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Abstract 

 

This paper describes a solution to the problem of «stick-slip» for an electropneumatic system. The 

phenomenon of «stick-slip» may appear during the mechanical static state when the position is fixed but 

the pressures continue to evolve in each actuators chambers, until exceeding the dry friction zone. The 

system is then in partial equilibrium. The idea to avoid this phenomenon is a switching control law 

between the tracking position control and the pressure regulation. 
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1 Introduction 

 

“Stick-slip” refers to the phenomenon of a 

spontaneous jerking motion that can occur while 

two objects are sliding over each other. Stick-slip 

is caused by the surfaces alternating between 

sticking to each other and sliding over each other, 

with a corresponding change in the force of 

friction. Typically, the stiction friction coefficient 

between two surfaces is larger than the Coulomb 

friction coefficient. If an applied force is large 

enough to overcome the stiction friction, then the 

reduction of the friction to the Coulomb friction 

can cause a sudden jump in the velocity of the 

movement. Examples of stick-slip can be heard 

from hydraulic cylinders, honing machines etc. 

Special chemicals can be added to the hydraulic 

fluid or the cooling fluid to overcome or minimize 

the stick-slip effect. Stick-slip is also experienced 

in lathes, mill centres and other machinery where 

something slides on a slideway. Slideway oil 

typically lists "prevention of stick-slip" as one of 

its features.  

The “stick-slip” phenomenon is a real problem for 

the industrial development of pneumatic 

technology. However there are no industrial or 

scientific research works in the literature which 

present a solution that can be generalized for 

certain fields or in every fluid power process to 

eliminate this phenomenon. Only some specific 

empirical solutions have been tested in specific 

contexts to reduce the possibility of the occurrence 

of the “stick-slip” phenomenon. Cite for example: 

Control Engineering Staff (2003) have proposed a 

technological improvement by developing specific 

valves. Ming-Chang and Shy-I (1995) have used 

specific control laws to reduce the effect of friction 

in electropneumatic applications by using, for 

example, control laws with velocity or acceleration 

tracking trajectories. Brun, Sesmat, Thomasset and 

Scavarda (2005) have presented the necessary and 

sufficient conditions not to have the restarting 

phenomenon and gave an estimation of the 

restarting time if the condition is not in effect. 

Hamiti, Voda-Besançon and Roux-Buisson (1996) 

have coped with the problem caused by the stick-

slip friction in a pneumatic system and propose a 

method to limit and to be eliminated in a 

progressive manner the stiction effect by 

decreasing the integral gain of the PI controllers. 

PAI and SHIH (2003) have designed a velocity 

compensator to overcome the stick-slip effect of 

the pneumatic-driven ultraprecision table while 

adding directly the velocity compensation signal to 

the conventional PD and Fuzzy controller. 

Hägglund has presented a procedure that 

compensates for static friction (stiction) in 

pneumatic control valves by adding pulses to the 

control signal. Renn and Liao (2004) have 

proposed the fuzzy-sliding mode controller at a 

low rotational speed of a servo-pneumatic motor 

with presence of the nonlinear deadband and stick-
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slip friction. In all technologies for positioning 

systems, its well known that the use of an integral 

action in the control law lead to «stick-slip» 

occurrence. However it will be explain in this 

paper that in fluid power systems, the reason of 

«stick-slip» appearance is fundamentally different 

and not due to integral action. 

  

In this paper, a solution for the problem of «stick-

slip» for an electropneumatic system for tracking 

position trajectory will be presented. It is 

organized as follows; in the next section the 

electropneumatic system is described. Then the 

main idea result using two switching sets of 

control laws is developed. Finally experimental 

results are presented and compared to validate the 

procedure.  

 

 

2 Electropneumatic system modeling 
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Fig.1:  The electropneumatic system 

 

The system under consideration, fig. 1, is a linear 

inline double acting electropneumatic servo-drive 

using a single rod controlled by two three-way 

servodistributors. The actuator rod is connected to 

one side of the carriage and drives an inertial load 

on guiding rails. The total moving mass is 17 kg. 

 

2.1 Physical model 

 
The electropneumatic system model can be 

obtained using three physical laws, the mass flow 

rate through a restriction, the pressure behavior in 

a chamber with variable volume and the 

fundamental mechanical equation.  

The pressure evolution law in a chamber with 

variable volume is obtained via the following 

assumptions Shearer (1956): 

a) air is a perfect gas and its kinetic energy is 

negligible;  

b) the pressure and the temperature are supposed 

to be homogeneous in each chamber; 

c) the process is polytropic and characterized by 

the coefficient k.  

Also the electropneumatic system model is 

obtained by combining all the previous relations. 

The two servodistributors are supposed identical 

and can be decomposed into a dynamic and static 

part (fig. 2).      

 
Fig.2:  The dynamic and a static part of the 

servodistributor 

 
In this paper, the results of Sesmat and Scavarda 

(1996) of the global experimental method giving 

the static characteristics of the flow stage have 

been used. The global characterization corresponds 

to the static measurement of the output mass flow 

rate ( ).m
q , which depends on the input control 

( ).u (fig. 3) and the output pressure ( ).p , for constant 

source and exhaust pressure. 
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Fig. 3:  The mass flow rate 

 
The state model of the two servodistributors is 

given by:  
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(1) 

where ( ).x is the slide valve position. 

 

The mechanical equation includes pressure force, 

viscous friction, dry friction forces and an external 

constant force due to atmospheric pressure. The 

following equations give the physical model of the 

actuator: 

( ).p

( ).m
q( ).u( )cal

u
.

State 

Model ( ) ( ) ( )( )
...

, puq
m
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where: 
( )
( )





−=

+=

ySVyV

ySVyV

NNN

PPP

0)(

0)(
    

 

with: 













+=

+=

2
)0(

2
)0(

l
SVV

l
SVV

NDNN

PDPp

 

 

are the piping volumes of the chambers for the 

zero position and VD(P or N) are dead volumes 

present at each  extremity of the cylinder.  

The dry friction forces Ff, which act on the moving 

part in the presence of viscous friction, is a 

nonlinear model given by several relations, for 

example Tustin (1947): 

[ ]         )exp()()( sign(v)vcFFFvF
CSCf

−−+=  (3) 

 

where Fs, Fc and c are the stiction friction, the 

Coulomb friction and the Stribeck constant effect. 

 

The function ( )vsign is defined as follows: 
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Figure 4 shows the results of the friction model for 

low velocities. Outside the small velocity region 

shown this figure, the dry friction is dominated by 

the constant Coulomb friction value. 
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Fig. 4:  Dry friction model 

2.2 Control model 

 

The actuator bandwith is about Hz10  and the 

servodistributor bandwith is about Hz200 . Then, 

and because the local PI controller is used for a 

slide valve position, the servodistributors model 

can be reduced to two static relations defining the 

mass flow rates ( )
PPm

puq P ,  and ( )
NNm

puq N , , 

where 
PcalP

uu = and 
NcalN

uu = . 

 

To establish a mathematical model of the power 

modulator flow stage, the standard ISO 6538 may 

be used, see for example Hildebrandt, Kharitonov, 

Sawdony, Göttert and Hartmann (2005). Another 

research work of Araki (1981) shows 

approximations based on physical laws by 

modeling the geometrical variations of the 

restriction areas of the servodistributor. Another 

way proposed by Richard and Scavarda (1996) is 

based on an experimental characterization model 

using a Wheatstone bridge representation of the 

servodistributor. Using the measures of the global 

experimental method giving the static 

characteristics of the flow stage, Belgharbi, 

Thomasset, Scavarda, and Sesmat (1999) has 

developed analytical models for both simulation 

and control purposes. For control purposes, the 

flow stage characteristics were approximated by 

the following model, affine in control, such that: 

( ) ( )( ) ( ) ( )( )( ) ( ).....
sgn, uuppq

m
ψϕ +=  (5) 

 

Where ( )( )
.

pϕ (fig. 5.a) in Eq.5 is a polynomial 

function of the pressure whose evolution 

corresponds to the mass flow rate leakage and does 

not depend of the input control. ( ) ( )( )( )
..

sgn, upψ  is 

a polynomial function both of the pressure and the 

sign of the input control because the behavior of 

the mass flow rate characteristics is clearly 

different for the inlet ( )( )0
.

>u  (fig. 5.b) and the 

exhaust ( )( )0
.

<u (fig. 5.c). The polynomial 

functions ( )( )
.

pϕ , ( ) ( )( )0,
..

>upψ , ( ) ( )( )0,
..

<upψ  

have been chosen with five equal degrees multi 

linear regression with R2 (multiple correlation 

coefficients) greater than 0.96.   
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Fig. 5.a:  The function ( )pϕ  
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Fig. 5.b:  The function ( )0, >upψ  
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Fig. 5.c:  The function ( )0, <upψ  

 

Using Eq.5 and Eq.2 with these two assumptions: 

 

- Fs and Fc are not easily measurable and variable 

during experimental tests. Thus, only for the 

control model, the dry friction forces Ff  (v) in 

Eq.3, have been neglected compared to other 

forces, 

 

- the temperature variation is negligible so the 

temperature chambers are equal to the supply 

temperature: 
sNP

TTT == , with the polytropic 

coefficient 2.1=k , see Shearer (1956). 

The nonlinear affine model is then given by: 

( ) ( )Uxgxfx +=&  (6) 
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In the next section a solution for the “stick-slip” 

problem of electropneumatic systems will be 

proposed. 

 

3 A solution for the “stick-slip” 

phenomenon of electropneumatic systems 

 

The problem of “stick-slip” was encountered with 

many other positions tracking control laws already 

applied to this electropneumatic system. Let us 

note for example, the backstepping control by 

Smaoui, Brun and Thomasset (2006a) and sliding 

mode control by Bouri and Thomasset (2001), 

Laghrouche, Smaoui, Plestan, and Brun (2006) and 

Smaoui, Brun and Thomasset (2008).  

 

3.1 Existence Condition of the “stick-slip” 

phenomenon 

 

When the partial equilibrium is attained (t=tstop in 

figure 6), the condition (11) is satisfied, but the 

two pressures continue to evolve: 
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However, according to Eq. 3: 
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With the definition of sign function in Eq.4, the 

“stick-slip” phenomenon is avoided (fig. 6) when 

this condition is satisfied: 
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Fig. 6.a:  “Stick-Slip” Phenomenon 
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Fig. 6.b:  No “Stick-Slip” Phenomenon 

 
3.2 Switching between position control and 

pressure regulation 

 

The system is controlled in position during the 

follow-up of trajectory and, if this trajectory 

contains a static phase, the closed-loop system 

switches to pressures regulation during this phase, 

according to the algorithm describes in next 

paragraph. Figure 7 illustrates the commutation 

between the control laws. 
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Fig. 7:  Commutation between the control laws 

 

The criterion of commutation chosen between 

these two control laws rests on error position and 

velocity variation. In fact the commutation of 

position control to pressure control is when all 

these conditions are satisfied: 

1. 0=
d

v : the desired velocity is null 

2. 
1

ε≤−
stop

yy : the position error during the 

static phase, lower than a value fixed in advance 

1
ε .  

3. 
2

ε≤v : the velocity is very small. This last 

condition is necessary if the variation in the 

velocity desired trajectory is very important. 

 

Initially the reference inputs of the regulation 

pressures ( d

P
p and d

N
p ) are the pressures values in 

the chamber when the system is at rest. Then, at 

any commutation, the reference inputs of the 

regulation pressures ( d

P
p and d

N
p ) are the pressure 

values in the chambers ( stop

P
p and stop

N
p ) which are 

maintained constant with these values. Figure 8 

shows the time of calculation of the desired 

pressures and the selected values of its levels. 
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Fig. 8.d : Desired Pressures (Pascal) 

 

For position tracking non linear control law is 

proposed and for the pressure control, the non 

linear input/output linearisation method is applied. 

 

 

3.3 Position control 

 

For the synthesis of the non linear tracking 

position control law, a diffeomorphism 
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model of the form: 
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As shown in figure (5.b and 5.c) ( ).ψ > 0 and 

( ) 0,,
2 ≠

NPfg
ppyyLL  over the physical domain. 

 

This system in Eq.14 is partially feedback 

linearizable. It has been shown in Brun, Belgharbi, 

Sesmat, Thomasset and Scavarda (1999) that the 

system is minimum phase. 

  

Now create three separate dynamic errors as 

follow: 









−=
−=
−=

da

dv

dy

aae

vve

yye

 

(17) 

       

And then a new state system: 

The choice of input:  

[ ]
yyvvaadf

fg

eKeKeKayL
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u −−−+−= &
3

2

1
 

(19) 

 

 

leads to a linear closed loop system 
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where the equilibrium point [ ]T

avy
eee 000 ===  

is exponentially stable 
avy

KKK and,∀ and 

ensuring the Hurwitz polynomial 

0
2 =+++

yva
KsKsKs ,see Isidori (1989). 

 

3.4 Pressure control 

 

For the pressure control, the classical non linear 

multi-input/multi-output linearisation method is 

used.  In static phase, when the partial equilibrium 

is obtained, this system must be considered: 

( ) ( )
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Where 
1

ε and 
2

ε  are small and positive and : 
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(22) 

 

The outputs of the system are the two pressures. 

 

Now create 2 separate errors between the pressure 

and the constant desired pressure: 




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NNN
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(23) 

 

Differentiating each error Eq.23 once gives: 
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Define the control inputs of system as:   
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And combining Eq.25 into Eq.24: 



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NNN

PPP

eke
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&
 

 

(26) 

 

                                                                                                                                          

Therefore, since 0and >
Np

kk , 
NP

ee and  

converge exponentially to zero.  

 

 

4 Experimental Results 

 

Before the application on the real electropneumatic 

system, the method developed above was 

implemented in co-simulation. The co-simulation 

consists of using jointly the software developed by 

the modelling researchers, and the software 

dedicated for the system control. Thus, the 

physical model of electropneumatic system, 

defined in section 2.1, was treated by AMESim 

(LMS Imagine) and the control laws (Eq.19 and 

Eq.25), with the criteria of switching and the 

calculation of the desired pressure, were developed 

using Simulink Mathworks. In fact the co-

simulation enables the parameters  of the 

commutation criterion and the gains of the two 

control laws to be tested. Satisfactory simulation 

results are obtained.  

 

Then the control law is implemented using a 

Dspace 1104 controller board with the dedicated 

digital signal processor.  The controller requires 

measurements of position, velocity, acceleration 

and the two pressures. The measured signals, all 

analog, were run through the signal conditioning 

unit before being read by the 16 bit analog/digital 

converter. Two pressure sensors are used, their 

precision is equal to 700 Pa (0.1% of the extended 

measurement) and their combined non linearity 

and hysteresis is equal to 0.1% of the extended 

measurement. The cylinder velocity is determined 

by analogue differentiation and low-pass filtering 

of the output of the position given by an analogue 

potentiometer (Its precision and repeatability is 

equal to 10 µm and its linearity is 0.05% of the 

extended measurement.). The acceleration 

information is obtained by a robust velocity 

differentiator, via a high order sliding mode; see 

Smaoui, Brun and Thomasset (2008). 

  

4.1 An Example of the “stick-slip” 

phenomenon  

 

 

For the first part of these experimental results an 

example of the “stick slip” phenomenon is 

explained. This is shown on a position tracking 

system with only one control law (i.e. without 

commutation between position tracking and 

pressures regulation).  

 

Figure 9 shows the “stick-slip” phenomenon with 

the position, the desired position, the position 

error, the pressure in the chambers P and N, the 

control input and the “stick-slip” phenomenon.  

For this position tracking the gains are fixed to 

96000
y

K = , 6800
v

K = , 150
a

K = . For a total 

displacement equal to 250 mm, the maximum 

dynamic position tracking error is about 1.5 mm. 

In, a steady state, the average position error is 

about 0.13 mm. The pressures continue to evolve, 

during the steady state of the position. The “stick-

slip’ phenomenon is seen at st 31= , 

st 4,33= and st 2,34= . 

 

On the same experimental set-up and in the same 

conditions, has been implemented two other non 

linear control laws: 

- a backstepping control in Smaoui, Brun and 

Thomasset (2006 b) the error in steady sate is 

about mm10.0 . 

- an high order sliding mode controller in Smaoui, 

Brun and Thomasset (2006 b) the error in steady 

sate is about mm11.0 . 

With these two control laws, the “stick slip” 

problem also appears. Thus the tracking 

performances obtained by the control proposed are 

similar in regard of precedents one.  
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Fig. 9.a :Position & Desired Position (m) 
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Fig. 9.b : Position Error (mm) 

 

28 29 30 31 32 33 34 35
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7
x 10

5

TIME (s)

P
re

ss
u

re
s 

(P
a

sc
a

l)

 

 

p
P

p
N

 
Fig. 9.c : Pressures (Pascal) 
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Fig. 9.d : Control input (V) 
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Fig. 9.e : “Stick-slip” phenomenon 

 

 

4.2 An example of a no “stick-slip” 

phenomenon 

 

In the second part of this section, the experimental 

results are presented when the system is controlled 

by the two control laws developed in section 3.2 

and 3.3 with the commutation criteria proposed in 

section 3.1, position control during the dynamic 

phase and pressure regulation during the static 

phase. Thus fig. 10 proves that the solution 

proposed avoids the “stick-slip” phenomenon. 

 

For the position control the gains tuned are the 

same that in last section. For the pressure control 

the gains are fixed to 300==
Np

kk . These values 

ensure good static and dynamic performances. 

Some experimental results are provided here to 

demonstrate the validity of the solution suggested 

to the problem of “stick-slip”. 

 

Figure 10 shows the position, the desired position 

same that it’s shown in fig. 9.a, the position error, 

the pressure in the chamber P, the pressure in the 

chamber N, the control inputs 
P

u  and 
N

u and no 

“stick-slip” phenomenon. The maximum dynamic 

position tracking error is about 1.65 mm
 
. In steady 

state, the average position error is about 0.18 mm.  

 

The presence of thresholds on the criteria of 

commutation degrade a little the performances 

compared to the preceding case but the pressures 

are stabilized during this static phase of the 

position and the phenomenon of “stick-slip” is 

avoided. 
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Fig. 10.a :Position & Desired Position (m) 
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Fig. 10.b : Position Error (mm) 
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Fig. 10.c : Pressure and desired pressure chamber P 

(Pascal) 
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Fig. 10.d : Pressure and desired pressure chamber N 

(Pascal) 
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Fig. 12.e : Control input 
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Fig. 12.f : Control input 

N
u  (V) 
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Fig. 10.g : No “stick-slip” phenomenon 

 

 

5 Conclusion 

 

The contribution of this paper consists of the 

solution to the “stick-slip” phenomenon for an 

electropneumatic system with a given desired 

position trajectory. The system is controlled by 

two sets of control laws, a non linear control law 

for the dynamic state of the position then, when 

the system is in partial equilibrium, the algorithm 

switches to the pressure regulations obtained with 

the classical non linear input/output linearization 

method.  

The perspectives are to avoid the “stick-slip” 

phenomenon, without degrading the performances 

of tracking position trajectory. 
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Nomenclature 
 
b viscous friction coefficient (N/m/s) 

k polytropic constant 

M total load mass (kg) 

p pressure in the cylinder chamber (Pascal) 

qm mass flow rate provided from 

servodistributor to cylinder chamber (kg/s) 

r perfect gas constant related to unit mass 

(J/kg/K) 

S area of the piston cylinder (m2) 

Ts temperature (K) 

V volume (m3) 

y position (m) 

v velocity (m/s) 

a acceleration(m/s2) 

ϕ(.) polynomial leakage function (kg/s) 

ψ(.) polynomial function (kg/s/V) 

l length of stroke (m) 

Fext External force (N) 

Ff dry friction force (N)  

Fc Coulomb friction (N) 

Fs Stiction friction (N) 

c Stribeck effect constant 

x slide valve position 

( )., uu  control input 

 

Subscript and superscript 
 

D dead volume 

N chamber N 

P chamber P 

d Desired 

max maximum 
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