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Identification of linear hybrid systems: a geometric approach

Van Luong Le, Fabien Lauer and Gérard Bloch

Abstract— This paper deals with the identification of linear
hybrid systems switching between multiple linear subsystems.
We propose a new approach based on the geometric properties
of hybrid systems in parameter space. More precisely, the
data are mapped in that space such that each submodel
is represented by a hypersphere. Then, we show how these
hyperspheres can be easily separated by Principal Component
Analysis (PCA) and derive a condition under which this
separation is optimal for systems with two modes. Finally,
classical (robust) regression is applied to estimate the system
parameters from the classified data set. A simple procedure
is also proposed to extend the method to the identification of
switched systems with multiple modes. Experiments show that
the final algorithm can accurately estimate both the parameters
and the number of modes while being simple to apply and far
more robust to noise than other methods.

I. INTRODUCTION

This paper deals with the identification of linear hybrid
systems, i.e., systems switching between linear or affine
subsystems. More precisely, we consider SISO systems in
Switched AutoRegressive with eXogenous input (SARX)
form as

yi = θ>λi
ϕi + ei, (1)

where λi ∈ {1, . . . , n} is the discrete state or mode with
n the number of submodels, {θj}nj=1 are the parameter
vectors of the submodels, ei ∈ R is a noise term and ϕi =
[yi−1, . . . , yi−na , ui−1, . . . , ui−nb

]
> ∈ Rp, p = na + nb, is

the regression vector with na and nb being the model orders.
In the case of affine subsystems, the regression vector ϕi is
simply replaced by ϕ̃i = [ϕ>i , 1]>. As in most works, the
following identification problem is considered.

Problem 1. Given a collection S of N input-output pairs
(ϕi, yi), i = 1, ..., N , generated by a hybrid system (1),
estimate:
• the submodels fj(ϕ) = θ>j ϕ,
• the switching sequence {λi}Ni=1,
• the number of submodels n.

Related work. Many approaches have been proposed over
the last decade for the identification of hybrid systems [1].
These include the algebraic approach [2] and various convex
[3], [4], [5], [6] and nonconvex [7], [8], [9], [10], [11], [12]
optimization-based approaches. The algebraic approach [2]
gives the exact parameter vectors but only in the noiseless
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case and is rather sensitive to noise otherwise. While the
nonconvex optimization-based approaches do not guarantee
a global solution, the convex ones typically use a convex
relaxation of a non-convex problem and require some data
conditions [4] to guarantee the equivalence. Note that the
global optimization approach of [8] is only applicable to
hinging hyperplane systems and with a small data set due
to a prohibitive computing time. Besides these particular
limitations, all these methods also intrinsically include some
important hyperparameters to tune.

Contribution. This paper presents a new approach for the
identification of linear hybrid systems. We consider their
properties directly in the parameter space instead of in the
data space where other methods typically minimize an error
criterion. In the parameter space, we derive a mapping of
the data to construct hyperspheres which represent each of
the submodels. Then, for hybrid systems with two modes,
we propose a simple method based on Principal Component
Analysis (PCA) to separate the two hyperspheres. After this
data classification step, the submodel parameter vectors can be
estimated by any robust linear regression method. Contrary
to other methods in the literature, this approach does not
include any hyperparameter to tune and does not rely on non-
convex optimization. Finally, a simple iterative procedure is
also proposed for the identification of switched systems with
multiple modes.

Paper organization. We start in Sect. II by emphasizing
main properties of hybrid systems in parameter space. Then,
Sect. III is dedicated to solving the identification problem of
hybrid systems with two modes, while Sect. IV extends the
proposed method to systems with multiple modes. The paper
ends with numerical examples in Sect. V and conclusions in
Sect. VI.

II. HYPERSPHERES OF HYBRID SYSTEMS

In this section, the identification problem is considered from
the viewpoint of the parameter space, first for the noiseless
case in Sect. II-A, then for the noisy one in Sect. II-B.

A. Noiseless case

In the parameter space Rp of θ, p = na + nb, a data pair
(ϕi, yi) defines a subspace of dimension p−1 (a hyperplane)
Pi as

Pi : ϕ>i θ − yi = 0. (2)

Property 1. Let Sj be the data subset of S generated by the
jth subsystem, if there are at least p linearly independent



data points in Sj then the corresponding parameter vector
θj is at the intersection of all Pi with (ϕi, yi) ∈ Sj , i.e.,

θj =
⋂
i∈Ij

Pi, (3)

where Ij = {i : (ϕi, yi) ∈ Sj}.

Figure 1 illustrates Property 1 for a noiseless data set
generated by a SARX system with two modes.
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Fig. 1. Parameter space R2 of a SARX system with 2 modes. The
hyperplanes (lines) Pi intersect either at θ1 or θ2.

As all hyperplanes {Pi}i∈Ij intersect at the true parameter
points θj in parameter space, the identification problem
reduces to finding these points. However, directly searching
for them as the solution to a system of equations is known
as a hard combinatorial problem, which is intractable in
practice for a large N . This is due to the fact that the discrete
state λi is unknown. If the data were well classified into
each submodel, many classical regression methods could be
applied to estimate the submodel parameters from the data
subsets.

Property 1 is now exploited to transform the data classifi-
cation problem in the data space to a problem of separating
hyperspheres representing submodels in the parameter space.
More precisely, each hyperplane {Pi}i∈Ij will be mapped to
a point zi lying on a particular hypersphere for the mode j.

Let zi be the orthogonal projection of an arbitrary point
θ on Pi,

zi = z (θ,Pi) = θ + gi, (4)

with

gi = g (θ,Pi) , −
ϕ>i θ − yi
‖ϕi‖22

ϕi. (5)

We note the following properties:
• ∀i ∈ Ij , θj ∈ Pi and gi ⊥ (θj − zi),
• gi = 0 iff θ ∈ Pi,
• ‖gi‖2 = |di|,

where di is the algebraic distance from θ to Pi,

di = d(θ,Pi) =
ϕ>i θ − yi
‖ϕi‖2

. (6)

By fixing an arbitrary point θ 6= θj , each point triplet
{θj ,θ, zi}i∈Ij forms a right triangle with the right angle at zi
and the hypotenuse θθj . We know from basic geometry that

for fixed points θ, θj , all the points zi lie on a hypersphere
whose diameter is the line segment θθj , as illustrated in
Fig. 2 (left) for p = 2. Keeping θ fixed and switching θj for a
different j, we obtain a different hypersphere. Therefore, each
hypersphere represents a submodel and all these hyperspheres
intersect at the chosen point θ. Figure 2 (right) shows an
example with 2 modes and p = 2.
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Fig. 2. Vectors gi, points zi and hyperplanes Pi of a submodel (left)
and an illustration of two modes (right): the point θ (dot), two submodel
parameter points θ1,θ2 (squares) and points zi (crosses).

Hereafter, the data classification into each mode is con-
sidered as a hypersphere separation in the parameter space.
The difficulty of this separation problem is intimately related
to the choice of θ, which will be discussed in Sect. III for
systems with two modes.

B. Noisy case
We now consider the effect of noise in the parameter space.

According to model (1), (ϕi, yi, ei) defines a hyperplane Pi,ei
as

Pi,ei : ϕ>i θ − yi + ei = 0. (7)

Thus, Pi as defined by (2) in the noiseless case and Pi,ei
are parallel and at a distance |dei | = | ei

‖ϕi‖2
|. When the

point θj is the intersection of all {Pi}i∈Ij , the distance from
θj to Pi,ei is also |dei |. Then, all {Pi,ei}i∈Ij intersect the
hypersphere of center θj and radius re = maxi∈Ij |dei |.

Property 2. In the case where the data are corrupted by a
bounded noise with ‖e‖∞ = maxi∈{1,...,N} |ei| ≤ ε, one has

θj ∈
⋂
i∈Ij

Pεi , (8)

where Pεi is a slab with a thickness 2ε defined by

Pεi : − ε ≤ ϕ>i θ − yi ≤ ε. (9)

We note that |dei | is large for a small ‖ϕi‖2. This implies
that for linear submodels, the effect on the parameter vector
of the noise is more serious with regressors close to the
origin, whereas for affine models, this effect is reduced since
‖ϕ̃i‖2≥1.

The distance from the orthogonal projection z′i of θ on
Pi,ei with i ∈ Ij to the jth mode hypersphere (obtained for
the noiseless case by (4) from the projections zi of θ on Pi)
is |∆i,ei | with

∆i,ei =

√
R2
j + d2

ei + 2Rjdei cos(
−−−→
Ojzi,

−→gi)−Rj , (10)



where Oj , Rj are the center and the radius of the jth
hypersphere. Since |∆i,ei | is the smallest distance from z′i
to the hypersphere, |∆i,ei | ≤ |dei |.

We see that when zi → θ, cos(
−−−→
Ojzi,

−→gi) → 0 and the
points z′i close to θ are less affected by the noise, in which
case,

|∆i,ei | →
√
R2
j + d2

ei −Rj =
d2
ei√

R2
j + d2

ei +Rj
≤

d2
ei

2Rj
.

This property implies also a decreased effect of the noise
in data classification since the area around θ is the most
difficult one to separate. This property is illustrated in Fig. II-
B. With a uniform noise, points z′i close to θ almost lie on
the hyperspheres.
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Fig. 3. Illustration of 2 modes with a uniform noise (p = 2): the point
θ (dot), two submodel parameter points θ1,θ2 (squares) and points z′i
(crosses).

III. IDENTIFICATION OF LINEAR HYBRID
SYSTEMS WITH TWO MODES

In this section, we concentrate on the identification of
two-mode SARX systems which have the two hypersphere
structure in parameter space. We propose a procedure includ-
ing the four following steps.

1) Choose a point θ.
2) Map the data points (ϕi, yi) to points zi on hyper-

spheres as in Sect. II-A, i.e.,

zi = θ − ϕ
>
i θ − yi
‖ϕi‖22

ϕi. (11)

3) Separate the two hyperspheres to classify the data into
two groups.

4) Estimate the two submodels from the data in each
group.

A. Choice of the point θ

We now search for a θ which will ease the separation of
the hyperspheres. If θ belongs to the segment θ1θ2, i.e.,

θ = θ1 + µ(θ2 − θ1), µ ∈ (0, 1), (12)

the two hyperspheres are tangent at θ. With this structure,
a linear classification is sufficient to separate the two
hyperspheres. However, θ1,θ2 are not known yet, and we

must find a θ satisfying (12) from the data only. The condition
(12) is equivalent to

fθ(ϕ)
.
= θ>ϕ = (1− µ)f1(ϕ) + µf2(ϕ), ∀ϕ ∈ Rp. (13)

In particular, for µ = 1
2 , fθ(ϕ) is the average function of

the two submodels. This observation leads us to consider the
least squares solution as a candidate for θ.

Proposition 1. Given a data set S generated by a switched
system with two modes such that the matrix [ϕ1, . . . ,ϕN ] is
of full rank and the following condition holds,

N∑
i=1

ϕTi θ1 − yi
‖ϕi‖22

ϕi = γ

N∑
i=1

ϕTi θ2 − yi
‖ϕi‖22

ϕi, (14)

where θ1 and θ2 are the subsystem parameter vectors and
γ ∈ R, the least squares solution θ∗ ∈ Rp minimizing the
cost function

L(θ) =
1

2

N∑
i=1

(ϕ>i θ − yi)2

‖ϕi‖22
, (15)

is on the segment θ1θ2, i.e., θ∗ = θ1 + µ(θ2 − θ1) with
µ = −γ

1−γ ∈ [0, 1].

Proof: Since, with gi given by (5), gi(θj) = 0, ∀i ∈
Ij , j ∈ {1, 2}, condition (14) is rewritten as∑

i∈I2

gi(θ1) = γ
∑
i∈I1

gi(θ2). (16)

Thus, the vectors g(θ1) =
∑
i∈I2 gi(θ1) and g(θ2) =∑

i∈I1 gi(θ2) are collinear. Moreover, since, ∀i ∈ I2, gi(θ1)
points towards θ2, and similarly, ∀i ∈ I1, gi(θ2) points
towards θ1, g(θ1) and g(θ2) are in opposite directions, which
implies γ ≤ 0.

For any θ in the segment θ1θ2 such that θ−θ1 = µ(θ2−
θ1), we have

gi(θ) = µgi(θ2), ∀i ∈ I1,

gi(θ) = (1− µ)gi(θ1), ∀i ∈ I2.

Thus, (16) is equivalent to∑
i∈I2

gi(θ) =
(1− µ)

µ
γ
∑
i∈I1

gi(θ).

Then, if we take θ with 0 ≤ µ = −γ
1−γ ≤ 1, we get

N∑
i=1

gi(θ) =
∑
i∈I1

gi(θ) +
∑
i∈I2

gi(θ)

=

(
1 +

1− µ
µ

γ

)∑
i∈I1

gi(θ) = 0.

On the other hand, the gradient of L(θ) is zero at θ∗,
i.e., ∇L(θ)|θ∗ =

∑N
i=1 gi(θ

∗) = 0. Since θ∗ is unique
if rank[ϕ1, . . . ,ϕN ] = p, we conclude that θ ≡ θ∗.

Proposition 2. Given a data set S generated by a switched
system with two modes such that for each value ϕ in the
data set, the data set includes both of the outputs f1(ϕ) and



f2(ϕ) and the matrix [ϕ1, . . . ,ϕN ] is of full rank, the least
squares solution θ∗ ∈ Rp minimizing (15) is the midpoint of
the segment θ1θ2.

Proof: With such a data set, it is easy to see that γ = −1
in (14). Then, according to the proof of Proposition 1, µ = 0.5
and the statement follows.

For data sets not satisfying (14), the point θ∗ may be out
of alignment with θ1 and θ2. Then the two hyperspheres are
no longer tangent and the separation task is more difficult. In
particular, points in the intersection of the two corresponding
hyper-balls will be badly classified by a linear classifier.
However, a good submodel can be estimated from such a
data set with few outliers by a robust regression method. As
shown in [4], the `1-norm optimization based method can
handle a data set including about 50% of outliers, which is
enough for systems with two modes.

B. Data classification and submodel estimation

We propose a linear classification method based on
the Principal Component Analysis (PCA) for the matrix
Z = [z1, . . . ,zN ,θ]. As a pre-processing step in PCA, the
matrix Z is centered to the matrix Z̃ = [z̃1, . . . , z̃N , z̃θ]
such that

∑N
i=1 z̃i + z̃θ = 0. Note that with the choice

θ = θ∗ as in Sect. III-A, the centered matrix is simply
Z̃ = [g1, . . . , gN ,0]. The eigenvector corresponding to the
largest eigenvalue of Z̃Z̃

>
represents a direction on which

the data of Z̃ has the largest variance. This eigenvector has
the same direction as the vector

−−→
θ1θ2 in the case of two

tangent hyperspheres. Then, a projection of vectors z̃i on
this vector can separate data into two groups corresponding
to the submodels.

Let λ1,v1 be the largest eigenvalue and the corresponding
eigenvector of Z̃Z̃

>
. Then, two data groups are found by

Î1 =
{
i ∈ {1, . . . , N} : z̃>i v1 ≥ 0

}
, (17)

Î2 =
{
i ∈ {1, . . . , N} : z̃>i v1 < 0

}
.

Now, we can use any robust regression method to estimate
the submodel parameter vectors. A simple robust convex
method minimizes the `1-norm of the error as

θ̂j = arg min
θ

∑
i∈Îj

‖ϕ>i θ − yi‖1, j = 1, 2. (18)

Finally, one can re-estimate the mode λ̂i with

λ̂i = arg min
j∈{1,2}

|yi − θ>j ϕi|, i = 1, . . . , N. (19)

For a refinement, the submodels can be re-estimated by
(18) with the new classification (19).

IV. SYSTEMS WITH MORE THAN TWO MODES

Inspired by the methods in [4], [5], which estimate the
submodels one by one, we propose a simple procedure to
identify hybrid systems with more than two modes. For these
methods, after estimating a parameter vector θ̂, the data points
verifying the error condition, |yi − ϕ>i θ̂| ≤ δ where δ is a

fixed threshold, are associated to the estimated submodel and
removed from the data set to estimate the next parameter
vector. The number of modes is finally estimated as the
number of submodels required to satisfy the error condition
for all data points.

Algorithm 1
Require: a data set S = {(ϕi, yi)}

N
i=1 and a threshold δ.

Initialize S0 = S , j = 0.
while |S0| 6= 0 do

Set j = j + 1.
Estimate θ∗ by least squares with the data in S0.
Map the data (ϕi, yi) to points zi by (11) with θ = θ∗.
Classify the data set S0 into two groups via the points
zi and (17).
Estimate two parameter vectors θ1,θ2 corresponding to
the groups as in (18).
Identify the jth submodel parameter vector by

θ̂j = arg max
θ∈{θ1,θ2}

|S(θ)| ,

where S(θ) =
{

(ϕi, yi) ∈ S0 : |yi −ϕ>i θ| ≤ δ
}

.
Set S0 = S0\S(θ̂j).

end while
return the estimated number of modes n̂ = j and the
estimated parameter matrix Θ̂ = [θ̂1, . . . , θ̂n̂].

Algorithm 1 extends the proposed method of Sect. III
in a similar manner. This procedure includes only one
hyperparameter to tune, the threshold δ. As for the methods
[4], [5], when the threshold δ is appropriately chosen, the
number of modes n is recovered. Nevertheless, experiments
in the next section will show that the proposed method is less
sensitive to choice of δ. For a bounded noise, δ can be chosen
such that δ ≥ ‖e‖∞. If the noise is a white Gaussian noise
with a standard deviation σe, the threshold δ may be chosen
in [σe, 3σe]. In this case, to avoid the effect of outliers, the
algorithm should be stopped before |S0| = 0.

V. NUMERICAL EXPERIMENTS

In this section, we show the efficiency of the proposed
method via some numerical examples. To evaluate the quality
of the results, we compute the Normalized Parametric Error
(NPE), NPE = ‖Θ̂−Θ‖F

‖Θ‖F , where ‖.‖F is the Frobenius norm
and Θ, Θ̂ are the true and estimated parameter matrices in
which each column is a subsystem parameter vector. The
proposed method (GEO) is compared with the algebraic
approach [2] (ALG), the continuous optimization based
approach [11] (PE-MCS) and the sparse optimization based
approaches [4] (SO1) and [5] (SO2). Over 100 trials with
different input, switching and noise sequences, we report the
NPE mean and standard deviation. The sparse optimization
based methods [4], [5] estimate the parameter vectors one by
one until the data set is empty. Thus the number of modes
cannot be fixed. In this case, we retain the best estimated
parameter vectors as the ones closest to the true ones to



compute the NPE. In all experiments, the data are generated
with a uniform input distribution U(−4, 4) and an additive
Gaussian noise ei of standard deviation σe, except for Sect.
V-B.2 which uses a normally distributed input of unit variance.
In order to observe the sensitivity to noise of the methods, σe
is varied from 0 to 0.9. The hyperparameters in the method
PE-MCS [11] are left to their default values. The threshold
δ used to assign data points to a submodel in methods SO1
[4] and SO2 [5] is chosen in accordance with σe. The other
hyperparameters are tuned to get the best results. The stopping
criterion in Algorithm 1 is |S0| ≤ 0.01N .

For the examples with two modes, we are only interested
in the parametric error (NPE), whereas for the examples with
three modes, the estimated number of modes is also important
and its sensitivity to δ will be studied.

A. Static examples

1) Toy examples: We take two one-dimensional switched
static systems, intersecting or parallel, as toy examples,

yi =

{
ui−1 + 2 + ei if λi = 1,

−ui−1 + ei if λi = 2,
(20)

yi =

{
ui−1 + 2 + ei if λi = 1,

ui−1 + ei if λi = 2.
(21)

For (20) or (21), training sets of N = 100 points are generated
with a uniformly distributed random sequence of λi ∈ {1, 2}.
Figure 4 shows the submodel estimates with the noisy data
for each of these systems for σe = 0.5. Figures 5 and 6
report the comparisons with the other methods for a varying
noise standard deviation. They show that the proposed method
can handle high noise regimes more efficiently. The other
methods do not work well in these regimes even though these
examples are very simple.
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Fig. 4. System (20) (left), system (21) (right) : noisy data (•, ×) and
estimated submodels (−).

2) Three mode example: We consider the following
switched hybrid system with 3 modes

yi =


ui−1 + 0.5ui−2 + 2 + ei if λi = 1,

−0.5ui−1 − 1.3ui−2 + ei if λi = 2,

−ui−1 + ui−2 − 1 + ei if λi = 3.

(22)

Training sets of N = 900 points are generated by (22) with
a fixed σe = 0.3 and with two scenarios for the random
switching sequence {λi}900

i=1. In scenario 1, |{i : λi = 1}|=
100, |{i : λi = 2}| = 300, |{i : λi = 3}| = 500, while in
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Fig. 5. Static system (20): NPE mean (top) and standard deviation (bottom)
versus Gaussian noise standard deviation.
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Fig. 6. Static system (21): NPE mean (top) and standard deviation (bottom)
versus Gaussian noise standard deviation.

scenario 2, λi is uniformly distributed in {1, 2, 3}. Figure 7
(left) presents the first scenario which satisfies the sufficient
condition on the data for SO1 [4]. The number of modes is
well estimated with δ ≥ 3σe while Fig. 7 (right) shows the
second scenario. The proposed method still correctly estimates
the number of modes, while the SO1 method breaks down
in these unfavorable conditions.

B. Dynamical Examples

1) Two mode example: Consider the linear hybrid system
used in [5]:

yi =

{
0.2yi−1+0.24yi−2+2ui−1+ei if λi = 1,

−1.4yi−1−0.53yi−2+ui−1+ei if λi = 2.
(23)

Training sets of N = 400 points are generated by (23) with
λi = 1 for i ∈ [1, 100] ∪ [201, 300], and λi = 2 for i ∈
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Fig. 7. System (22) with scenario 1 (left) and scenario 2 (right): NPE (top)
and estimated number of modes (bottom) versus the threshold δ.

[101, 200] ∪ [301, 400]. Figure 8 shows that the proposed
method gives the model with the smallest error and which is
the less affected by noise.
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Fig. 8. System (23): NPE mean (top) and standard deviation (bottom)
versus Gaussian noise standard deviation.

2) Three mode examples: Consider the switched linear
system with the three following subsystem parameters:

θ1 = [−0.40 0.25 − 0.15 0.08]>,

θ2 = [ 1.55 − 0.58 − 2.10 0.96]>,

θ3 = [ 1.00 − 0.24 − 0.65 0.30]>,

used in the experiments of [4] and an affine one obtained by
adding constants 2, −1, 1 respectively to its three subsystems.

Training sets of N = 600 points are generated by these
systems with a uniformly distributed random sequence of
λi ∈ {1, 2, 3} and σe = 0.1. Figure 9 shows that the proposed
method (GEO) can estimate switched affine systems as
accurately as switched linear ones, whereas the SO1 method
[4] has difficulties to deal with such systems.

VI. CONCLUSIONS

This paper presented a geometric approach for hybrid
system identification. We first focused on systems switching
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Fig. 9. Switched linear system in [4] (left) and switched affine system
(right): NPE mean (top) and estimated number of modes (bottom) versus
the threshold δ.

between two modes and then extended the proposed method
to deal with an arbitrary number of modes. The proposed
procedures proved their simplicity, accuracy and noise ro-
bustness in numerical experiments. For hybrid systems with
two modes, there is no hyperparameter to tune and no (non-
convex) optimization problem to solve, contrary to most of
the other methods. For hybrid systems with multiple modes,
there is only one classical hyperparameter, δ, to which the
proposed method is less sensitive than others.

In future work, although a simple iterative algorithm was
proposed to deal with more than two modes, the multiple
hypersphere separation problem should be investigated.
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