}^{\prime \text { main }} \tag{11}
\end{equation*}
$$

and Proposition 3.8 follows.

Remark 3.11. The scheme \mathcal{H}^{\prime} is P-stable and identifies with a closed subscheme of \mathcal{H}, hence we have an inclusion of G^{\prime}-schemes $G^{\prime} \times{ }^{P} \mathcal{H}^{\prime} \subset \mathcal{H}$.
3.3. Proof of Theorem A for $G L(V)$. First, we recall the following result:

Theorem 3.12. Tera, $\S 1$, Theorem] Let $G=G L(V), W=\operatorname{Hom}\left(V^{\prime}, V\right) \times \operatorname{Hom}\left(V, V^{\prime}\right)$, and h_{W} the Hilbert function of the general fiber of the quotient morphism $W \rightarrow$ $W / / G$. We denote $n:=\operatorname{dim}(V), n^{\prime}:=\operatorname{dim}\left(V^{\prime}\right)$, and Y_{0} the blow-up of $W / / G=$ $\operatorname{End}\left(V^{\prime}\right)^{\leq n}$ at 0 . In the following cases, the invariant Hilbert scheme $\mathcal{H}^{\prime}:=\operatorname{Hilb}_{h_{W}}^{G}(W)$ is a smooth variety and the Hilbert-Chow morphism is the succession of blow-up described as follows:

- if $n \geq 2 n^{\prime}-1$, then $\mathcal{H}^{\prime} \cong W / / G=\operatorname{End}\left(V^{\prime}\right)$;
- if $n^{\prime}>n=1$ or $n^{\prime}=n=2$, then $\mathcal{H}^{\prime} \cong Y_{0}$;
- if $n^{\prime}>n=2$, then \mathcal{H}^{\prime} is isomorphic to the blow-up of Y_{0} along the strict transform of $\operatorname{End}\left(V^{\prime}\right)^{\leq 1}$.

Let us now consider the following diagram

where $\mathcal{F}_{N, n^{\prime}-N}$ is defined by (9), p_{1} and p_{2} being the natural projections. We denote $\underline{V^{\prime}}$ the constant vector bundle over $\mathcal{F}_{N, n^{\prime}-N}$ with fiber V^{\prime}, and T_{1} resp. T_{2}, the pull-back of the tautological bundle over $\operatorname{Gr}\left(N, V^{\prime}\right)$ by p_{1}, resp. over $\operatorname{Gr}\left(n^{\prime}-N, V^{\prime}\right)$ by p_{2}. In particular, if $N=\frac{n^{\prime}}{2}$, then $\mathcal{F}_{N, n^{\prime}-N}=\operatorname{Gr}\left(N, V^{\prime}\right)$ and $T:=T_{1}=T_{2}$ is the tautological bundle over $\operatorname{Gr}\left(N, V^{\prime}\right)$.

We deduce from Proposition 3.8 and Theorem 3.12 that we have the following G^{\prime}-equivariant isomorphisms

$$
\mathcal{H}^{\text {main }} \cong \begin{cases}\operatorname{Hom}\left(\underline{V^{\prime}} / T, T\right) & \text { if } n \geq n^{\prime}-1 \text { and } n^{\prime} \text { is even; } \tag{13}\\ \operatorname{Hom}\left(\underline{V^{\prime}} / T_{2}, T_{1}\right) & \text { if } n=1 \text { and } n^{\prime} \geq 3 \\ B l_{0}\left(\operatorname{Hom}\left(\underline{V^{\prime}} / T_{2}, T_{1}\right)\right) & \text { if } n=2 \text { and } n^{\prime} \geq 4\end{cases}
$$

where $B l_{0}($.$) denotes the blow-up along the zero section. In all these cases, \mathcal{H}^{\text {main }}$ is smooth, and thus the Hilbert-Chow morphism $\gamma: \mathcal{H}^{\text {main }} \rightarrow W / / / G$ is a (distinguished) desingularization.

On the other hand, we saw in Section 2 that the Springer desingularizations of $W / / / G$ are the cotangent bundles $\mathcal{T}_{1}^{*}:=\mathcal{T}^{*} \operatorname{Gr}\left(N, V^{\prime}\right)$ and $\mathcal{T}_{2}^{*}:=\mathcal{T}^{*} \operatorname{Gr}\left(n^{\prime}-N, V^{\prime}\right) \cong$ $\mathcal{T}^{*} \operatorname{Gr}\left(N, V^{\prime *}\right)$. We then distinguish between two cases:
(1) If $N<\frac{n^{\prime}}{2}$, then let us show by contradiction that $\gamma: \mathcal{H}^{\text {main }} \rightarrow W / / / G$ can not be a Springer desingularization. First, we consider the isomorphism of $G^{\prime} \times G$-modules

$$
W \rightarrow \operatorname{Hom}\left(V^{\prime *}, V^{*}\right) \times \operatorname{Hom}\left(V^{*}, V^{\prime *}\right),\left(u_{1}, u_{2}\right) \mapsto\left(u_{2}^{*}, u_{1}^{*}\right),
$$

where u_{\bullet}^{*} denotes the pull-back of u_{\bullet}. Denoting $\mathcal{H}_{0}:=\operatorname{Hilb}_{h_{0}}^{G}\left(\mu^{\prime-1}(0)\right)$, where μ^{\prime} is the moment map for the natural action of G on $\operatorname{Hom}\left(V^{\prime *}, V^{*}\right) \times$ $\operatorname{Hom}\left(V^{*}, V^{\prime *}\right)$, we have an isomorphism of G^{\prime}-varieties $\mathcal{H}^{\text {main }} \cong \mathcal{H}_{0}^{\text {main }}$. Now if we suppose that (say) $\mathcal{H}^{\text {main }} \cong \mathcal{T}_{1}^{*}$, then we get that $\mathcal{H}_{0}^{\text {main }} \cong \mathcal{T}_{2}^{*}$, and thus $\mathcal{T}_{1}^{*} \cong \mathcal{T}_{2}^{*}$ as a G^{\prime}-variety, which is absurd.
However, one easily checks that if $n \in\{1,2\}$ and $n^{\prime} \geq 2 n+1$, then γ :
$\mathcal{H}^{\text {main }} \rightarrow W / / / G$ dominates the two Springer desingularizations \mathcal{T}_{1}^{*} and \mathcal{T}_{2}^{*} (see [Terb, §A.2.2] for details).
(2) If $N=\frac{n^{\prime}}{2}$, then $\mathcal{T}^{*}:=\mathcal{T}_{1}^{*}=\mathcal{T}_{2}^{*}$ is the unique Springer desingularization of $W / / / G$. Let us show that $\gamma: \mathcal{H}^{\text {main }} \rightarrow W / / / G$ is a Springer desingularization if and only if $n \geq n^{\prime}-1$. The implication " \Leftarrow " is given by (13) since $\mathcal{T}^{*} \cong \operatorname{Hom}\left(\underline{V^{\prime}} / T, T\right)$. The other implication is given by:

Lemma 3.13. If $N=\frac{n^{\prime}}{2}$ and the Hilbert-Chow morphism $\gamma: \mathcal{H}^{\text {main }} \rightarrow$ $W / / / G$ is a Springer desingularization, then $n \geq n^{\prime}-1$.

Proof. We suppose that $\gamma: \mathcal{H}^{\text {main }} \rightarrow W / / / G$ is a Springer desingularization, that is, $\mathcal{H}^{\text {main }} \cong \mathcal{T}^{*}$ as a G^{\prime}-variety. We fix $L \in \operatorname{Gr}\left(N, V^{\prime}\right)$, and we define $P \subset$ G^{\prime}, W^{\prime}, and $\mathcal{H}^{\prime \text { main }}$ as in Section 3.2. We have $\mathcal{T}^{*} \cong G^{\prime} \times{ }^{P} \operatorname{Hom}\left(V^{\prime} / L, L\right)$, and it follows from (10) and (11) that $\mathcal{H}^{\text {main }} \cong G^{\prime} \times^{P} \mathcal{H}^{\prime \text { main }}$. Hence, $\mathcal{H}^{\prime \text { main }} \cong \operatorname{Hom}\left(V^{\prime} / L, L\right)$ as a P-variety. We denote $\gamma^{\prime}: \mathcal{H}^{\prime \text { main }} \rightarrow W^{\prime} / / G$ the restriction of the Hilbert-Chow morphism. As γ^{\prime} is projective and birational, and $W^{\prime} / / G=\operatorname{Hom}\left(V^{\prime} / L, L\right)$ is smooth, the Zariski's Main Theorem implies that γ^{\prime} is an isomorphism. It follows that the quotient morphism $\nu^{\prime}: W^{\prime} \rightarrow W^{\prime} / / G$ is flat, and thus $n \geq 2 N-1$ by [Tera, Corollary 4.12].

In addition, if $n^{\prime}=4$ and $n=2$, then by (13) we have $\mathcal{H}^{\text {main }} \cong B l_{0}\left(\mathcal{T}^{*}\right)$, and thus γ dominates the unique Springer desingularization of $W / / / G$.
3.4. Reducibility of the invariant Hilbert scheme. The aim of this section is to show Proposition B for $G L(V)$, that is, to show

Proposition 3.14. If $n^{\prime} \geq 2 n$, then the invariant Hilbert scheme \mathcal{H} is reducible.
We suppose that $n^{\prime} \geq 2 n$, then $N=n$. We fix

$$
\begin{equation*}
a_{n}=\left(L_{1}^{\prime}, L_{2}^{\prime}\right) \in A_{n} \tag{14}
\end{equation*}
$$

a point of the open G^{\prime}-orbit of $\operatorname{Gr}\left(n, V^{\prime}\right) \times \operatorname{Gr}\left(n^{\prime}-n, V^{\prime}\right)$, and we consider

$$
\begin{aligned}
W^{\prime \prime} & :=\left\{\left(u_{1}, u_{2}\right) \in W \mid L_{2}^{\prime} \subset \operatorname{Ker}\left(u_{1}\right) \text { and } \operatorname{Im}\left(u_{2}\right) \subset L_{1}^{\prime}\right\} \\
& \cong \operatorname{Hom}\left(V^{\prime} / L_{2}^{\prime}, V\right) \times \operatorname{Hom}\left(V, L_{1}^{\prime}\right),
\end{aligned}
$$

which is a G-submodule of W. As $V^{\prime}=L_{1}^{\prime} \oplus L_{2}^{\prime}$, we have a natural identification $W^{\prime \prime} \cong \operatorname{Hom}\left(L_{1}^{\prime}, V\right) \times \operatorname{Hom}\left(V, L_{1}^{\prime}\right)$ as a G-module. We saw at the beginning of Section 1 that the G-module $W^{\prime \prime}$ is symplectic and has a G-equivariant moment map that we denote $\mu^{\prime}: W^{\prime \prime} \rightarrow \mathfrak{g}^{*}$. The proof of the next lemma is analogous to the proof of [Tera, Lemma 3.7].

Lemma 3.15. We suppose that $n^{\prime} \geq 2 n$, and let $\rho: \mathcal{H} \rightarrow \operatorname{Gr}\left(n, V^{\prime}\right) \times \operatorname{Gr}\left(n^{\prime}-n, V^{\prime}\right)$ be the morphism of Proposition 3.7. The scheme-theoretic fiber $F^{\prime \prime}$ of ρ over the point a_{n}, defined by (14), is isomorphic to the invariant Hilbert scheme $\operatorname{Hilb}_{h_{0}}^{G}\left(\mu^{\prime-1}(0)\right)$, where h_{0} is the Hilbert function defined by $h_{0}(M)=\operatorname{dim}(M)$, for every $M \in \operatorname{Irr}(G)$, and $\mu^{\prime}: W^{\prime \prime} \rightarrow \mathfrak{g}^{*}$ is the moment map defined above.

Remark 3.16. The Hilbert function h_{0} of Lemma 3.15 does not generally coincide with the Hilbert function of the general fiber of the quotient morphism $\mu^{\prime-1}(0) \rightarrow$ $\mu^{\prime-1}(0) / / G$.

By Lemma 3.9, the morphism $\rho: \operatorname{Hilb}_{h_{0}}^{G}(W) \rightarrow \operatorname{Gr}\left(n, V^{\prime}\right) \times \operatorname{Gr}\left(n^{\prime}-n, V^{\prime}\right)$ of Proposition 3.7 sends $\mathcal{H}^{\text {main }}$ onto A_{0}. Hence, to show Proposition 3.14 it is enough, by Lemma 3.15, to show that $\operatorname{Hilb}_{h_{0}}^{G}\left(\mu^{\prime-1}(0)\right)$ is non-empty.
We denote $V^{\prime \prime}:=L_{1}^{\prime}$, and we equip $W^{\prime \prime} \cong \operatorname{Hom}\left(V^{\prime \prime}, V\right) \times \operatorname{Hom}\left(V, V^{\prime \prime}\right)$ with the natural action of $G^{\prime \prime}:=G L\left(V^{\prime \prime}\right)$. Then we have

$$
\begin{align*}
\mathbb{C}\left[W^{\prime \prime}\right]_{2} & \cong\left(S^{2}\left(V^{\prime \prime}\right) \otimes S^{2}\left(V^{*}\right)\right) \oplus\left(S^{2}\left(V^{\prime \prime *}\right) \otimes S^{2}(V)\right) \tag{15}\\
& \oplus\left(\Lambda^{2}\left(V^{\prime \prime}\right) \otimes \Lambda^{2}\left(V^{*}\right)\right) \oplus\left(\Lambda^{2}\left(V^{\prime \prime *}\right) \otimes \Lambda^{2}(V)\right) \\
& \oplus\left(\left(s l\left(V^{\prime \prime}\right) \oplus M_{0}\right) \otimes\left(s l(V) \oplus V_{0}\right)\right) \text { as a } G^{\prime \prime} \times G \text {-module }
\end{align*}
$$

where M_{0} resp. V_{0}, is the trivial $G^{\prime \prime}$-module resp. the trivial G-module, and $s l\left(V^{\prime \prime}\right):=\left\{f \in \operatorname{End}\left(V^{\prime \prime}\right) \mid \operatorname{tr}(f)=0\right\}$.
We denote I_{0} the ideal of $\mathbb{C}\left[W^{\prime \prime}\right]$ generated by $\left(s l\left(V^{\prime \prime}\right) \otimes V_{0}\right) \oplus\left(M_{0} \otimes V_{0}\right) \oplus\left(M_{0} \otimes\right.$ $s l(V)) \subset \mathbb{C}\left[W^{\prime \prime}\right]_{2}$. The ideal I_{0} is homogeneous, $G^{\prime \prime} \times G$-stable, and contains the ideal generated by the homogeneous $G^{\prime \prime}$-invariants of positive degree of $\mathbb{C}\left[W^{\prime \prime}\right]$. In particular, I_{0} identifies with an ideal of $\mathbb{C}\left[\mu^{\prime-1}(0)\right]$.
Proposition 3.17. Let $I_{0} \subset \mathbb{C}\left[W^{\prime \prime}\right]$ be the ideal defined above, then I_{0} is a point of the invariant Hilbert scheme $\operatorname{Hilb}_{h_{0}}^{G}\left(\mu^{\prime-1}(0)\right)$ defined in Lemma 3.15.

Proof. We have to check that the ideal I_{0} has the good Hilbert function, that is,

$$
\mathbb{C}\left[W^{\prime \prime}\right] / I_{0} \cong \bigoplus_{M \in \operatorname{Irr}(G)} M^{\oplus \operatorname{dim}(M)}
$$

as a G-module. To do that that, we are going to adapt the method used by Kraft and Schwarz to prove [KS, Theorem 9.1].
We denote $R:=V^{\prime \prime *} \otimes V$, which is an irreducible $G^{\prime \prime} \times G$-submodule of $W^{\prime \prime *} \cong R \oplus R^{*}$. Then R and R^{*} are orthogonal modulo I_{0}, which means that the image of the $G^{\prime \prime} \times G$-submodule $R \otimes R^{*} \subset \mathbb{C}\left[W^{\prime \prime}\right]_{2}$ in $\mathbb{C}\left[W^{\prime \prime}\right] / I_{0}$ is isomorphic to the highest weight component of $R \otimes R^{*}$ (that is, $s l\left(V^{\prime \prime}\right) \otimes s l(V)$). Then, by Bri85, Lemme 4.1], any irreducible $G^{\prime \prime} \times G$-submodule of $\mathbb{C}[R]$ is orthogonal to any irreducible $G^{\prime \prime} \times G$-submodule of $\mathbb{C}\left[R^{*}\right]$, and thus the natural morphism

$$
\phi: \mathbb{C}[R]^{U^{\prime \prime} \times U} \otimes \mathbb{C}\left[R^{*}\right]^{U^{\prime \prime} \times U} \rightarrow\left(\mathbb{C}\left[W^{\prime \prime}\right] / I_{0}\right)^{U^{\prime \prime} \times U}
$$

is surjective, where $U^{\prime \prime}$ resp. U, denotes the unipotent radical of a Borel subgroup $B^{\prime \prime} \subset G^{\prime \prime}$ resp. $B \subset G$. Furthermore, if $T^{\prime \prime} \subset B^{\prime \prime}$ resp. $T \subset B$, is a maximal torus, then ϕ is $T^{\prime \prime} \times T$-equivariant.
Now by Pro07, §13.5.1] we have the following isomorphisms of $T^{\prime \prime} \times T$-algebras $\mathbb{C}[R]^{U^{\prime \prime} \times U} \cong \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, where $x_{i} \in \Lambda^{i} V^{\prime \prime} \otimes \Lambda^{i} V^{*}$ is a highest weight vector, and $\mathbb{C}\left[R^{*}\right]^{U^{\prime \prime} \times U} \cong \mathbb{C}\left[y_{1}, \ldots, y_{n}\right]$, where $y_{j} \in \Lambda^{j} V^{\prime \prime *} \otimes \Lambda^{j} V$ is a highest weight vector. Hence, we have an exact sequence

$$
0 \rightarrow K_{0} \rightarrow \mathbb{C}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right] \rightarrow\left(\mathbb{C}\left[W^{\prime \prime}\right] / I_{0}\right)^{U^{\prime \prime} \times U} \rightarrow 0
$$

where K_{0} is the kernel of ϕ. One may check that the ideal K_{0} is generated by the products $x_{r} y_{s}$ with $r+s>n$ (see [KS, §9, Proof of Theorem 9.1(1)]).
We denote $\Lambda=\left\langle\epsilon_{1}, \ldots, \epsilon_{n}\right\rangle$ the weight lattice of the linear group $G L_{n}$, and $\Lambda_{+} \subset \Lambda$ the subset of dominant weights, that is, weights of the form $r_{1} \epsilon_{1}+\ldots+r_{n} \epsilon_{n}$, with $r_{1} \geq \ldots \geq r_{n}$. If $\lambda \in \Lambda_{+}$, then we denote $S^{\lambda}\left(\mathbb{C}^{n}\right)$ the irreducible $G L_{n}$-module of highest weight λ. We fix $\lambda=k_{1} \epsilon_{1}+\ldots+k_{t} \epsilon_{t}-k_{t+1} \epsilon_{t+1}-\ldots-k_{n} \epsilon_{n} \in \Lambda_{+}$, where each
k_{i} is a nonnegative integer. One easily checks that the weight of the monomial

$$
x_{n-t}^{k_{t+1}} x_{n-t-1}^{k_{t+2}-k_{t+1}} x_{n-t-2}^{k_{t+3}-k_{t+2}} \cdots x_{1}^{k_{n}-k_{n-1}} y_{t}^{k_{t}} y_{t-1}^{k_{t-1}-k_{t}} y_{t-2}^{k_{t-2}-k_{t-1}} \cdots y_{1}^{k_{1}-k_{2}}
$$

for the action of $T^{\prime \prime} \times T$ is $\left(\lambda^{*}, \lambda\right)$, where λ^{*} denotes the highest weight of the $G L_{n}$-module $S^{\lambda}\left(\mathbb{C}^{n *}\right)$, and that λ uniquely determines this monomial. We get that the isotypic component of the G-module $S^{\lambda}(V)$ in $\mathbb{C}\left[W^{\prime \prime}\right] / I_{0}$ is the $G^{\prime \prime} \times G$ module $S^{\lambda}\left(V^{\prime \prime *}\right) \otimes S^{\lambda}(V)$. As $\operatorname{dim}(V)=\operatorname{dim}\left(V^{\prime \prime}\right)=n$, we have $\operatorname{dim}\left(S^{\lambda}(V)\right)=$ $\operatorname{dim}\left(S^{\lambda}\left(V^{\prime \prime *}\right)\right)$ for every $\lambda \in \Lambda+$. In other words, each irreducible G-module M occurs in $\mathbb{C}\left[W^{\prime \prime}\right] / I_{0}$ with multiplicity $\operatorname{dim}(M)$.

By Proposition 3.17, the scheme $\operatorname{Hilb}_{h_{0}}^{G}\left(\mu^{\prime-1}(0)\right)$ is non-empty, and thus \mathcal{H} has an irreducible component, different from $\mathcal{H}^{\text {main }}$, of dimension greater or equal to $\operatorname{dim}\left(A_{n}\right)=2 n\left(n^{\prime}-n\right)$, which implies Proposition 3.14.
3.5. Study of the case $n=1$. In all this Section, we suppose that $n=1$ and $n^{\prime} \geq 2$ (the case $n^{\prime}=1$ being trivial). Then $G=\mathbb{G}_{m}$ is the multiplicative group, $W / / / G=\overline{\mathcal{O}_{\left[2,1^{n^{\prime}-2}\right]}} \subset \mathfrak{g}^{\prime}$, and the morphism of Proposition 3.7] is $\rho: \operatorname{Hilb}_{h_{0}}^{G}(W) \rightarrow$ $\mathbb{P}\left(V^{\prime}\right) \times \mathbb{P}\left(V^{\prime *}\right)$. The Segre embedding gives a G^{\prime}-equivariant isomorphism $\mathbb{P}\left(V^{\prime}\right) \times$ $\mathbb{P}\left(V^{\prime *}\right) \cong \mathbb{P}\left(\mathfrak{g}^{\prime \leq 1}\right)$, where $\mathfrak{g}^{\prime \leq 1}:=\left\{f \in \mathfrak{g}^{\prime} \mid \operatorname{rk}(f) \leq 1\right\}$, and thus we can consider $\rho^{\prime}: \operatorname{Hilb}_{h_{0}}^{G}(W) \rightarrow \mathbb{P}\left(\mathfrak{g}^{\prime \leq 1}\right)$, the morphism induced by ρ.

We saw in Section 3.3 that $\mathcal{H}^{\text {main }}$ is a smooth variety, and in Section 3.4 that \mathcal{H} is always reducible. In this section, we determine the irreducible components of \mathcal{H} when $n=1$.

Proposition 3.18. We equip \mathcal{H} with its reduced structure. If $n^{\prime}>n=1$ and with the above notation, we have a G^{\prime}-equivariant isomorphism

$$
\mathcal{H} \cong\left\{(f, L) \in \overline{\mathcal{O}_{\left[2,1^{n^{\prime}-2}\right]}} \times \mathbb{P}\left(\mathfrak{g}^{\prime \leq 1}\right) \mid f \in L\right\}
$$

In particular, \mathcal{H} is the union of two smooth irreducible components of dimension $2 n^{\prime}-2$ defined by:

- $C_{1}:=\left\{(f, L) \in \overline{\mathcal{O}_{\left[2,1^{n^{\prime}-2}\right]}} \times \mathbb{P}\left(\overline{\mathcal{O}_{\left[2,1^{n^{\prime}-2}\right]}}\right) \mid f \in L\right\}=\mathcal{H}^{\text {main }}$, and the HilbertChow morphism $\gamma: \mathcal{H}^{\text {main }} \rightarrow \overline{\mathcal{O}_{\left[2,1^{n^{\prime}-2}\right]}}$ is the blow-up of $\overline{\mathcal{O}_{\left[2,1^{n^{\prime}-2}\right]}}$ at 0 ;
- $C_{2}:=\left\{(0, L) \in \overline{\mathcal{O}_{\left[2,1^{n^{\prime}-2}\right]}} \times \mathbb{P}\left(\mathfrak{g}^{\prime \leq 1}\right)\right\} \cong \mathbb{P}\left(\mathfrak{g}^{\prime \leq 1}\right)$.

Proof. By [Tera, $\S 1$, Theorem], we have a G^{\prime}-equivariant isomorphism

$$
\gamma \times \rho^{\prime}: \operatorname{Hilb}_{h_{0}}^{G}(W) \rightarrow\left\{(f, L) \in \mathfrak{g}^{\prime \leq 1} \times \mathbb{P}\left(\mathfrak{g}^{\prime \leq 1}\right) \mid f \in L\right\}
$$

Then, by Bri, Lemma 3.3], we have a G^{\prime}-equivariant closed embedding

$$
\gamma \times \rho^{\prime}: \mathcal{H} \hookrightarrow \mathcal{Y}:=\left\{(f, L) \in \overline{\mathcal{O}_{\left[2,1^{n^{\prime}-2}\right]}} \times \mathbb{P}\left(\mathfrak{g}^{\prime \leq 1}\right) \mid f \in L\right\}
$$

One may check that \mathcal{Y} is the union of the two closed subset C_{1} and C_{2}, both of dimension $2 n^{\prime}-2$. The morphism $\gamma \times \rho^{\prime}$ sends $\mathcal{H}^{\text {main }}$ into C_{1}; the varieties $\mathcal{H}^{\text {main }}$ and C_{1} have the same dimension, hence $\gamma \times \rho^{\prime}: \mathcal{H}^{\text {main }} \rightarrow C_{1}$ is an isomorphism. On the other hand, we saw in Section 3.4 that \mathcal{H} admits a second irreducible component, denoted \mathcal{H}_{2}, of dimension at least $2 n^{\prime}-2$, which is the dimension of C_{2}, and thus $\gamma \times \rho^{\prime}$ is an isomorphism between \mathcal{H}_{2} and C_{2}.

Remark 3.19. One may check that the component C_{2} of Proposition 3.18 is formed by the homogeneous ideals of $\mathbb{C}\left[\mu^{-1}(0)\right]$.

When $n^{\prime} \geq 2 n \geq 4$, great dimensional irreducible components (other than $\mathcal{H}^{\text {main }}$) may appear. For instance, if $n=2$ and $n^{\prime} \geq 4$, then one may check that the irreducible component formed by the homogeneous ideals of $\mathbb{C}\left[\mu^{-1}(0)\right]$ is of dimension $4 n^{\prime}-5$, whereas the main component $\mathcal{H}^{\text {main }}$ is of dimension $4 n^{\prime}-8$. In addition, we showed in Section 3.4 that \mathcal{H} has at least two components, but \mathcal{H} may have much more components.

4. Case of $S p_{n}$ (n EVEN)

In this section, we denote $E:=V^{\prime} \oplus V^{\prime *}$, and we take $G=S p(V)$ and $G^{\prime}=S O(E)$. We identify $W=\operatorname{Hom}\left(V^{\prime}, V\right) \times \operatorname{Hom}\left(V, V^{\prime}\right) \cong \operatorname{Hom}(E, V)$, equipped with the naturel action of $G^{\prime} \times G$. We denote \mathfrak{g} resp. \mathfrak{g}^{\prime}, the Lie algebra of G resp. of G^{\prime}, and we recall that we denote $n:=\operatorname{dim}(V)$ (which is even), and $n^{\prime}:=\operatorname{dim}\left(V^{\prime}\right)$.
4.1. The quotient morphism. The main results of this section are Proposition 4.3, which describes the irreducible components of the symplectic reduction $W / / / G:=\mu^{-1}(0) / / G$, and Corollary 4.6, which gives the Hilbert function of the general fiber of the quotient morphism for each irreducible component of $W / / / G$. Contrary to the case of $G L(V)$ studied in Section 3, we will see that $W / / / G$ is reducible when $n^{\prime} \leq n$ and n^{\prime} is even.

As G resp. G^{\prime}, preserves a non-degenerate bilinear form on V resp. on E, we have a canonical isomorphism $V \cong V^{*}$ resp. $E \cong E^{*}$. If $w \in \operatorname{Hom}(E, V)$, we denote ${ }^{t} w \in \operatorname{Hom}\left(V^{*}, E^{*}\right) \cong \operatorname{Hom}(V, E)$ the transpose of w. Then, by Bec09, Proposition 3.1], the zero fiber of the moment map $\mu: W \rightarrow \mathfrak{g}^{*}$ is

$$
\mu^{-1}(0)=\left\{w \in W \mid w \circ{ }^{t} w=0\right\}
$$

which is a $G^{\prime} \times G$-stable closed subset of W.
Remark 4.1. One may check that the biggest subgroup of $G L(E)$ that stabilizes $\mu^{-1}(0)$ in W is the orthogonal group $O(E)$. However, for practical reasons (study of the nilpotent orbits of \mathfrak{g}^{\prime}), we prefer to consider the action of $G^{\prime}=S O(E)$.

The proof of the next proposition is analogous to the one of Proposition 3.1 and Corollary 3.2 .

Proposition 4.2. The zero fiber of the moment map $\mu: W \rightarrow \mathfrak{g}^{*}$ is

- a variety of dimension $2 n^{\prime} n-\frac{1}{2} n(n+1)$ if $n^{\prime}>n$;
- the union of two varieties of dimension $n^{\prime} n+\frac{1}{2} n^{\prime}\left(n^{\prime}-1\right)$ if $n^{\prime} \leq n$.

The following result was proved by Becker ($[\overline{\mathrm{Bec} 09}$, Proposition 3.6]):
Proposition 4.3. Let \mathbf{d} be a partition of $2 n^{\prime}$, and $\mathcal{O}_{\mathbf{d}}$ resp. $\mathcal{O}_{\mathbf{d}}^{I}$ and $\mathcal{O}_{\mathbf{d}}^{I I}$, denote the nilpotent orbit(s) of $\mathfrak{g}^{\prime} \cong \mathfrak{s o}_{2 n^{\prime}}$ associated to \mathbf{d}. Then the symplectic reduction of W by G is

$$
W / / / G= \begin{cases}\overline{\mathcal{O}_{\left[2^{n}, 1^{2\left(n^{\prime}-n\right)}\right.}} & \text { if } n^{\prime}>n ; \\ \overline{\mathcal{O}_{\left[2^{n^{\prime}-1}, 1^{2}\right]}} & \text { if } n^{\prime}<n \text { and } n^{\prime} \text { is odd } ; \\ \overline{\mathcal{O}_{\left[2^{\left.n^{\prime}\right]}\right]}^{I}} \cup \overline{\mathcal{O}_{\left[2^{n^{\prime}}\right]}^{I I}} & \text { if } n^{\prime} \leq n \text { and } n^{\prime} \text { is even } .\end{cases}
$$

Corollary 4.4. The orbits for the adjoint action of G^{\prime} on $W / / / G$ are

- $U_{i}:=\mathcal{O}_{\left[2^{i}, 1^{2\left(n^{\prime}-i\right)}\right]}$, for $i=0,2, \ldots, n$, if $n^{\prime}>n$;
- $U_{i}:=\mathcal{O}_{\left[2^{i}, 1^{2\left(n^{\prime}-i\right)}\right]}$, for $i=0,2, \ldots, n^{\prime}-1$, if $n^{\prime}<n$ and n^{\prime} is odd;
- $U_{i}:=\mathcal{O}_{\left[2^{i}, 1^{2\left(n^{\prime}-i\right)}\right]}$, for $i=0,2, \ldots, n^{\prime}-2$, and $U_{n^{\prime}}^{I}:=\mathcal{O}_{\left[2^{n^{\prime}}\right]}^{I}, U_{n^{\prime}}^{I I}:=\mathcal{O}_{\left[2^{n^{\prime}}\right]}^{I}$, if $n^{\prime} \leq n$ and n^{\prime} is even.

The closures of the nilpotent orbits U_{i} are nested in the following way:

$$
\begin{cases}\{0\}=\overline{U_{0}} \subset \overline{U_{2}} \subset \cdots \subset \overline{U_{n}} & \text { if } n^{\prime}>n ; \\ \{0\}=\overline{U_{0}} \subset \overline{U_{2}} \subset \cdots \subset \overline{U_{n^{\prime}-1}} & \text { if } n^{\prime}<n \text { and } n^{\prime} \text { is odd } \\ \{0\}=\overline{U_{0}} \subset \overline{U_{2}} \subset \cdots \subset \overline{U_{n^{\prime}-2}}=\overline{U_{n^{\prime}}^{I}} \cap \overline{U_{n^{\prime}}^{I I}} & \text { if } n^{\prime} \leq n \text { and } n^{\prime} \text { is even. }\end{cases}
$$

If ($n^{\prime}>n$ or n^{\prime} is odd) resp. if ($n^{\prime} \leq n$ and n^{\prime} is even), then the symplectic reduction $W / / / G$ is the closure of a nilpotent orbit resp. is the union of two closures of nilpotent orbits, and thus the irreducible components of $W / / / G$ are symplectic varieties (see Section (2). If $n^{\prime}>n$, then $W / / / G$ is of dimension $2 n^{\prime} n-n(n+1)$ ([CM93, Corollary 6.1.4]), and its singular locus is $\overline{U_{n-2}}$ ([KP82, Theorem 2]). On the other hand, if $n^{\prime} \leq n$, then each irreducible component of $W / / / G$ is of dimension $n^{\prime}\left(n^{\prime}-1\right)$, and the singular locus of $W / / / G$ is $\overline{U_{n^{\prime}-2}}$ resp. $\overline{U_{n^{\prime}-3}}$, when n^{\prime} is even resp. when n^{\prime} is odd.

We are now interested by the Hilbert function of the general fiber of the quotient morphism for each irreducible component of $W / / / G$. We will distinguish between the following cases:

- If $n^{\prime}>n$, then $W / / / G$ is irreducible, and we denote h_{0} the Hilbert function of the general fiber of the quotient morphism $\nu: \mu^{-1}(0) \rightarrow W / / / G$. By Proposition 4.2 the dimension of the general fiber of ν is $\frac{1}{2} n(n+1)$.
- If $n^{\prime} \leq n$ and n^{\prime} is even, then by Proposition 4.2, the zero fiber $\mu^{-1}(0)$ is the union of two irreducible components that we denote X_{I} and $X_{I I}$. Let $\nu_{I}: X_{I} \rightarrow Y_{I}$ and $\nu_{I I}: X_{I I} \rightarrow Y_{I I}$ be the quotient morphisms. Up to the exchange of X_{I} and $X_{I I}$, we can suppose that $Y_{I}=\overline{U_{n^{\prime}}^{I}}$ and $Y_{I I}=\overline{U_{n^{\prime}}^{I I}}$. The orthogonal group $O(E)$ acts transitively on $U_{n^{\prime}}^{I} \cup U_{n^{\prime}}^{I I}$, hence the general fibers of ν_{I} and $\nu_{I I}$ are isomorphic. In particular, the general fibers of ν_{I} and $\nu_{I I}$ have the same Hilbert function, denoted h_{0}, and the same dimension, which is $n^{\prime} n-\frac{1}{2} n^{\prime}\left(n^{\prime}-1\right)$.
- If $n^{\prime}<n$ and n^{\prime} is odd, then $W / / / G$ is irreducible, and we denote h_{0} the Hilbert function of the general fiber of the quotient morphism $\nu: \mu^{-1}(0) \rightarrow$ $W / / / G$. The general fiber being reducible, determining h_{0} is is more complicated than in the previous cases (except the case $n^{\prime}=1$ which is trivial). From now on, we will always exclude the case $n^{\prime}<n$ and n^{\prime} is odd.
If $n^{\prime}<n$ and n^{\prime} is even, then we denote

$$
H:=\left\{\left[\begin{array}{cc}
M & 0_{n-n^{\prime}, n^{\prime}} \tag{16}\\
0_{n^{\prime}, n-n^{\prime}} & I_{n^{\prime}}
\end{array}\right], M \in S p_{n-n^{\prime}}\right\} \cong S p_{n-n^{\prime}}
$$

which is a reductive algebraic subgroup of $G \cong S p_{n}$. The proof of the next proposition is analogous to the proof of Proposition 3.5]

Proposition 4.5. If $n^{\prime}>n$, then the general fiber of the quotient morphism ν : $\mu^{-1}(0) \rightarrow W / / / G$ is isomorphic to G.
If $n^{\prime}=n$, then the general fibers of the quotient morphisms $\nu_{I}: X_{I} \rightarrow Y_{I}$ and $\nu_{I I}: X_{I I} \rightarrow Y_{I I}$ are isomorphic to G.
If $n^{\prime}<n$ and n^{\prime} is even, then the general fibers of ν_{I} and $\nu_{I I}$ are isomorphic to G / H, where $H \subset G$ is the subgroup defined by (16).

Corollary 4.6. The Hilbert function h_{0} defined above is given by:

$$
\forall M \in \operatorname{Irr}(G), h_{0}(M)= \begin{cases}\operatorname{dim}(M) & \text { if } n^{\prime} \geq n \\ \operatorname{dim}\left(M^{H}\right) & \text { if } n^{\prime}<n \text { and } n^{\prime} \text { is even } ;\end{cases}
$$

where $H \subset G$ is the subgroup defined by (16).
4.2. The reduction principle for the main component. In this section, we give the guidelines to prove the reduction principle when $G=S p(V)$ (Proposition 4.8). The strategy is the same as for $G L(V)$ (see Section 3.2), but as the symplectic reduction $W / / / G$ is reducible when $n^{\prime} \leq n$ and n^{\prime} is even, it seems necessary to give some details.

As $\mu^{-1}(0)$ is a $G^{\prime} \times G$-stable closed subset of W, it follows from Bri, Lemma 3.3] that the invariant Hilbert scheme

$$
\mathcal{H}:=\operatorname{Hilb}_{h_{0}}^{G}\left(\mu^{-1}(0)\right)
$$

is a G^{\prime}-stable closed subscheme of $\operatorname{Hilb}_{h_{0}}^{G}(W)$. As we aim at constructing canonical desingularizations of the irreducible components of $W / / / G$, we consider the two G^{\prime}-stable closed subschemes $\mathcal{H}_{I}:=\operatorname{Hilb}_{h_{0}}^{G}\left(X_{I}\right)$ and $\mathcal{H}_{I I}:=\operatorname{Hilb}_{h_{0}}^{G}\left(X_{I I}\right)$ instead of \mathcal{H} when $n^{\prime} \leq n$ and n^{\prime} is even. Let us note that if we fix $g_{0}^{\prime} \in O(E) \backslash S O(E)$ and make G^{\prime} act on $X_{I I}$ by $\left(g_{0}^{\prime} g^{\prime} g_{0}^{\prime-1}\right)$.x for every $g^{\prime} \in G^{\prime}$ and every $x \in X_{I I}$, then $\phi: X_{I} \rightarrow X_{I I}, x \mapsto g_{0}^{\prime} \cdot x$ is a $G^{\prime} \times G$-equivariant isomorphism, and thus $\mathcal{H}_{I} \cong \mathcal{H}_{I I}$ as a G^{\prime}-scheme. We denote $\mathcal{H}_{I}^{\text {main }}$ resp. $\mathcal{H}_{I I}^{\text {main }}$, the main component of \mathcal{H}_{I} resp. of $\mathcal{H}_{I I}$. We always have the (set-theoretic) inclusion $\mathcal{H}_{I} \cup \mathcal{H}_{I I} \subset \mathcal{H}$, but this may not be an equality. If $n^{\prime}>n$, then $W / / / G$ is irreducible, and we denote $\mathcal{H}^{\text {main }}$ the main component of \mathcal{H}.

The scheme $\operatorname{Hilb}_{h_{0}}^{G}(W)$ was studied in Terb]. In particular, we obtained
Proposition 4.7. (Terb, §1.5.1]) Let h_{0} be the Hilbert function given by Corollary 4.6, and $G^{\prime}=S O(E)$ acting naturally on $\operatorname{Gr}\left(2 n^{\prime}-h_{0}\left(V^{*}\right), E\right)$. Then there exists a G^{\prime}-equivariant morphism

$$
\begin{array}{rllc}
\rho: \operatorname{Hilb}_{h_{0}}^{G}(W) & \rightarrow & \operatorname{Gr}\left(2 n^{\prime}-h_{0}\left(V^{*}\right), E\right) \\
Z & \mapsto & \operatorname{Ker}\left(f_{Z}\right)
\end{array}
$$

where $f_{Z}: E \cong \operatorname{Mor}^{G}\left(W, V^{*}\right) \rightarrow \operatorname{Mor}^{G}\left(Z, V^{*}\right)$ is the restriction map.
We identify $\operatorname{Gr}\left(2 n^{\prime}-h_{0}\left(V^{*}\right), E\right)$ with $\operatorname{Gr}\left(h_{0}\left(V^{*}\right), E^{*}\right)$. By Corollary 4.6, if $n^{\prime}>n$ or $\left(n^{\prime} \leq n\right.$ and n^{\prime} is even), then $h_{0}\left(V^{*}\right)=N:=\min \left(n^{\prime}, n\right)$. We denote q the non-degenerate quadratic form on E preserved by $O(E)$. We have a canonical isomorphism $E \cong E^{*}$, and thus q identifies with a non-degenerate quadratic form on E^{*}. For $i=0, \ldots, N$, we denote

$$
A_{i}:=\left\{L \in \operatorname{Gr}\left(N, E^{*}\right) \mid q_{\mid L} \text { is of rank } i\right\} .
$$

If $n^{\prime}>n$, then the A_{i} are the $n+1$ orbits for the action of G^{\prime} on $\operatorname{Gr}\left(n, E^{*}\right)$.
However, if $n^{\prime} \leq n$, then the A_{i} are G^{\prime}-orbits for $i=1, \ldots, n^{\prime}$, but the isotropic Grassmannian $A_{0}=\operatorname{OGr}\left(n^{\prime}, E^{*}\right)$ is the union of two G^{\prime}-orbits, denoted OGr^{I} and $\mathrm{OGr}^{I I}$, which are exchanged by the action of any element of $O(E) \backslash S O(E)$.
In any case, we have

$$
\operatorname{OGr}\left(N, E^{*}\right)=\overline{A_{0}} \subset \overline{A_{1}} \subset \cdots \subset \overline{A_{N}}=\operatorname{Gr}\left(N, E^{*}\right)
$$

Let us now fix some notation:

- $L_{0} \in A_{0}$, and P the parabolic subgroup of G^{\prime} stabilizing L_{0};
- $W^{\prime}:=\operatorname{Hom}\left(E / L_{0}^{\perp}, V\right)$, which identifies with a $P \times G$-module contained in $\mu^{-1}(0)$;
- $\mathcal{H}^{\prime}:=\operatorname{Hilb}_{h_{0}}^{G}\left(W^{\prime}\right)$, and $\mathcal{H}^{\prime \text { main }}$ its main component.

It must be underlined that, if $n^{\prime}>n$ or ($n^{\prime} \leq n$ and n^{\prime} is even), then the Hilbert function of the general fiber of the quotient morphism $W^{\prime} \rightarrow W^{\prime} / / G$ coincides with the Hilbert function h_{0} of Corollary 4.6 (in particular, $\mathcal{H}^{\prime \text { main }}$ is well defined).

Proceeding as for Lemma 3.9, one may check that, if $n^{\prime}>n$ resp. if ($n^{\prime} \leq n$ and n^{\prime} is even), then the morphism ρ of Proposition 4.7 sends $\mathcal{H}^{\text {main }}$ resp. $\mathcal{H}_{I}^{\text {main }}$ and $\mathcal{H}_{I I}^{\text {main }}$, onto A_{0}. More precisely, if $n^{\prime} \leq n$ and n^{\prime} is even, then ρ sends $\mathcal{H}_{I}^{\text {main }}$ onto one of the irreducible component of A_{0}, and $\mathcal{H}_{I I}^{\text {main }}$ onto the other component. Up to the exchange of these two components, we can suppose that ρ sends $\mathcal{H}_{I}^{\text {main }}$ onto OGr^{I}, and $\mathcal{H}_{I I}^{\text {main }}$ onto $\mathrm{OGr}^{I I}$.
It follows that the restriction of ρ equips $\mathcal{H}^{\text {main }}$ resp. $\mathcal{H}_{I}^{\text {main }}$, resp. $\mathcal{H}_{I I}^{\text {main }}$, with a structure of a G^{\prime}-homogeneous fiber bundle over A_{0} resp. over OGr^{I}, resp. over $\mathrm{OGr}^{I I}$. Hence, it is enough to determine the fiber F_{0} over L_{0} to determine $\mathcal{H}^{\text {main }}$ resp. $\mathcal{H}_{I}^{\text {main }}$, resp. $\mathcal{H}_{I I}^{\text {main }}$. Proceeding as in Section 3.2, we obtain that F_{0} is isomorphic to $\mathcal{H}^{\prime \text { main }}$ as a P-scheme. We deduce

Proposition 4.8. With the above notation, we have the following G^{\prime}-equivariant isomorphisms:

- If $n^{\prime}>n$, then

$$
\mathcal{H}^{\text {main }} \cong G^{\prime} \times^{P} \mathcal{H}^{\prime \text { main }}
$$

- If ($n^{\prime} \leq n$ and n^{\prime} is even) and $L_{0} \in \mathrm{OGr}^{I}$ resp. $L_{0} \in \mathrm{OGr}^{I I}$, then

$$
\mathcal{H}_{I}^{\text {main }} \cong G^{\prime} \times^{P} \mathcal{H}^{\prime \text { main }} \text { resp. } \mathcal{H}_{I I}^{\text {main }} \cong G^{\prime} \times^{P} \mathcal{H}^{\prime \text { main }} .
$$

4.3. Proof of Theorem A for $\mathbf{S p}(\mathbf{V})$. Let us start by recalling

Theorem 4.9. Tera, $\S 1$, Theorem] Let $G=\operatorname{Sp}(V), W=\operatorname{Hom}(E, V)$, and h_{W} the Hilbert function of the general fiber of the quotient morphism $W \rightarrow W / / G$. We denote $n:=\operatorname{dim}(V)$, e $:=\operatorname{dim}(E)$, and Y_{0} the blow-up of $W / / G=\Lambda^{2}\left(E^{*}\right)^{\leq n}:=$ $\left\{Q \in \Lambda^{2}\left(E^{*}\right) \mid \operatorname{rk}(Q) \leq n\right\}$ at 0 . In the following cases, the invariant Hilbert scheme $\mathcal{H}^{\prime}:=\operatorname{Hilb}_{h_{W}}^{G}(W)$ is a smooth variety, and the Hilbert-Chow morphism is the succession of blow-up described as follows:

- if $n \geq 2 e-2$, then $\mathcal{H}^{\prime} \cong W / / G=\Lambda^{2}\left(E^{*}\right)$;
- if $e>n=2$ or $e=n=4$, then $\mathcal{H}^{\prime} \cong Y_{0}$;
- if $e>n=4$, then \mathcal{H}^{\prime} is isomorphic to the blow-up of Y_{0} along the strict transform of $\Lambda^{2}\left(E^{*}\right)^{\leq 2}$.
If $n^{\prime}>n$, then we denote T the tautological bundle over $A_{0}=\operatorname{OGr}\left(n, E^{*}\right)$. If $n^{\prime} \leq n$ and n^{\prime} is even, then we denote T_{I} resp. $T_{I I}$, the tautological bundle over OGr^{I} resp. over $\mathrm{OGr}^{I I}$. We deduce from Proposition 4.8 and Theorem 4.9 that we have the following G^{\prime}-equivariant isomorphisms

$$
\begin{gather*}
\mathcal{H}^{\text {main }} \cong \begin{cases}\Lambda^{2}(T) & \text { if } n^{\prime}>n=2 ; \\
B l_{0}\left(\Lambda^{2}(T)\right) & \text { if } n^{\prime}>n=4 ;\end{cases} \tag{17}\\
\mathcal{H}_{\bullet}^{\text {main }} \cong \begin{cases}\Lambda^{2}\left(T_{\bullet}\right) & \text { if } n \geq 2 n^{\prime}-2 \text { and } n^{\prime} \text { is even; } \\
B l_{0}\left(\Lambda^{2}\left(T_{\bullet}\right)\right) & \text { if } n^{\prime}=n=4 ;\end{cases} \tag{18}
\end{gather*}
$$

where • stands for I or $I I$, and $B l_{0}($.$) denotes the blow-up along the zero section.$ In all these cases, the main component of the invariant Hilbert scheme is smooth,
and thus the Hilbert-Chow morphism $\gamma: \mathcal{H}^{\text {main }} \rightarrow W / / / G$ resp. $\gamma: \mathcal{H}_{\bullet}^{\text {main }} \rightarrow Y_{\bullet}$, is a (distinguished) desingularization.

It remains to compare γ with the Springer desingularizations (when they exist) of the irreducible components of $W / / / G$. We saw in Section 2 that the irreducible components of $W / / / G$ have Springer desingularizations if and only if $n^{\prime} \leq n+1$. We then distinguish between the following cases:
(1) If $n^{\prime} \leq n+1$ and n^{\prime} is odd, then $W / / / G$ admits two Springer desingularizations, which are given by the cotangent bundles \mathcal{T}_{I}^{*} and $\mathcal{T}_{I I}^{*}$ over OGr^{I} and $\mathrm{OGr}^{I I}$ respectively. The natural action of the orthogonal group $O(E)$ on $\operatorname{OGr}\left(n^{\prime}, E^{*}\right)$ induces an action on the cotangent bundle $\mathcal{T}^{*} \operatorname{OGr}\left(n^{\prime}, E^{*}\right)$ that exchanges \mathcal{T}_{I}^{*} and $\mathcal{T}_{I I}^{*}$. On the other hand, it follows from Remark 4.1 that the group $O(E)$ stabilizes $\mathcal{H}^{\text {main }}$, and thus $\gamma: \mathcal{H}^{\text {main }} \rightarrow W / / / G$ can not be a Springer desingularization.
However, if $n \in\{2,4\}$ and $n^{\prime}=n+1$, then one may show that γ dominates the two Springer desingularizations of $W / / / G$ (see Bec11, Introduction] for the case $n=2$, the case $n=4$ being analogous).
(2) If $n^{\prime} \leq n$ and n^{\prime} is even, then Y_{\bullet} has a unique Springer desingularization, which is given by the cotangent bundle $\mathcal{T}_{\bullet}^{*} \cong \Lambda^{2}\left(T_{\bullet}\right)$ over OGr^{\bullet}. Proceeding as we did for $G L(V)$ in Section [3.3, one may show that $\gamma: \mathcal{H}_{\bullet}^{\text {main }} \rightarrow Y_{\bullet}$ is the Springer desingularization if and only if $n \geq 2 n^{\prime}-2$.
In addition, if $n^{\prime}=n=4$, then by (18) we have $\mathcal{H}_{\bullet}^{\text {main }} \cong B l_{0}\left(\mathcal{T}_{\bullet}^{*}\right)$, and thus γ dominates the unique Springer desingularization of Y_{\bullet}.
4.4. Study of the case $n=2$. In this section, we suppose that $n^{\prime} \geq n=2$ (the case $n^{\prime}=1$ being trivial). Then $G \cong S p_{2}$, and the morphism of Proposition 4.7 is $\rho: \operatorname{Hilb}_{h_{0}}^{G}(W) \rightarrow \operatorname{Gr}\left(2, E^{*}\right)$. Denoting $\mathfrak{g}^{\prime \leq 2}:=\left\{f \in \mathfrak{g}^{\prime} \mid \operatorname{rk}(f) \leq 2\right\}$, we have a G^{\prime}-equivariant isomorphism

$$
\begin{equation*}
\mathbb{P}\left(\mathfrak{g}^{\prime \leq 2}\right) \cong \operatorname{Gr}\left(2, E^{*}\right) \tag{19}
\end{equation*}
$$

and thus we can consider $\rho^{\prime}: \operatorname{Hilb}_{h_{0}}^{G}(W) \rightarrow \mathbb{P}\left(\mathfrak{g}^{\prime \leq 2}\right)$, the morphism induced by ρ. By Proposition 4.3, we have

$$
W / / / G= \begin{cases}\overline{\mathcal{O}_{\left[2^{2}, 1^{2 n^{\prime}-4}\right]}} & \text { if } n^{\prime} \geq 3 \\ \overline{\mathcal{O}_{\left[2^{2}\right]}^{I}} \cup \overline{\mathcal{O}_{\left[2^{2}\right]}^{I I}} & \text { if } n^{\prime}=2\end{cases}
$$

We will show that if $n^{\prime} \geq 3$ resp. if $n^{\prime}=2$, then \mathcal{H} resp. \mathcal{H}_{\bullet} (where • stands for I or $I I)$, coincides with its main component. In particular, the geometric properties of the invariant Hilbert scheme for $G=S p(V)$ seem to be quite different from the case of $G=G L(V)$ studied in Section 3. Let us recall that the case ($n^{\prime}=3$ and $n=2$) was treated by Becker in Bec11; she showed that \mathcal{H} coincides with $\mathcal{H}^{\text {main }}$ as a scheme, and is the total space of a line bundle over $\operatorname{OGr}\left(2, E^{*}\right)$.
Proposition 4.10. We equip all the invariant Hilbert schemes with their reduced structures. If $n^{\prime}>n=2$, then $\mathcal{H}=\mathcal{H}^{\text {main }}$ is a smooth variety isomorphic to

$$
B l_{0}\left(\overline{\mathcal{O}_{\left[2^{2}, 1^{2 n^{\prime}-4}\right]}}\right):=\left\{(f, L) \in \overline{\mathcal{O}_{\left[2^{2}, 1^{2 n^{\prime}-4}\right]}} \times \mathbb{P}\left(\overline{\mathcal{O}_{\left[2^{2}, 1^{2 n^{\prime}-4}\right]}}\right) \mid f \in L\right\},
$$

and the Hilbert-Chow morphism $\gamma: \mathcal{H} \rightarrow W / / / G$ is the blow-up of $\overline{\mathcal{O}_{\left[2^{2}, 1^{2 n^{\prime}-4}\right]}}$ at 0 . If $n^{\prime}=n=2$, then $\operatorname{Hilb}_{h_{0}}^{G}\left(\mu^{-1}(0)\right)=\mathcal{H}_{I} \cup \mathcal{H}_{I I}$ is the union of two smooth varieties isomorphic to $B l_{0}\left(\overline{\mathcal{O}_{\left[2^{2}\right]}^{I}}\right)$ and $B l_{0}\left(\overline{\mathcal{O}_{\left[2^{2}\right]}^{I I}}\right)$ respectively, and the intersection $\mathcal{H}_{I} \cap \mathcal{H}_{I I}$
is formed by the homogeneous ideals of $\mathbb{C}\left[\mu^{-1}(0)\right]$. Moreover, the Hilbert-Chow morphism $\gamma: \mathcal{H}_{I} \rightarrow \overline{\mathcal{O}_{\left[2^{2}\right]}^{I}}$ resp. $\gamma: \mathcal{H}_{I I} \rightarrow \overline{\mathcal{O}_{\left[2^{2}\right]}^{I I}}$, is the blow-up of $\overline{\mathcal{O}_{\left[2^{2}\right]}^{I I}}$ resp. of $\overline{\mathcal{O}_{\left[2^{2}\right]}^{I I}}$, at 0 .

Proof. The proofs for the cases $n^{\prime}=2$ and $n^{\prime} \geq 3$ are quite similar, and thus we will only consider the case $n^{\prime} \geq 3$ (which is simpler in terms of notation!). It follows from Bri, Lemma 3.3] and Tera, $\S 1$,Theorem] that we have a closed embedding

$$
\gamma \times \rho^{\prime}: \mathcal{H} \leftrightarrow \mathcal{Y}:=\left\{(f, L) \in \overline{\mathcal{O}_{\left[2^{2}, 1^{2 n^{\prime}-4}\right]}} \times \mathbb{P}\left(\mathfrak{g}^{\prime \leq 2}\right) \mid f \in L\right\} .
$$

One may check that \mathcal{Y} is the union of the two subvarieties C_{1} and C_{2} defined by:

$$
\begin{aligned}
& \text { - } C_{1}:=B l_{0}\left(\overline{\mathcal{O}_{\left[2^{2}, 1^{2 n^{\prime}-4}\right]}}\right) \\
& \text { - } C_{2}:=\left\{(0, L) \in \overline{\mathcal{O}_{\left[2^{2}, 1^{2 n^{\prime}-4}\right]}} \times \mathbb{P}\left(\mathfrak{g}^{\prime \leq 2}\right)\right\} \cong \mathbb{P}\left(\mathfrak{g}^{\prime \leq 2}\right) .
\end{aligned}
$$

The subvarieties C_{1} and C_{2} are of dimension $4 n^{\prime}-6$ and $4 n^{\prime}-4$ respectively. The morphism $\gamma \times \rho^{\prime}$ sends $\mathcal{H}^{\text {main }}$ into C_{1}; the varieties $\mathcal{H}^{\text {main }}$ and C_{1} have the same dimension, hence $\gamma \times \rho^{\prime}: \mathcal{H}^{\text {main }} \rightarrow C_{1}$ is an isomorphism.
Now it follows from Terb, Proposition 3.3.13] that the component C_{2} identifies with the closed subset of $\operatorname{Hilb}_{h_{0}}^{G}(W)$ formed by the homogeneous ideals of $\mathbb{C}[W]$. Let us describe this correspondance. If $L \in C_{2} \cong \mathbb{P}\left(\mathfrak{g}^{\prime \leq 2}\right)$, then we define the ideal $I_{L} \subset$ $\mathbb{C}[W]$ generated by the homogeneous G-invariants of positive degree of $\mathbb{C}[W]$, and by the G-module $L^{\perp} \otimes V \subset \mathbb{C}[W]_{1} \cong E \otimes V$, where L is identified with a 2-dimensional subspace of E^{*} with (19). Let us show that I_{L} is a point of \mathcal{H} if and only if $L \in$ $\operatorname{OGr}\left(2, E^{*}\right)$; the result will follow since $\mathbb{P}\left(\overline{\mathcal{O}_{\left[2^{2}, 1^{2 n^{\prime}-4}\right]}}\right)$ identifies with $\operatorname{OGr}\left(2, E^{*}\right)$
 variety of C_{1}.
We denote $W^{\prime}:=\operatorname{Hom}\left(E / L^{\perp}, V\right)$, then

$$
\mathbb{C}\left[W^{\prime}\right]_{2} \cong\left(S^{2}\left(E / L^{\perp}\right) \otimes S^{2}(V)\right) \oplus\left(\Lambda^{2}\left(E / L^{\perp}\right) \otimes \Lambda^{2}(V)\right)
$$

as a G-module. Let I_{L}^{\prime} be the ideal of $\mathbb{C}\left[W^{\prime}\right]$ generated by $\Lambda^{2}\left(E / L^{\perp}\right) \otimes \Lambda^{2}(V) \subset$ $\mathbb{C}\left[W^{\prime}\right]_{2}$, then one may check that

$$
\mathbb{C}\left[W^{\prime}\right] / I_{L}^{\prime} \cong \mathbb{C}[W] / I_{L} \cong \bigoplus_{M \in \operatorname{Irr}(G)} M^{\oplus \operatorname{dim}(M)}
$$

as a G-module. Hence

$$
\begin{aligned}
I_{L} \in \mathcal{H} & \Leftrightarrow I_{L} \cap \mathbb{C}[W]_{2} \supset E_{0} \otimes S^{2}(V), \text { where } E_{0} \text { is the trivial representation of } G^{\prime} \\
& \Leftrightarrow q_{\mid L}=0, \text { where } q \text { is the quadratic form preserved by } G^{\prime} \\
& \Leftrightarrow L \in \operatorname{OGr}\left(2, E^{*}\right)
\end{aligned}
$$

Remark 4.11. In the proof of Proposition 4.10, we show that if $n^{\prime}>n=2$, then the homogeneous ideals of \mathcal{H} are contained in $\mathcal{H}^{\text {main }}$. Using analogous arguments, one may check that this statement is true more generally when $n^{\prime}>n \geq 2$.

References

[AB05] V. Alexeev and M. Brion. Moduli of affine schemes with reductive group action. J. Algebraic Geom., 14:83-117, 2005.
[Bea00] A. Beauville. Symplectic singularities. Invent. Math., 139:no.3, 541-549, 2000.
[Bec09] T. Becker. On the existence of symplectic resolutions of symplectic reductions. Mathematische Zeitschrift, 265:343-363, 2009.
[Bec11] T. Becker. An example of an $S L_{2}$-Hilbert scheme with multiplicities. Transform. Groups, 16:no. 4, 915-938, 2011.
[Bri] M. Brion. Invariant Hilbert schemes. arXiv: 1102.0198, to appear in "Handbook of Moduli".
[Bri85] M. Brion. Représentations exceptionnelles des groupes semi-simples. Ann. Sci. Ecole Norm. Sup., 2:345-387, 1985.
[CM93] D. Collingwood and W. McGovern. Nilpotent orbits in semisimple Lie algebras. Van Nostrand Reinhold Mathematics Series, vol. 296. Van Nostrand Reinhold Co., New York, 1993.
[FN04] B. Fu and Y. Namikawa. Uniqueness of crepant resolutions and symplectic singularities. Ann. de l'institut Fourier, 54:1-19, 2004.
[Fu03a] B. Fu. Symplectic resolutions for nilpotent orbits. Invent. Math., 151:167-186, 2003.
[Fu03b] B. Fu. Symplectic resolutions for nilpotent orbits (II). C. R. Acad. Sci. Paris, 337:277281, 2003.
[Fu06a] B. Fu. A survey on symplectic singularities and resolutions. Ann. Math. Blaise Pascal, 13:209-236, 2006.
[Fu06b] B. Fu. Symplectic resolutions for nilpotent orbits (III). C. R. Acad. Sci. Paris, 342:585588, 2006.
[KP79] H. Kraft and C. Procesi. Closures of conjugacy classes of matrices are normal. Invent. Math., 53:227-247, 1979.
[KP81] H. Kraft and C. Procesi. Minimal singularities in GL . Invent. Math., 62:503-515, 1981.
[KP82] H. Kraft and C. Procesi. On the geometry of conjugacy classes in classical groups. Comment. Math. Helvetici, 57:539-602, 1982.
[KS] H. Kraft and G. W. Schwarz. Representations with a reduced null cone. arXiv: 1112.3634, to appear in Progress in Mathematics (Birkhäuser), a volume in honor of Nolan Wallach.
[Nam06] Y. Namikawa. Birational geometry of symplectic resolutions of nilpotent orbits. Moduli spaces and arithmetic geometry, 45, Math. Soc. Japan, Tokyo:75-116, Adv. Stud. Pure Math., 2006.
[Pro07] C. Procesi. Lie Groups, an Approach through Invariants and Representations. Universitext. Springer, New York, 2007.
[SB00] G. W. Schwarz and M. Brion. Théorie des invariants et géométrie des variétés quotients. Travaux en cours, vol. 61. Hermann, Paris, 2000.
[Tera] R. Terpereau. Invariant Hilbert schemes and desingularizations of quotients by classical groups. arXiv: 1301.4020.
[Terb] R. Terpereau. Schémas de Hilbert invariants et théorie classique des invariants (Ph.D. thesis). arXiv: 1211.1472.

```
Université Grenoble I, Institut Fourier,
UMR 5582 CNRS-UJF, BP 74,
3 8 4 0 2 ~ S t . ~ M a r t i n ~ d ' H e ̀ r e s ~ C e ́ d e x , ~ F R A N C E ~
E-mail address: ronan.terpereau@ujf-grenoble.fr
```

