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This paper presents the design of a robust controller for uncertain systems whose the parameters are bounded
by intervals. For that, we propose to combine the standard H∞ approach with interval tools in order to ensure
robust performances. The main advantantages of the proposed approach are: 1) the natural and ease of modeling
of the uncertain parameters thanks to intervals, 2) and the derivation of a low order controller since its structure
can be fixed a priori and since the order is lower than the system order. In particular, we demonstrate that a
PID-structure can be used to control a nth order interval system. The approach is afterwards applied to design
a robust controller for a piezoelectric actuator and the experimental results effectively show its efficiency.

Keywords: Interval systems, parametric uncertainties, robust control design, robust performances, standard
H∞, piezoelectric actuators

1 INTRODUCTION

Since the formalisation of intervals in the works of Moore in 1966 (1), these tools have been used
in various applications in the field of the control theory: modeling, algorithms and computation,
signals and parameters estimation, stability analysis and control design. Concerning the model-
ing, intervals are used to bound the uncertain parameters in the state-space, transfer-functions
or differential representation. This representation called interval system allows an ease, natural
and certified characterization of the uncertainties. The objective of the control design consists
therefore to find a controller that ensures the stability for a given interval system, i.e. to find
a controller that stabilizes the set of systems bounded by the interval system. Such robust sta-
bility synthesis has involved several works (2, 3, 4). However, more than the robust stability,
the synthesis of controllers that ensure robust performances has also attracted the attention
within these ten last years. For instance, Chen and Wang (5) proposed a method to design
the robust performances controller for interval systems in the state-space representation. Two
interval controllers synthesis were therefore necessary: a robust controller for stabilization which
is in the feedback, and a pre-filter to ensure the wanted performances. In (6), the performances
inclusion of two interval systems - themselves enclosed each-other - was stated. In (7), Bondia et
al. design a PID controller that ensures robust performances for parametric uncertain transfer
functions that have low order. However, its numerical application becomes difficult when the
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orders of the interval systems become high. In fact, numerically, it is limited to second order
models. In (8), the authors suggested a control algorithm prediction-based interval model that
was efficiently applied to a welding process. Finally, in our previous works, we proposed to de-
sign robust controllers to ensure some performances for piezoelectric actuators used for precise
positioning (9) or for precise manipulation with controlled force (10). Further in (11), we demon-
strated a posteriori the robustness of the designed controllers. These piezoelectric actuators used
in precise positioning and precise manipulation (micropositioning and micromanipulation) are
characterized by a high sensitivity to the environment (ambiant temperature varition, manipu-
lated objects, etc.) and exhibit a behavior variation during their use. These characteristics lead
to a variation or an uncertainty on the parameters of their models and robust control laws were
therefore necessary.
Prior to intervals methods to synthesis robust controllers for piezoelectric actuators, H2, H∞

and µ-synthesis approaches were efficiently used (12, 13, 14). These methods provide a precise
formulation and solution of the controllers synthesis problem for which the H∞-norm of a
prescribed transfer function is minimized. However, the derived controllers (even reduced) are
of high-order comparatively to the available implementation setup: controllers orders are more
than 10 whilst the setup is a classical PIC microcontroller with a sampling time of 0.2ms.
Due to the time consuming of the controllers, an unstability of the closed-loop often occurs
when experimentally tested. The previous works based on intervals (9, 10, 11) have therefore
allowed the derivation of robust controllers with low orders and which are suitable for the
available implementation setup. It is reminded that the principle of the control design consisted
in combining interval analysis with a classical control design technique. These works demonstrate
the feature and promise that offers interval control design for piezoelectric actuators based
micropositioning and micromanipulation.
This paper presents the design of robust controllers for piezoelectric actuators dedicated to

precise positioning. For that we combine the interval technique with the standard H∞ to ensure
robust performances for the closed-loop. The main advantage relative to the previous works on
interval control design is that the specifications are not only limited to tracking performances
only but can be more general: tracking performances, input control limitation, disturbance
rejection, noises reduction, etc. This generalization of the specifications is possible thanks to
the use of weighting functions as proposed by the standard H∞ approach. Furthermore, the
interval systems considered in this paper is of nth-order and the proposed control design is not
therefore limited to low order systems. The derived controllers are also of low orders since the
latter can be inferior to the systems orders. Additionally, under some conditions to be respected,
the structure of the controllers are fixed a priori. In this paper, we particularly focus on the
design of a PID-structured robust controller for nth-order interval systems.
The paper is organized as follows. In section-II, preliminaries on interval analysis and systems

are first presented. Section III is dedicated to the design of a PID control for interval systems.
In section IV, we apply the proposed method to design a controller for piezocantilevers. Finally,
we present in section V the controller implementation and some discussions relative to the
experimental results.

2 Preliminaries on intervals

2.1 Basic Terms and Concepts on intervals

A closed interval number denoted by [x] is a closed bound such as:

[x] = [x−, x+] =
{

x ∈ R/x− ≤ x ≤ x+
}

(1)

where x− and x+ are the left and right endpoints of [x] respectively.
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We say that [x] is degenerate if x− = x+. By convention, a degenerate interval [a, a] can be
described with the real number a.
The width of an interval [x] is given by w([x]) = x+ − x−. The midpoint of [x] is given by

mid([x]) = x++x−

2 and the radius of [x] is defined by rad([x]) = x+
−x−

2 .

2.2 Operations on intervals

The elementary mathematical operations can be extended to intervals. Let [x] = [x−, x+] and
[y] = [y−, y+] be two intervals and let ◦ ∈ {+,−, ∗, /} be a law. Thus, We have:

[x] ◦ [y] = {x ◦ y |x ∈ [x], y ∈ [y]} (2)

Table 1 gives the details of the above interval operations.

Table 1. Classical arithmetic operations on intervals (2, 1).

Operation Definition
+ [x] + [y] = [x− + y−, x+ + y+]
− [x]− [y] = [x− − y+, x+ − y−]
∗ [x] ∗ [y] = [min{x− ∗ y−, x+ ∗ y−, x− ∗ y+, x+ ∗ y+},

max{x− ∗ y−, x+ ∗ y−, x− ∗ y+, x+ ∗ y+}]
/ [x]/[y] = [x] ∗ [1/y+, 1/y−], 0 /∈ [y]

2.3 Interval systems

Definition 2.1: An interval model denoted by [G](s, [a], [b]) represents a family of systems:

[G](s, [a], [b]) =
[N ](s, [b])

[D](s, [a])
=

m
∑

j=0
[bj ]s

j

n
∑

i=0
[ai]si

(3)

such as: [b] = [[b0], ..., [bm]] and [a] = [[a0], ..., [an]] are two boxes (vectors of intervals) and s the
Laplace variable. The system above [G] generally represents a model with uncertain parameters
bounded by intervals.

2.4 Vertex polynomials and vertex systems

Given an interval system [G](s, [a], [b]) defined as in Definition 2.1 such that:







[N ](s, [b]) = [b0] + [b1]s+ [b2]s
2 + ...+ [bm]sm

[D](s, [a]) = [a0] + [a1]s+ [a2]s
2 + ...+ [an]s

n
(4)

Thus, the four Kharitonov vertex polynomials corresponding to [N ](s, [b]) and [D](s, [a]) are:
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N (1)(s) = b−0 + b−1 s+ b+2 s
2 + b+3 s

3 + b−4 s
4 + b−5 s

5 + ...

N (2)(s) = b−0 + b+1 s+ b+2 s
2 + b−3 s

3 + b−4 s
4 + b+5 s

5 + ...

N (3)(s) = b+0 + b−1 s+ b−2 s
2 + b+3 s

3 + b+4 s
4 + b−5 s

5 + ...

N (4)(s) = b+0 + b+1 s+ b−2 s
2 + b−3 s

3 + b+4 s
4 + b+5 s

5 + ...

(5)

and

D(1)(s) = a−0 + a−1 s+ a+2 s
2 + a+3 s

3 + a−4 s
4 + a−5 s

5 + ...

D(2)(s) = a−0 + a+1 s+ a+2 s
2 + a−3 s

3 + a−4 s
4 + a+5 s

5 + ...

D(3)(s) = a+0 + a−1 s+ a−2 s
2 + a+3 s

3 + a+4 s
4 + a−5 s

5 + ...

D(4)(s) = a+0 + a+1 s+ a−2 s
2 + a−3 s

3 + a+4 s
4 + a+5 s

5 + ...

(6)

respectively.
The sixteen Kharitonov (point) systems that corresponds to the interval system [G] are the

combination of these vertex polynomials. These sixteen Kharitonov systems are called vertex of
[G]. We denote these sixteen Kharitonov vertex by G(i), with i = 1 → 16.

2.5 H∞-norm of an interval system

Theorem 2.2 Consider the interval system [G](s, [a], [b]) defined in Definition 2.1. TheH∞-norm
of [G] is the maximal among the H∞-norm of the sixteen vertex, i.e.:

‖[G]‖
∞

= max
i=1→16

∥

∥

∥
G(i)

∥

∥

∥

∞

(7)

Proof see (15, 16). �

When the interval system [G] is weighted by a weigthing function W (s) which is a point, it is
not advised to compute the multiplication W [G] first and compute the H∞-norm of the resulting
interval plant afterwards. Indeed, developping the multiplication of the intervals polynomials
produces a multi-occurance of the parameters and therefore a surestimation of the resulting
intervals. Thus, the H∞-norm of W [G] is defined as follows:

‖W [G]‖
∞

= max
i=1→16

∥

∥

∥
WG(i)

∥

∥

∥

∞

(8)

In Long-Wang (17), the H∞-norm of the sensitivity function of an interval system

[G](s, [a], [b]) is proposed. The sensitivity of [G] is defined by [S] = 1
1+[G] = [D]

[N ]+[D] , where

[N ] and [D] are the numerator and denominator defined in Definition 2.1. It has been then
demonstrated that the sensitivity [S] has only twelve vertex instead of sixteen vertex and thus
its H∞-norm is the maximal among the twelve norms:

‖[S]‖
∞

=

∥

∥

∥

∥

[D]

[N ] + [D]

∥

∥

∥

∥

∞

= max
i=1→12

∥

∥

∥
S(i)

∥

∥

∥

∞

(9)
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3 Controller design method

In this section, we propose to design robust PID controllers for interval systems. The robust
performances are achieved by combining the standard H∞ and interval tools. While the specifi-
cations and wanted performances are transcribed in term of weightings and the standard H∞ is
used to formulate the objective or problem, interval tools are used to compute the controllers.

3.1 Problem formulation

Consider the closed-loop pictured in Fig. 1, where [G](s, [a], [b]) is a SISO interval system to be
controlled. [C](s) is the controller to be designed. [a] and [b] are the interval parameters of the
system. yc(t) is the reference input, y(t) is the output signal and u(t) is the input control signal.

 +

-cy y
[C](s) [G](s,[a],[b])

Uε

Figure 1. Closed-loop control system.

We assume that the system [G](s, [a], [b]) is a general nth-order system defined by:

[G](s, [a], [b]) =

m
∑

j=0
[bj ]s

j

n
∑

i=0
[ai]si

(10)

such as: [a] = [[a0], ..., [an]] and [b] = [[b0], ..., [bm]], and m ≤ n.
In the proposed approach, the structure of the controller can be a priori fixed. For that,

consider the example of a PID structure with adjustable parameters [θ] = [[Kp], [Ki], [Kd]]:

[C](s, [θ]) = [Kp] + [Kd]s+ [Ki]
1

s
(11)

The objective is to find the set solution of PID parameters so that the closed-loop system
respect some given performances whatever the parameters ai and bj ranging in the intervals [ai]
and [bj ] respectively. For that, the PID parameters will be adjusted using of H∞-criterion. Such
criterion is defined as the H∞-norm of some weighted transfer functions of the closed-loop to be
less than or equal to one.

3.2 Remind of the H∞-standard principle

The H∞-standard that considers the tracking performances and the input control limitation
(18, 19) uses the standard block as pictured in Fig. 2-b where P (s) is called the augmented
system. This standard scheme is derived from the weighted closed-loop in Fig. 2-a. While the
weighting W1(s) is used to transcribe the tracking performances, the weighting W2(s) is used
to transcribe the input control limitation.
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P(s)

Figure 2. Standard H∞ control scheme.

Thus, the H∞ problem consists to find a controller stabilizing the closed-loop and achieving
the following H∞-criterion:

‖Fl(P (s), C(s))‖
∞

≤ γ (12)

where γ is a positive scalar. If γ ≤ 1, the nominal (specified) performances are achieved.
The linear fractionar transformation Fl(P (s), C(s)) is the transfer between the weighted out-

puts and the exogenous inputs of Fig. 2-b. That is:

Fl(P (s), C(s)) = z(s).y−1
c (s) (13)

with z =

(

z1
z2

)

From Fig. 2-a Fl(P (s), C(s)) is given by:

Fl(P (s), C(s)) =

(

W1(s)S(s)
W2(s)C(s)S(s)

)

(14)

Applying the H∞ standard problem in (Eq.12) to (Eq.13) and (Eq.14), we obtain the following
conditions to be satisfied:

{

‖W1(s)S(s)‖∞ ≤ γ
‖W2(s)C(s)S(s)‖

∞
≤ γ

(15)

3.3 H∞ approach for interval systems

In our case the system is an interval model [G](s, [a], [b]), the controller to be designed is a
PID controller (Eq.11). Since the system is interval, the augmented plant will also be interval:
[P ](s, [a], [b]). Moreover, the H∞-criterion ‖Fl([P ](s, [a], [b]), [C](s, [θ]))‖

∞
≤ γ is given by:
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{

‖W1(s)[S](s)‖∞ ≤ γ
‖W2(s)[C](s, [θ])[S](s)‖

∞
≤ γ

(16)

In this case, if γ ≤ 1, the robust performances are achieved.
The problem of finding the PID controller with tunable parameters [θ] can be formulated as

follows:
Find the set Θ of PID parameter vector for which H∞ performance holds for any positive

number γ ≤ 1, i.e.,

Θ :=

{

θ ∈ [θ]

∣

∣

∣

∣

{

‖W1(s)[S](s)‖∞ ≤ γ
‖W2(s)[C](s, [θ])[S](s)‖

∞
≤ γ

}

(17)

where [S](s) depends on the PID parameters [θ] and of the boxes [a] and [b].
The problem given in (Eq.17) is known as a set-inversion problem which can be solved using

set inversion algorithms. The set inversion operation consists to search the reciprocal image
called subpaving of a compact set. One algorithm used to solve a set-inversion problem is the
SIVIA algorithm ((20, 2)). By using SIVIA, it is possible to approximate with subpavings the
set solution Θ described in (Eq.17). The subpaving Θ corresponds to the controller parameters
for which the problem (Eq.17) is fulfilled. Table 2 presents the recursive SIVIA algorithm. It
requires a search box [θ0] also called initial box. The subpavings Θ is initially empty. ǫ represents
the wanted accuracy of computation.

Table 2. SIVIA Algorithm used to solve the set-inversion problem (Eq.17).

SIVIA(in: ‖Fl([P ](s, [a], [b]), [C](s, [θ]))‖
∞
, γ, [θ], ǫ; inout: Θ)

1 if ‖Fl([P ](s, [a], [b]), [C](s, [θ]))‖
∞

≤ γ then
{Θ := Θ

⋃

[θ]} return;
2 if width([θ]) < ǫ then {Θ := Θ}; return;
3 bisect [θ] into L([θ]) and R([θ]);
4 SIVIA(‖Fl([P ](s, [a], [b]), [C](s, L([θ])))‖

∞
, γ, L([θ]), ǫ; Θ);

SIVIA(‖Fl([P ](s, [a], [b]), [C](s,R([θ])))‖
∞
, γ, R([θ]), ǫ; Θ).

However, the previous resolution requires the computation of the H∞-norm of each term in
(Eq.17) which are interval transfers. This computation can be done by using the preliminaries in
section-II. The H∞-norm ‖W1(s)[S](s)‖∞ is obtained by applying the definition in (Eq.8) and
(Eq.9). We have:

‖W1[S]‖∞ = max
i=1→12

∥

∥

∥
W1S

(i)
∥

∥

∥

∞

(18)

On the other hand, the H∞-norm ‖W1(s)[C](s, [θ])[S](s)‖
∞

is obtained by applying the defi-
nition in (Eq.8) only, i.e.:

‖W1[C][S]‖
∞

= max
i=1→16

∥

∥

∥
W1M

(i)
∥

∥

∥

∞

(19)

where [M ] = [C][S] and M (i) (i = 1 → 16) are the sixteen vertex of [M ].
Finally, contrary to the standard H∞ problem (for point systems) where the optimal value of

γ is found by dichotomy, we directly impose in this paper its value equal to one: γ = 1. The
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objective is to find directly the controller parameters with which the specified performances are
respected.

4 Application to a piezoelectric actuator

The objective of this section is to apply the proposed method to control the deflection (position)
of a piezoelectric actuator with a cantilever structure and which are widely used in the devel-
opment of manipulators able to position or manipulate small parts very precisely (21, 22). The
used actuator, also called unimorph piezoelectric cantilever (or piezocantilever), is composed
of two layers: a piezoelectric layer (piezolayer) based on lead-zirconate-titanate (PZT) material
and a passive layer based on nickel material. When a voltage is applied to the piezolayer, it ex-
pands/contracts which finally results a global deflection of the cantilever (Fig. 3). The deflection
of the actuator is denoted δ.

Figure 3. A unimorph piezoelectric actuator.

4.1 Presentation of the setup

The experimental setup used to identify and control the system is pictured in Fig. 4 and is based
on:

• a unimorph piezocantilever having dimensions of 16mm× 1mm× 0.45mm (length, width and
thickness),

• an optical sensors (Keyence LC-2420) with 10nm of resolution used to measure the deflection,
• a computer-DSpace hardware and the Matlab-Simulink software for the data-acquisition and

control,
• and a high voltage (HV: ±200V ) amplifier.

4.2 Modeling and identification

The linear relation between the deflection at the tip of the actuator and the applied input voltage
U is:

δ = G(s)U (20)

Where G(s) is a transfer function. During a micromanipulation or a micropositioning task, the
parameters in G(s) are subjected to variation due to the environment (small thermal variation,
manipulated object, etc.). In fact, these characteristics come from the relatively small sizes of the
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(a)

(b)

 

piezoelectric

cantilever

sensor

optical
sensor

amplifier

    HV

piezocantilever

Figure 4. The experimental setup.

piezoelectric actuators used in micromanipulation and micropositiong applications which finally
make them very sensitive to any minor variation. The model parameters can be considered as
uncertain and thus bounded by intervals within its range of variation in order to further design
a robust controller.
However, for an ease of identification in this example, we will not characterize the parameter

variations of the piezoelectric actuator during a micropositioning or a micromanipulation task.
We will use two piezoelectric actuators each one identified without performing these tasks. Then,
the interval model is deduced by using the two point models. The first piezocantilever being
presented above, the second piezocantilever has dimensions of 14mm× 1mm× 0.45mm (length,
width and thickness). The difference in their lengths will lead to a difference in their model
parameters.
To identify the two models G1(s) and G2(s) corresponding to the two piezocantilevers, a step

response is used. As the first mode is often sufficient for micromanipulation and micropositioning
tasks, a second order model was chosen for each model. Using the output error method and the
matlab software, we obtain:

G1(s) = 0.6587
3.533× 10−8s2 + 2.152× 10−4s+ 1

3.374× 10−8s2 + 8.171× 10−6s+ 1

G2(s) = 0.45
3.336× 10−8s2 + 1.679× 10−4s+ 1

2.119× 10−8s2 + 4.607× 10−6s+ 1

(21)

Let us rewrite each model Gi(s) for i = 1, 2 as follows:

Gi(s) = ki
b2is

2 + b1is+ 1

a2is2 + a1is+ 1
(22)
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such as: ki and
b2is

2+b1is+1
s2+a1is+1 are the static gain and dynamic part of the piezocantilever with

length li (i = 1, 2).

4.3 Derivation of the interval model

The interval model [G](s, [a], [b]) that represents a family of models is derived using the two
point models Gi(s). Considering each parameter of G1(s) and G2(s) as an endpoint of the
interval parameter in [G](s, [a], [b]), we have:

[G](s, [a], [b]) = [K]
[b2]s

2 + [b1]s+ 1

[a2]s2 + [a1]s+ 1
(23)

such as:

[K] = [min(k1, k2),max(k1, k2)]
[b1] = [min(b11, b12),max(b11, b12)]
[b2] = [min(b21, b22),max(b21, b22)]
[a2] = [min(a21, a22),max(a21, a22)]
[a1] = [min(a11, a12),max(a11, a12)]

(24)

After computation, we obtain:

[K] = [0.45, 0.6587]
[b2] = [3.336, 3.533]× 10−8

[b1] = [1.679, 2.152]× 10−4

[a2] = [2.119, 3.374]× 10−8

[a1] = [4.607, 8.171]× 10−6

(25)

In order to increase the stability margin and in order to ensure that the interval model really
contains the models of the two piezocantilevers, we propose to extend by 10% the width of each
interval parameter in [G](s, [a], [b]). This choice is a compromise. If the widths are too large, it is
difficult to find a controller that respects both the stability and performances of the closed-loop.
After extension, the extended parameters finally used to compute the controller are:

[K] = [0.4395, 0.6691]
[b2] = [3.326, 3.542]× 10−8

[b1] = [1.655, 2.175]× 10−4

[a2] = [2.056, 3.436]× 10−8

[a1] = [4.428, 8.349]× 10−6

(26)

4.4 Specifications

Piezocantilevers are very resonant (more than 90% of overshoot). Such overshoot is not desirable
in micromanipulation and microassembly tasks. Moreover, it is necessary to limit the applied
voltage in order to avoid any damage of the actuators. The following specifications are therefore
considered:

• closed-loop behavior with negligible (or without) overshoot,
• settling time tr ≤ 8ms,
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• static error |ǫ| ≤ 1%,
• limited input voltage U . We particularly choose a maximal voltage Umax = 2.5V for each

1µm of reference.

4.5 Computation of the controller

Wethout loss of generality, we consider a PI (proportional-Integral), i.e. Kd is set to zero in the
PID structure:

[C](s, [θ]) = [Kp] +
[Ki]

s
(27)

where the tunable parameters are [θ] = [[Kp], [Ki]].
Fig. 5-a presents the closed-loop scheme for the controller design, where the weighting function

W1(s) is for the tracking performances and W2(s) for the input control limitation.

Figure 5. a) The closed-loop scheme with the weighting functions. b) The standard scheme.

From Fig. 5-a, we have:

{

z1 = W1(s)[S](s)yc
z2 = W2(s)[C](s, [θ])[S](s)yc

(28)

where as [S](s) = (1 + [C](s, [θ])[G](s, [a], [b]))−1 is the sensitivity function.
From (Eq.28), the H∞ standard problem becomes:

|[S](s)| ≤
∣

∣

∣

γ
W1(s)

∣

∣

∣

|[C](s)[S](s)| ≤
∣

∣

∣

γ
W2(s)

∣

∣

∣

⇔
‖W1(s)[S](s)‖∞ ≤ γ
‖W2(s)[C](s)[S](s)‖

∞
≤ γ

(29)

where the aim consists to find the set-solution Θ of the PID parameters that ensures the H∞

performance in (Eq.29), i.e.:
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Θ :=

{

θ ∈ [θ]

∣

∣

∣

∣

{

‖W1(s)[S](s)‖∞ ≤ γ
‖W2(s)[C](s, [θ])[S](s)‖

∞
≤ γ

}

(30)

The weighting functions were chosen accordingly to the specifications (see Section 4.4). We
choose:







W1(s) =
0.002667s+1

0.002667s+0.01

W2(s) =
1
2.5

(31)

Now we set γ = 1 and we solve the set-inversion problem in (Eq.30).
As described above, the problem (Eq.30) can be easily solved using the recursive algorithm

presented in the Table 2. Matlab-Software is used to implement the SIVIA algorithm. We choose
an initial box for the controller parameters [Kp0]× [Ki0] = [0.4, 1.2]× [400, 1200]. The resulting
subpaving is presented in Fig. 6. The dark colored subpavingΘ corresponds to the set parameters
[Kp] and [Ki] of the controller (Eq.27) that ensures the performances defined by theH∞-criterion
(Eq.30).

Kp

K
i

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
400

500

600

700

800

900

1000

1100

1200

Θ

Figure 6. Set-solution of the parameters [Kp] and [Ki] ensuring the wanted performances.

Remark 1 : Any choice of the parameters [Kp] and [Ki] within the dark colored subpaving Θ
(see Fig. 6) satisfies the conditions (Eq.30) and consequently ensures the required performances.

Remark 2 : If Θ = ∅ (i.e. no solution), the initial box of the parameters [Kp0] × [Ki0] must
be changed and/or the specifications must be modified (degrade the specifications) and/or the
structure of the controller must be modified (increase the order for example).

5 Implementation and experimental tests

The controller C(s) to be implemented is chosen by taking any point parameters Kp and Ki

within the set-solution Θ. In this example, we test two point controllers. We choose:
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C1(s) =
0.8s+900

s

C2(s) =
s+1000

s

(32)

In order to prove that the inequalities (Eq.29) is satisfied, the magnitudes of the bounds
∣

∣

∣

1
W1(s)

∣

∣

∣

and
∣

∣

∣

1
W2(s)

∣

∣

∣
are compared to the magnitudes of the sensitivity function |[S](s)| and of the transfer

|C(s)[S](s)| respectively (see Fig. 7) when using the implemented controllers (Eq.32).
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Figure 7. Magnitudes of the bounds compared to the sensitivity [S](s) and to the input transfer C(s)[S](s).

The obtained results in Fig. 7 prove that the magnitudes of [S](s) and C(s)[S](s) are effectively
bounded by that of 1

W1(s)
and 1

W2(s)
respectively when using the two controllers Ci(s) (i = 1, 2).

This fact confirms that the specified performances are effectively ensured.
Now, we apply each controller Ci(s) (i = 1, 2) to the piezocantilever when its lengths l = 16mm

and when l = 14mm. Fig. 8 shows the experimental results when a step reference of 40µm is
applied. As shown on the Fig. 8, the controllers (Eq.32) have played their roles since the closed-
loop piezocantilevers satisfy the specifications. Indeed, experimental settling times obtained
with C1(s) and C2(s) are about tr1 = 5.2ms when l = l1 = 16mm (Fig. 8-a) and tr2 = 7ms
when l = l2 = 14mm (Fig. 8-b). The overshoots and static errors are neglected (D1,2 ≈ 0,
ε1,2 ≈ 0 < 1%). Furthermore, the maximal voltages U applied to the both piezocantilevers are
less than 40 × 2.5 = 100V , which should be the limit for a displacement of 40µm. Indeed, the
experiments shows that the maximal input voltage is Umax = 97V .
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Figure 8. Experimental step responses of the piezocantilever using C1(s) and C2(s). a: Piezocantilever with length l = l1 =
16mm. b: Piezocantilever with length l = l2 = 14mm.

6 Conclusion

In this paper, interval techniques have been used to model the parametric uncertainties in piezo-
electric actuators. Its main advantage is the ease and natural way to bound these uncertainties.
For that, we proposed to combine the H∞-standard method with interval techniques to derive
PID controllers that ensure the performances for the interval model. The main advantage of the
proposed control design is the possibility to derive low-order controllers for robust performances
objective. The proposed approach was applied to design a robust controller for piezoelectric
actuators. The obtained experimental results proved the efficiency of the approach.
The results proposed in this paper were devoted to SISO systems. Future works will include the

extension of the proposed approach to multivariable (MIMO) aspect. Indeed, several systems,
including piezoelectric actuators, are concerned by multiple degrees of freedom and require
MIMO controllers.
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