
HAL Id: hal-00799272
https://hal.science/hal-00799272v1

Submitted on 12 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cubicle: A Parallel SMT-based Model Checker for
Parameterized Systems

Sylvain Conchon, Amit Goel, Sava Krstić, Alain Mebsout, Fatiha Zaïdi

To cite this version:
Sylvain Conchon, Amit Goel, Sava Krstić, Alain Mebsout, Fatiha Zaïdi. Cubicle: A Parallel SMT-
based Model Checker for Parameterized Systems. CAV, Jul 2012, Berkeley, California, United States.
pp.718-724. �hal-00799272�

https://hal.science/hal-00799272v1
https://hal.archives-ouvertes.fr

Cubicle: A Parallel SMT-based Model Checker
for Parameterized Systems

Tool Paper

Sylvain Conchon1, Amit Goel2, Sava Krstić2

Alain Mebsout1, and Fatiha Zäıdi1

1 LRI, Université Paris Sud, CNRS, Orsay F-91405
2 Strategic CAD Labs, Intel Corporation

Abstract. Cubicle is a new model checker for verifying safety properties
of parameterized systems. It implements a parallel symbolic backward
reachability procedure using Satisfiabilty Modulo Theories. Experiments
done on classic and challenging mutual exclusion algorithms and cache
coherence protocols show that Cubicle is effective and competitive with
state-of-the-art model checkers.

1 Tool Overview

Cubicle is used to verify safety properties of array-based systems. This is a syntac-
tically restricted class of parametrized transition systems with states represented
as arrays indexed by an arbitrary number of processes [10]. Cache coherence
protocols and mutual exclusion algorithms are typical examples of such systems.
Cubicle model-checks by a symbolic backward reachability analysis on infinite
sets of states represented by specific simple formulas, called cubes.

Cubicle is an open source software based on theoretical work in [1] and [11]. It
is inspired by and closely related to the model checker MCMT [12], from which,
in addition to revealing the implementation details, it mainly differs in a more
friendly input language and concurrent architecture.

Cubicle is written in OCaml. Its SMT solver is a tightly integrated, lightweight
and enhanced version of Alt-Ergo [7]; and its parallel implementation relies on
the Functory library [9]. Cubicle is available at http://cubicle.lri.fr.

2 System Description Language

Cubicle’s input language is a typed version of Murϕ [8] similar to the one of
Uclid [6], rudimentary at the moment, but more user-friendly than mcmt and
sufficiently expressive for typical parameterized systems.

A system is described in Cubicle by: (1) a set of type, variable, and array
declarations; (2) a formula for the initial states; and (3) a set of transitions. It is
parametrized by a set of process identifiers, denoted by the built-in type proc.
Standard types int, real, and bool are also built in. Additionally, the user

can specify abstract types and enumerations with simple declarations like “type
data” and “type msg = Empty | Req | Ack”. We show the language on the
following Mutex example.

var Turn : proc

array Want[proc] : bool

array Crit[proc] : bool

init (z) {
Want[z] = False && Crit[z] = False

}

unsafe (x y) {
Crit[x] = True && Crit[y] = True

}

transition req (i)

requires { Want[i] = False }
{ Want[j] := case

| i = j : True

| _ : Want[j] }

transition enter (i)

requires { Want[i] = True

&& Crit[i] = False

&& Turn = i }
{ Crit[j] := case

| i = j : True

| _ : Crit[j] }

transition exit (i)

requires { Crit[i] = True }
{ Turn := . ;

Crit[j] := case

| i = j : False

| _ : Crit[j] ;

Want[j] := case

| i = j : False

| _ : Want[j] }

The system’s state is defined by a set of global variables and proc-indexed
arrays. The initial states are defined by a universal conjunction of literals char-
acterizing the values for some variables and array entries. A state of our example
system Mutex consists of a process identifier Turn and two boolean arrays Want

and Crit; a state is initial iff both arrays are constantly false.
Transitions are given in the usual guard/action form and may be parameter-

ized by (one or more) process identifiers. They define the system’s execution: an
infinite loop that at each iteration: (1) non-deterministically chooses a transition
instance whose guard is true in the current state; and (2) updates state vari-
ables according to the action of the fired transition instance. Guards must be of
the form F ∧ ∀x̄.(∆ ⇒ F ′), where F, F ′ are conjunctions of literals (equations,
disequations or inequations), and ∆ says that every x̄-variable is distinct from
every parameter of the transition. Assignments can be non-deterministic, as in
“Turn := .” in transition exit in Mutex. Array updates are coded by a case
construct where each condition is a conjunction of literals, and the default case

The safety property to be verified is expressed in its negated form as a formula
that represents unsafe states. Each unsafe formula must be a cube, i.e., have the
form ∃x̄.(∆ ∧ F), where ∆ is the conjunction of all disequations between the
variables in x̄, and F is a conjunction of literals. In the code, we leave the ∆
part implicit. Thus in Mutex, the unsafe states are those in which Crit[x] and
Crit[y] are true for two distinct process identifiers x,y.

3 Implementation Details and Optimizations

For a state formula Φ and a transition instance t, let pret(Φ) be the formula
describing the set of states from which a Φ-state can be reached in one t-step.

Let also pre(Φ) be the union of pret(Φ) for all possible t. In its simplest form,
the backward reachability algorithm constructs a sequence Φ0, Φ1, . . . such that
Φ0 is the system’s unsafe condition and Φi+1 = Φi ∨ pre(Φi). The algorithm
terminates with the first Φn that fails the safety check (consistency with the
initial condition), or passes the fixpoint check Φn ` Φn−1.

In array-based systems, pret(φ) can be representend as a union (disjunction)
of cubes, for every cube φ and every t. Thus, the Φi above are unions of cubes
too, and the algorithm above can be modified to work only with cubes, as follows.
Maintain a set V and a priority queue Q of visited and unvisited cubes respec-
tively. Initially, let V be empty and let Q contain the system’s unsafe condition.
Then, at each iteration, take the highest-priority cube φ from Q and do the
safety check for it, same as the above. If it fails, terminate with “system unsafe”.
If the safety check passes, proceed to the subsumption check φ `

∨
ψ∈V ψ. If this

fails, then add φ to V , compute all cubes in pret(φ) (for every t), add them to
Q, and move on to the next iteration. If the subsumption check succeeds, then
drop φ from consideration and move on. The algorithm terminates when a safety
check fails or Q becomes empty. When an unsafe cube is found, Cubicle actually
produces a counterexample trace.

Safety checks, being ground satisfiablity queries, are easy for SMT solvers.
The challenge is in subsumption checks φ `

∨
ψ∈V ψ because of their size and the

“existential implies existential” logical form. Assuming φ , ∃x̄.F and ψ , ∃ȳ.Gψ
(ψ ∈ V), the subsumption check translates into the validity check for the ground
formula H , (F ⇒

∨
ψ∈V

∨
σ∈Σ(Gψ)σ), where Σ is the set of all substitutions

from ȳ to x̄. Now, viewing any cube Gψσ as a set of literals, one can make two
useful comparisons with F : (1) if Gψσ is a subset of F , then H is valid; (2) if Gψσ
contains a literal that directly contradicts a literal of F , then Gψσ is redundant in
H (can be removed without logically changing H). Cubicle aggressively attempts
to prove H by building and verifying it incrementally, adding one disjunct to
its consequent at a time. Essentially, it examines all pairs (ψ, σ) one-by-one,
stopping the process when the current overapproximation of H becomes known
to be valid. For each pair (ψ, σ), the cube Gψσ is first checked for redundancy;
if redundant, it is ignored and a new pair (ψ, σ) is processed. If not redundant,
the cube is subject to the subset check for F ` Gψσ. If this check succeeds, H is
claimed valid; otherwise Gψσ gets added to H (as a disjunct of its consequent)
and the SMT solver checks if the newly obtained (weakened) H becomes valid.

Cubicle’s integration with the SMT solver at the API level is crucial for
efficient treatment of the subsumption check. For any such check, a single context
for the SMT solver is used; it just gets incremented and repeatedly verified.
To support the efficient (symmetry-reduced) and exhaustive application of the
inexpensive redundancy and subset checks, cubes are maintained in normal form
where variables are renamed and implied literals removed at construction time.

The strategy for exploring the cube space is also essential. It pays to visit
as few cubes as possible, which suggess giving priority to more “generic” cubes
(those that represent larger sets of states). Thus, neither breadth-first nor depth-
first search are good in their pure form. By default, Cubicle uses BFS (changeable

with the -search option to DFS or some variants) combined with a heuristically
delayed treatment of some cubes. Currently, a cube is delayed if it introduces
new process variables or does not contribute new information on arrays. Finally,
Cubicle can remove cubes from V when they become subsumed by a new cube.

Following mcmt, Cubicle supports user-supplied invariants and invariant
synthesis, both of which can significantly reduce the search. Subsets of visited
nodes that only contain predicates over a unique process variable are used as
candidate invariants. Each of them is verified by starting a new resource limited
backward reachability analysis. Cubicle can also discover “subtyping invariants”
(saying that a variable can take only a selected subset of values) by a static
analysis and these invariants can be natively exploited by the SMT solver which
supports definitions of subtypes for enumerated data-types.

4 Multi-Core Architecture

A natural way to scale up model checkers is to parallelize their CPU intensive
tasks to take advantage of the widespread availability of multi-core machines or
clusters [13, 4, 14]. In our framework, this is achieved by parallelizing the back-
ward reachability loop and the generation of invariants. As mentioned above,
since invariant synthesis is done independently from the main loop, it is straight-
forward to do it in parallel. However, concerning the loop itself, a naive parallel
implementation would lose the precise guidance of the exploration3, and more
importantly, could break the correctness of the tool because of an unsafe use of
some optimizations described in the previous section.

In our setting, the most resource consuming tasks are fixpoints checks which
can be hard problems even for efficient SMT solvers. To gain efficiency, we im-
plemented a concurrent version of BFS based on the observation that all such
computations arising at the same level of the search tree can be executed in par-
allel. Our implementation is based on a centralized master/workers architecture.
The master assigns fixpoints to workers and a synchronization barrier is placed
at each level of the tree to retain a BFS order. The master asynchronously com-
putes the preimages of nodes that are not verified as fixpoints by the workers.
In the meanwhile, the master can also assign invariant generation tasks that will
be processed by available workers. Finally, to safely delete nodes from V, the
master must discard the results about nodes that have been deleted while they
were being checked by a worker.

Cubicle provides a concurrent breadth-first exploration of the search space
using n parallel processes on a multi-core machine with the -j n option. The
implementation is based on Functory [9], an OCaml library with a rich functional
interface which facilitates the execution of parallel algorithms. Functory supports
multi-core architectures and distributed networks; it has also a robust fault-
tolerance mechanism. Concerning a distributed implementation, one of the main
issues is to limit the size of data involved in transactions between the master and

3 Our experiments showed that a non-deterministic parallel exploration can be worse
than a guided sequential search.

the workers. For instance, the size of V can quickly become a bottleneck in an
architecture based on message passing communications. As future work, we plan
to develop a distributed implementation that will only need to send updates of
data-structures.

5 Experimental Results and Future Works

We have evaluated Cubicle on some classic and challenging mutual exclusion
algorithms and cache coherence protocols. In the table bellow, we compare Cu-
bicle’s performances with state-of-the-art model checkers for parameterized sys-
tems. All benchmarks have been executed on a 64 bits machine with a quad-core
Intel R© Xeon R© processor @ 3.2 GHz and 24 GB of memory. For each tool, we
report the results obtained with the best settings we found. Note that the par-
allel version of Cubicle was run on 4 cores and that we only give its results for
significantly time consuming problems. We denote by X benchmarks that we
were unable to translate due to syntactic restrictions.

Cubicle MCMT [12] Undip [3] PFS [2]
seq 4 cores

bakery 0.01s - 0.01s 0.04s 0.01s
Dijkstra 0.24s - 0.99s 0.04s 0.26s
Distributed Lamport 2.3s - 12.7s unsafe X
Java Mlock 0.04s - 0.06s 0.25s 0.02s
Ricart Agrawala 1.8s - 1m12s 4.3s X
Szymanski at 0.12s - 0.71s 13.5s timeout

Berkeley 0.01s - 0.01s 0.01s 0.01s
flash aggregated [15] 0.01s - 0.02s 0.01s X
German Baukus 25.0s 17.1s 3h39m 9m43s X
German pfs 6m23s 3m8s 11m31s timeout 47m22s
German undip 0.17s - 0.57s 1m32 X
Illinois 0.02s - 0.04s 0.06s 0.06s
Moesi 0.01s - 0.01s 0.01s 0.01s

Our experiments are very promising. They show first that the sequential ver-
sion of Cubicle is competitive. The parallel version on 4 cores achieves speedups
of 1.8 approximately, which is a good result considering the fact that cores cannot
be fully exploited because of the synchronization required to perform a pertinent
search. In practice, we found that the best setting for Cubicle is to use all the
optimizations described in Section 3 (except for invariant synthesis which can be
time consuming). In the table bellow, we show the respective effect of these op-
timizations on the version of the German protocol from [5] (German baukus). In
particular, it is worth noting that the subtyping analysis increases performances
by an order of magnitude on this example.

Optimizations Real Time (# nodes)
delete nodes subtyping invariant generation sequential 4 cores

No No No 50m8s (22580) 27m13s (20710)
Yes No No 35m16s (20405) 19m39s (19685)
Yes No Yes 20m45s (15089) 13m55s (14527)
Yes Yes No 25.0s (3322) 17.1s (3188)

As future work, we would like to harness the full power of the SMT solver by
sharing its data structures and even more tightly integrating its features in the
model checker. In particular, this would be very useful to discover symmetries
and to simplify nodes by finding semantic redundancies modulo theories. We are
also interested in exploiting the unsat cores returned by the solver to improve
our node deletion mechanism.

References

1. P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. General decidability theo-
rems for infinite-state systems. In LICS, pages 313–321, 1996.

2. P. A. Abdulla, G. Delzanno, N. B. Henda, and A. Rezine. Regular model check-
ing without transducers (On efficient verification of parameterized systems). In
TACAS, pages 721–736, 2007.

3. P. A. Abdulla, G. Delzanno, and A. Rezine. Parameterized verification of infinite-
state processes with global conditions. In CAV, pages 145–157, 2007.

4. J. Barnat, L. Brim, M. Češka, and P. Ročkai. DiVinE: Parallel Distributed Model
Checker (Tool paper). In HiBi/PDMC, pages 4–7, 2010.

5. K. Baukus, Y. Lakhnech, and K. Stahl. Parameterized verification of a cache
coherence protocol: Safety and liveness. In VMCAI, pages 317–330, 2002.

6. R. E. Bryant, S. K. Lahiri, and S. A. Seshia. Modeling and verifying systems using
a logic of counter arithmetic with lambda expressions and uninterpreted functions.
In CAV, pages 78–92, 2002.

7. S. Conchon, E. Contejean, J. Kanig, and S. Lescuyer. CC(X): Semantic combina-
tion of congruence closure with solvable theories. ENTCS, 198(2):51–69, 2008.

8. D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang. Protocol verification as a
hardware design aid. In ICCD, pages 522–525, 1992.

9. J.-C. Filliâtre and K. Kalyanasundaram. Functory: A distributed computing li-
brary for Objective Caml. In TFP, pages 65–81, 2011.

10. S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli. Towards SMT model checking
of array-based systems. In IJCAR, pages 67–82, 2008.

11. S. Ghilardi and S. Ranise. Backward reachability of array-based systems by SMT
solving: Termination and invariant synthesis. LMCS, 6(4), 2010.

12. S. Ghilardi and S. Ranise. MCMT: A model checker modulo theories. In IJCAR,
pages 22–29, 2010.

13. O. Grumberg, T. Heyman, N. Ifergan, and A. Schuster. Achieving speedups in
distributed symbolic reachability analysis through asynchronous computation. In
CHARME, pages 129–145, 2005.

14. I. Melatti, R. Palmer, G. Sawaya, Y. Yang, R. M. Kirby, and G. Gopalakrishnan.
Parallel and distributed model checking in Eddy. STTT, 11(1):13–25, 2009.

15. S. Park and D. L. Dill. Protocol verification by aggregation of distributed trans-
actions. In CAV, pages 300–310, 1996.

