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ABSTRACT

In this paper we study the problem of object recognition in egocen-
tric video recorded with cameras worn by persons. This task has
gained much attention during the last years, since it has turned to
be a main building block for action recognition systems in appli-
cations involving wearable cameras, such as tele-medicine or life-
logging. Under these scenarios, an action can be effectively defined
as a sequence of manipulated or observed objects, so that recogni-
tion becomes a relevant stage of the system. Furthermore, video
summarization tasks on such content is also driven by appearance
of semantic objects in camera field of view.

One of the particularities of first-person camera videos is that
they usually present a strong differentiation between active (ma-
nipulated or observed by the user wearing the camera) and passive
objects (associated to background). In addition, spatial, temporal
and geometric cues can be found in the video content that may help
to identify the active elements in the scene. These saliency features
are related to the modelling of Human Visual System, but also to
motor coordination of eye, hand and body movements. In this pa-
per, we discuss the automatic generation of saliency maps in video,
and introduce a method that extends the well-known Bag-of-Words
(BoW) paradigm with saliency information. We have assessed our
proposal in several egocentric video datasets, demonstrating that it
not only improves the BoW reference, but also achieves state-of-
the-art performance of e.g. part - based models, with noticeably
lower computational times. The approach has tremendous perspec-
tives for other User Generated mobile Content.
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1. INTRODUCTION
Recently, egocentric video analysis has gained a lot of interest

due to the emerging end-user applications that involve the use of
wearable cameras. Wearable cameras represent a cheap and effec-
tive way to record users’ activity for scenarios such as telemedicine
or life-logging.

In particular, the context of this work is a project that tackles the
diagnosis, assessment, maintenance and promotion of self indepen-
dence of people with dementia, such as Alzheimer disease. This
objective requires to understand how the disease affects patients’
activities in their lives, and to provide an objective assessment of
their capacity to conduct the IADL (Instrumental Activities of Daily

Living). Examples of early approaches addressing the same prob-
lem can be found in [20, 33]. In such a scenario, identifying human
activities becomes a key problem to be solved, since it represents
the basis to generate video semantic indexes that allow medical
staff to efficiently navigate along the video footage.

Traditionally, the detection of human activities has been addres-
sed by analyzing human motion patterns. More precisely, various
approaches have successfully made use of the motion patterns as-
sociated to spatio-temporal interest points (STIP) in the video [24,
36]. In addition, the study of ego-motion has also resulted in suc-
cessful approaches for first-person camera videos analysis [21].

However, in the particular case of egocentric view, we claim that
an action can be effectively defined as a sequence of manipulated
or observed objects, usually known as ‘active’ objects or ‘objects-
of-interest’. This assumption generally holds for video showing
many household activities and, in particular, for the intended IADL
scenario.

In that sense, the literature already shows examples in which
the outputs of object detectors become the features for later ac-
tion recognition systems in egocentric video: in [30], a vector with
frame-level object probabilities is used for action recognition. A
similar idea is explored in [13], where the authors propose a gen-
erative probabilistic approach that concurrently models activities,
actions and objects. Furthermore visual object recognition in video
is an open problem whatever the nature of the content.

In contrast to the well-known sliding window approaches for ob-
ject detection and recognition [16, 22], and due to the specific na-
ture of the first-person view contents, we aim to drive the object
recognition process using visual saliency. Under the particular sce-
nario of egocentric video, there is usually a strong differentiation
between active (manipulated or observed by the user wearing the
camera) and passive objects (associated to background) and, there-
fore, spatial, temporal and geometric cues can be found in the video
content that may help to identify the active elements in the scene.

Incorporation of visual saliency in video content understanding
is a recent trend. The fundamental model by L. Itti and C. Koch
[18] is the most frequently used. Nevertheless other models can be
proposed using priors on the content. The application of saliency
modeling for object recognition on video serves for identifying ar-
eas where objects of interest are located. Then, features in these
areas can be extracted for object description. Several works in the
literature have shown the utility of human gaze tracking in the anal-
ysis of egocentric video content and, in particular, in the activity
recognition task [14, 28].

This paper proposes an object recognition system that relies on



visual saliency-maps to provide more precise object representa-
tions, that are robust against background clutter and, therefore, im-
prove the precision of the object recognition task. We further pro-
pose to incorporate the saliency maps into the well known Bag-of-
Words (BoW) [7] paradigm for object recognition. The benefits of
this approach are multiple: a) the computation of saliency maps
is generic (category-independent) and therefore a common step for
any object detector, b) compared to sliding window approaches [8,
16], by looking at the salient area we can avoid much of the compu-
tationally overhead due to the scanning process and therefore use
more complex non-linear classifiers, c) since the saliency maps are
automatically computed in both training and test data, our method
does not need bounding boxes for training, what dramatically re-
duces the human resources devoted to the database annotation.

We consider two differentiated scenarios of application. The first
one is a constrained scenario in which all the subjects perform ac-
tions in the same room and, therefore, interact with the same ob-
jects: e.g. a hospital scenario in which the medical staff ask patients
to perform several activities. This task can be seen as a specific ob-
ject recognition problem since there is not intra-class variation be-
tween instances of a category other than this caused by the strong
egomotion, changes on the viewpoint, illumination, occlusions,. . .

The second scenario, on the contrary, is unconstrained, and cor-
responds to recordings made at different locations. In this case
users interact with various instances of the same objects: e.g. in a
home environment, a patient performs daily activities using his/her
own utensils and devices, that probably differ from those ones avail-
able in another home. The second scenario is therefore much more
difficult than the first one, due to the large intra-class variation as
well as to the limited amount of training data (a few instances of
each object category).

In this paper, we will assess our method in both scenarios, show-
ing its strength and weakness in comparison to other methods in
the literature.

The remainder of the paper is organized as follows: in section 2
we discuss the related work. Next, in section 3, we provide a de-
scription of the geometric-spatio-temporal methods to compute vi-
sual saliency, and present some specially tailored developments to
extend their use to an object recognition task in egocentric videos.
Section 4 introduces our saliency-based approach for object recog-
nition in egocentric video. In section 5 an in-depth evaluation is
provided that assesses our model under the considered scenarios,
and compares it to other state-of-the-art approaches. Finally, sec-
tion 6 draws our main conclusions and introduces our further lines
of research.

2. RELATED WORK
Object recognition is a very active task for the computer vision

community. Initiatives such as the PASCAL Visual Object Classes
(VOC) Challenge [11] promote the development of new algorithms
by establishing a benchmark for model assessment in tasks like ob-
ject recognition, detection and segmentation.

However, the particular problem of object recognition in egocen-
tric video still lacks of enough specific approaches that exploit all
the particularities of this type of content. Just to mention some of
them: active objects in egocentric videos tend to appear in specific
areas of the image, hands are the main source of occlusion, strong
egomotion and object manipulation leading to dramatic changes on
the viewpoint, active objects tend to appear at an approximately
constant scale, . . .

Now looking at the specific field of object recognition in ego-
centric video, two kinds of approaches can be identified in the lit-
erature: those ones that rely on sliding windows, and those ones

that first try to segment the foreground area to restrict the detection
process.

Concerning the first type, the authors in [30] proposed to extend
the use of the well known Discriminatively Trained Deformable
Part-Based (DPM) Models [16], which has been demonstrated great
performance in Pascal VOC [10], to egocentric video. As a part of
their study, they have shown how object classifiers trained in gen-
eral web-based collections such as ImageNet achieved very poor
performance when applied to egocentric databases. The rationale
behind is that objects appearance is different depending on the type
of camera capturing the scene (e.g. 1st vs 3rd person camera view).

In what concerns the second kind of approach, the authors in [31]
demonstrated how a figure-ground segmentation method helps to
improve object classification. In particular, they used foreground
segmentation masks to drive the object recognition process and
evaluated their application to two object recognition systems: one
using the sliding-window DPM [16], and another with exemplar-
based SIFT matching [25].

A similar approach is followed in [15], which might be consid-
ered as the most advanced work towards the object recognition in
egocentric views. In this paper, the authors proposed a method that
firstly segments the foreground areas from the background of each
frame. Once the segmentation is made, the method detects and
labels regions associated to the hands and the object being manipu-
lated, respectively, and finally assigns an object label to the frame.
This approach achieves impressive results when an object is ma-
nipulated and, furthermore, provides segmentation masks for each
element. In contrast, to achieve their results, it requires active ob-
jects to be manipulated (to show other motion than the egomotion)
and relies on a very complex process for foreground areas detec-
tion.

However, both methods using foreground segmentation show two
main limitations: on the one hand, both of them assume that an
active object moves arbitrarily in contrast to the background, that
remains static in the world coordinate frame. From our point of
view, this assumption is too constraining since many objects con-
sidered as ‘active’ in a scene can be also static. Some examples
can be found in daily activities: a subject might be reading a book
or a manuscript that is laid on a table and therefore not moving, it
also might be watching TV (if we do not consider the residual mo-
tion inside the TV screen). Furthermore, even in cases when a user
is manipulating an object, the object might look still for a notable
segment of time. Next, both proposals consider binary segmenta-
tion masks to drive the recognition process so that the regions in
the image are sharply considered as either relevant or irrelevant for
the scene understanding.

Our method, in contrast, aids the recognition process using a soft
measure based on visual saliency. Visual saliency has been suc-
cessfully applied to object recognition in still images, either work-
ing on individual pixels as in [35], or computing saliency measures
of bounding boxes, as in [1]. In our approach to object recogni-
tion in egocentric content, we follow temporal, but also spatial and
geometric principles of visual saliency, making our method not re-
stricted to the cases in which an object is manipulated by a user.
Furthermore, rather than simply providing hard binary masks that
delimit the area of a frame in which the recognition process is per-
formed, we propose to use visual saliency ‘soft’ maps; hence, we
do not simply filter out some areas of the image that are considered
not salient, but weight the influence of each pixel in the recogni-
tion process. We believe that this approach successfully guides the
recognition process to the areas of interest while still keeping the
contribution of the context information around the object of inter-
est, and in parallel, is more robust against errors in the saliency map



estimation.

3. VISUAL SALIENCY FOR OBJECT RE-

COGNITION IN EGOCENTRIC VIDEOS

3.1 Spatial, geometric and Temporal Saliency
Approaches

In order to drive the video analysis to the regions that are po-
tentially interesting to human observers we need to model visual
saliency on the basis of video signal features. In this work, we have
considered three basic approaches to generate saliency maps, each
of them built using a particular source of information: spatial, ge-
ometric and temporal. In the following paragraphs, we will briefly
describe the method that gives place to each map.

Spatial saliency Ss: proposed in [5], it is based on various color
contrast descriptors that are computed on the HSV color space, due
to its closeness to human perception of color. In particular, 7 local
contrasts are computed, namely:

1. Contrast of Saturation: A contrast occurs when low and high-
ly saturated color regions are close.

2. Contrast of Intensity: A contrast is visible when dark and
bright colors co-exist.

3. Contrast of Hue: A hue angle difference on the color wheel
may generate a contrast.

4. Contrast of Opponents: Colors located at the hue wheel op-
posite sides create very high contrast.

5. Contrast of Warm and Cold Colors: Warm colors – red, or-
ange and yellow – are visually attractive.

6. Dominance of Warm Colors: Warm colors are always visu-
ally attractive even if no contrast are present in the surround-
ing.

7. Dominance of Brightness and Saturation: Highly bright and
saturated regions have more chances of attracting the atten-
tion, regardless of the hue value.

The spatial saliency value Ss(i) for each pixel i in a frame is com-
puted by averaging the outputs associated to the 7 color contrasts.

Temporal saliency St : this saliency models the attraction of
attention to motion singularities in a scene. The visual attention
is not grabbed by the motion itself, but by the residual motion
for each pixel, e.g. the difference between the estimated motion
for each pixel and the predicted camera motion based on a global
parametrization.

Omitting many details, the process of computing a temporal sa-
liency map is as follows: first, for each frame in the video, a dense
motion map v(i) that contains the motion vectors in each pixel i in
the image is computed using the optical flow technique described
in [12].

Then, a 3x3 affine matrix A that models the global motion asso-
ciated to the camera movements is computed. For that end, the well
known robust estimation method RANSAC [17] has been used in
order to successfully handle the presence of outliers (e.g. areas of
the image associated to objects that move differently than the cam-
era). Furthermore, since the central area of each frame constitutes
the most likely region where moving objects appear, this region is

not considered for the affine matrix estimation, thus reducing the
proportion of outliers.

Next, the residual motion r(i) is computed by compensating the
camera motion:

r(i) = v(i)−Axi (1)

where xi stands for the spatial coordinates of each pixel i, xi =
(xi,yi,1)T .

Finally, the values of the temporal saliency map St(i) are com-
puted by filtering the amount of residual motion in the frame. The
authors of [5] reported that the human eye cannot follow objects
with a velocity higher than 80◦/s [9]. According to this psycho-
visual constraints, a post-processing filter was proposed in [5] that
decreased the saliency when motion was too strong. Applying this
filtering stage to our first-person camera videos was however too re-
strictive due to the strong camera motion so that we have preferred
to consider a simpler filtering stage that normalizes and computes
the saliency map as follows:

St(i) = min

(

||r(i)||2
K

,1

)

(2)

where K has been heuristically computed depending on image di-
mensions (H,W), as K = max(H,W )/10.

Geometric saliency Sg: it follows two observations about sa-
liency in egocentric video: on the one hand, some studies on gen-
eral purpose video confirm the so-called center bias hypothesis, that
is the attraction of human gaze by the geometrical center of an
image [4, 5]. On the other hand, in videos recorded with wear-
able cameras, the camera is usually set-up to point specific ar-
eas of interest: e.g. the gaze fixation if the camera is located
in glasses, or an area just in front of the human body where the
hands usually manipulate objects, in case it is located on the body.
Generally, central geometric saliency is dependent on the wear-
able camera position and might be shifted in image plane [4]. In
the present research, we work on datasets with either eye-centered
or body-centered camera, thus using the center-bias hypothesis.
Hence, following the approach in [5], the geometric saliency map
Sg(i) = N ((x0,y0),(σx,σy)) is computed as 2D Gaussian located
at the screen center with a spread σx = σy = 5◦.

However, this attraction may change with the camera motion.
This is explained by the anticipation phenomenon [23]. Indeed, the
observer of video content produced by a wearable video camera
tries to anticipate the actions of the actor. The action anticipation is
performed according to the actor body motion which is expressed
by the camera motion. Hence we propose to simulate this phe-
nomenon by moving the 2D Gaussian centered on initial geometric

saliency point in the direction of the camera motion projected in the
image plane. A rough approximation of this projection is the mo-
tion of image center computed with the global motion estimation
model previously described.

Results on the basic approaches are shown in Figure 1 (columns
2-4). As one can notice from the figures, spatial and temporal
saliency maps show more precise localization of the objects of in-
terest whereas the geometric approach provides a coarse approxi-
mation of the visual saliency. However, saliency information ap-
pears more scattered or disaggregated for the first two approaches,
being more compact and therefore robust for the geometric tech-
nique.

For an object recognition task, we consider that the perfect sa-
liency map is a trade-off between precision and compactness, re-
quirement that, based on the examples, is not completely fulfilled
by any of the basic approaches. Hence, to overcome this issue, we
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Figure 1: Results of various saliency maps for one frame in GTEA dataset. The three basic techniques spatial, temporal and

geometric are shown. In addition, for spatial and temporal maps, two types of postprocessing are also included (LPF and FGS).

Original Spatial Temporal Geometric Multiplication Mean Square Max Log

Figure 2: Results of various fusion strategies for computing spatio-temporal-geometric saliency maps.

propose two extensions: a) to incorporate a post-processing step
on the spatial and temporal techniques that provides more com-
pact saliency representations and, b) to investigate fusion schemes
that successfully combine the three approaches taking advantage of
their precision and compactness, respectively.

3.2 Postprocessing: Setting-up suitable saliency
maps for object recognition

As already mentioned, we propose to use an additional post-
processing stage to obtain more compact representations for the
spatial and temporal saliency. In particular, we have evaluated
two methods: a) a very simple spatial low-pass filtering using a
Gaussian mask (LPF), and b) a method that fits a Gaussian Surface
(FGS) on the original map.

The LPF approach, shown in columns 5-6 of Figure 1, simply
provides a smooth version of the original saliency maps. However,
if the standard deviation of the spatial Gaussian is large enough,
results may fulfill our requirements of compactness.

For the second approach, given the original saliency mask S, we
propose to fit a Gaussian surface of the form:

G(x,y) = Aexp

[

−
1

2

(

x−xg

σ2
x

+
y−yg

σ2
y

)]

(3)

where θ = {A,xg,yg,σx,σy} are the parameters to be estimated in
the fitting process. In practice, we minimize the square error be-
tween the two maps e2 = ∑x,y[S(x,y)−G(x,y)]2 using the opti-
mization method described in [27].

In the experimental section we will assess the performance of
both post-processing approaches.

3.3 Fusion strategies for saliency maps
Once the basic spatial, temporal and geometric saliency maps

has been introduced, we aim to evaluate how their combination into
spatio-temporal-geometric saliency masks Sstg might improve the
representation of the area of interest in the image.

For that end, several fusion strategies have been proposed and
evaluated in this work. Again, although most of them have been
already proposed in [3] in a video quality assessment task, for the
sake of compactness we next briefly describe their computation:

1. Multiplication (Mult): a multiplicative fusion strategy model
as:

Smult
stg (i) = Ss(i)×St (i)×Sg(i) (4)

Figure 3: Processing pipeline for the saliency-based object

recognition in first-person camera videos

2. Mean: the average of the three methods as:

Smean
stg (i) =

1

3
(Ss(i)+St (i)+Sg(i)) (5)

3. Square: the squared Minkovsky pooling reinforced by mul-
tiplicative pooling:

S
sq
stg(i) = Ss(i)×St (i)×Sg(i)+

1

3
(S2

s (i)+S2
t (i)+S2

g(i)) (6)

4. Max: maximum pooling:

Smax
stg (i) = max(Ss(i),St(i),Sg(i)) (7)

5. Log: logarithmic combination model:

S
log
stg (i) =

1

3
(log(1+Ss(i))+ log(1+St (i))+ log(1+Sg(i))) (8)

A visual example of the fusion strategies is shown in Figure 2. In
addition, all of them will be evaluated in the experimental section
of this paper.

4. A SALIENCY-BASED APPROACH FOR

OBJECT-RECOGNITION

4.1 Low-level feature extraction and descrip-
tion

In this section we will describe our approach for object recog-
nition in first-person camera videos using saliency masks. As we
have already mentioned in the introduction, we aim to detect the
region of interest (ROI) of each frame so that we can effectively
build more precise image representations.



The processing pipeline of our approach is included in Figure
3. We build our model on the well-known Bag-of-Words (BoW)
paradigm [7], and propose to add saliency masks as a way to im-
prove the spatial precision of the original Bag-of-Words approach.

For each frame in a video sequence, we extract a set of N local
descriptors using a dense grid of local circular patches [34]. Based
on some experiments, we have set the radius of the circular patches
to 25px, and the step size between each local patch of 6px, thus
leading to a high degree of overlapping between neighboring local
regions.

Next, each local patch n = 1..N is described using a 64-dimen-
sional SURF descriptor dn [2], which has shown similar perfor-
mance than the SIFT descriptor [25] in our experiments, whereas
it is of half the dimension. Each descriptor dn is then assigned to
the most similar word j = 1..V in a visual vocabulary by following
a vector-quantization process. The visual vocabulary, computed
using a k-means algorithm over a large set of descriptors in the
training dataset (about 1M descriptors in our case), has a size of V

visual words. As we will show in the evaluation section, we have
experimented with visual vocabularies of different sizes V .

In parallel, our system generates a saliency map S of the frame
with the same dimensions of the image and values in the range [0,1]
(the higher the more salient is a pixel).

4.2 Object recognition with Saliency Weight-
ing

In the traditional Bag-of-Visual-Words approach [7], the final
image signature H is the statistical distribution of the image de-
scriptors according to the codebook. This is made by first assign-
ing each local descriptor to a visual word in the vocabulary and
then computing a histogram of word occurrences by counting the
times that a visual word appears in an image.

Instead of doing this hard assignment, we propose to apply what
we call saliency weighting, a sort of soft-assignment based on sa-
liency maps. With saliency weighting, the contribution of each im-
age descriptor is defined by the maximum saliency value found un-
der the circular region Ωn associated to the index n. In other words,
descriptors over salient areas will get more weight in the image
signature than descriptors over non-salient areas. Therefore, the
image signature is a V-dimensional vector H that can be computed
as follows:

H j =
N

∑
n=1

αnwn j (9)

where the term wn j = 1 if the descriptor or region n is quantized
to the visual word j in the vocabulary, and the weight αn is defined
as:

αn = max
s∈Ωn

(S(s)) (10)

where Ωn represents the set of pixels contained in the n circular
region of the dense grid, and S(s) is a saliency map.

Finally, the histogram H is L1-normalized in order to produce
the final image signature.

It is worth stressing the difference between our weighted histo-
gram with hard-assignments and the histogram with soft assign-
ments previously proposed in the literature [19]. In that work, given
a descriptor, a similarity measure is computed with respect to all the
words in the vocabulary so that various bins of the histogram can
be incremented according to these similarities. On the contrary, our
method is assigning each descriptor to just one word in the vocabu-
lary but then is weighting its contribution to the histogram using the
saliency map information. In fact, if necessary, our method might
be combined with the one in [19].

On the contrary, our method of saliency weighting is more sim-
ilar to the spatial weighting proposed in [26] but, in our case, the
weights are computed unsupervisely, without need of training data
and not depending on the category to detect.

Once each image is represented by its weighted histogram of
visual words, we use a non-linear classifier to detect the presence
of a category in the image. In particular, we have employed a SVM
classifier [6] with a χ2 kernel, which has shown good performance
in visual reignition tasks working with normalized histograms as
those ones used in the BoW paradigm [32].

5. EXPERIMENTAL SECTION
In this section we assess our model in various challenging data-

sets with egocentric videos. As we have already, mentioned we aim
to recognize objects under two different scenarios: constrained, in
which all videos contain the same instances of the involved object
categories, and the unconstrained, in which each video shows a dif-
ferent environment with varying instances of the object categories.

5.1 Datasets
We have assessed our approach with three publicly available ego-

centric video datasets.
The first one is the GTEA Gaze dataset [14], which consists of

17 standard definition (640x480) video sequences, captured at a
frame rate of 15 frames per second, and performed by 14 different
subjects using Tobii eye-tracking glasses. Due to the lack of object
annotations in this dataset, we have extracted and annotated 595
frames from the videos so that we can easily perform our tests over
a set of still images. The whole dataset has been divided into two
sets, namely: a) the training set (294 frames), and b) the test set
(300 frames). Furthermore, we aimed to detect 15 object categories
in this database. Due to its limited size, we have used this dataset
to compare various system configurations.

The second dataset is the GTEA dataset [15] for Object Recog-
nition. This dataset, recorded at 30 frames per second in 1280x720
definition, contains 7 types of daily activities, each performed by
4 different subjects. In this case, the camera is mounted on a cap
worn by the subject. Weak annotations are already available for this
dataset. They identify active objects on each frame belonging to 16
object categories, but do not include the object location. Since all
the users have been recorded in the same room interacting with the
same objects, we have evaluated our constrained scenario using this
dataset. For that end, we have followed the same setup described
in [15], using the users 2-4 for training the algorithms and the user
1 for testing.

The third dataset used in the experiments is the ADL dataset [30],
that contains videos captured by a chest-mounted GoPro camera on
users performing various daily activities at their homes. The high
definition videos (1280x960) are captured at rate of 30 frames per
second and with 170 degrees of viewing angle. In total, 27,064
frames have been accurately annotated providing bounding boxes
for objects belonging to 44 categories. In our experiments, we
have just considered those objects labelled as ’active’ (those be-
ing interacted or observed by the users) for both training and test-
ing purposes. This dataset is more challenging than the other two
since both the environment and the object instances are completely
different for each user, thus leading to an unconstrained scenario.
However, we have evaluated both scenarios with this dataset: the
constrained one by randomly dividing the whole set of frames into
a training and test set (50/50%), and the unconstrained, by doing so
at the video/user level.

5.2 Setting-up the final model
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Figure 4: A comparison of various configurations in the GTEA Gaze dataset and various vocabulary sizes. (a) Results of the basic

saliency techniques in comparison with the two references; (b) results achieved by two post-processing techniques for the spatial

saliency; (c) results achieved by two post-processing techniques for the temporal saliency; (d) a comparison between the best post-

processing option (LPF) and the reference methods.

In this section we compare various system configurations on the
GTEA Gaze dataset. The objective is then to select the final system
setup that provides the best performance, which will be compared
with other state-of-the-art methods in the two envisaged scenarios.

5.2.1 Evaluating the basic approaches for saliency
maps

We have firstly evaluated our basic approaches for generating
the saliency maps. In addition, we have included two reference
methods in the comparison:

1. Basic BoW (B-BoW): the Bag of Words approach that gener-
ates image signatures considering whole images. This method
becomes the basic reference and allows us to evaluate the im-
provement achieved by our saliency masks.

2. BoW with Ideal Masks (I-BoW): this approach makes use
of the ideal ground truth masks provided in the annotation.
Since it evaluates our approach when the saliency masks cor-
respond with the ground-truth, it constitutes the theoretical
limit in its performance. It is worth noting how this ideal
binary masks are used both on training and testing, thus in-
corporating the annotations in the whole recognition process,
but omitting the aforementioned weighting scheme in the his-
tograms computation.

The results of this study in the GTEA Gaze dataset are presented
in Figure 4(a), that shows the Average Precision (AP) achieved by
each approach at various vocabulary sizes. As one can notice from
the results, for almost every technique, the performance improves
until a vocabulary size of V=4000 words, after which it stabilizes.
Hence, from now on, we will either remove larger vocabulary sizes
from our experiments or simply consider the optimal vocabulary
size of 4000 as the final approach.

Comparing the approaches, as we expected, the I-BoW consti-
tutes the theoretical upper bound of the method. This is logic due
to the use of the ground-truth bounding boxes that, although do not
correspond to the tight silhouette of the object of interest, always
ensure its correct localization. Furthermore, two of the basic tech-
niques to compute the saliency masks (geometric and temporal) al-
ready achieve slightly better results than the reference B-BoW. This
is a nice consequence of the use of saliency masks, even when not
specific post-processing is applied to the the maps. Furthermore,
the fact that the geometric saliency map is the one that achieves
the best results, let us to conclude that compactness is even more
important than localization precision for an object recognition task.

5.2.2 Techniques for saliency map post-processing

1000 4000
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Figure 5: Classification results of various strategies for fusing

spatio-temporal saliency maps. Values are given at two dif-

ferent vocabulary sizes (V=1000,V=4000). Basic and reference

methods are also included for comparison.

In this section, we present the evaluation of the post-processing
techniques described in section 3.2. As we have already claimed,
direct outputs from some saliency detectors might not be optimal
for an object recognition task due to the lack of compactness.

Since the Geometric technique already provided compact and
Gaussian-shaped saliency masks, we have applied the postproces-
sing stage to the spatial and temporal techniques. Figures 4(b)
and 4(c) respectively compare the results obtained in the GTEA
Gaze dataset by the basic spatial and temporal saliency, and the
two post-processing methods: Low Pass Filtering (LPF) and Fit-
ting of a Gaussian Surface (FGS). The improvements on the re-
sults, although not very notable, demonstrate that post-processing
is important to adequate the saliency maps to the particular problem
of object recognition. Furthermore, the computational cost of the
LPF method, the one that achieves the best performance, is almost
negligible when compared to other steps of the processing pipeline.

In addition, Figure 4(d) shows a comparison between the LPF
approach and the two reference methods. With the post-processing
stage, now all the saliency methods outperform the reference B-
BoW and achieve closer results to the theoretical limit I-BoW. Hence,
from now on, LPF post-processing will be incorporated to every
version of our approach.

5.2.3 Fusion techniques for saliency maps



Table 1: mAP and standard deviation on ADLdataset under

the constrained and unconstrained scenarios.

Algorithm Cons. mAP ± std Uncons. mAP ± std

B-BoW 0.585 ± 0.258 0.113 ± 0.152
I-BoW 0.621 ± 0.250 0.191 ± 0.258

DPM [16] 0.341 ± 0.254 0.129 ± 0.194
Proposal 0.602 ± 0.260 0.125 ± 0.167

We have also evaluated the fusion approaches described in sec-
tion 3.3.

Results of this experiment are shown in Figure 5. All the fusion
strategies achieve better results than the basic approaches except
for the multiplicative technique. The rationale behind is that this
strategy is too restrictive and requires all basic saliency maps to
show significant values in order to consider a pixel as salient.

The square fusion strategy obtains particularly good performance
on this dataset, outperforming both the basic saliency approaches
and the rest of the fusion strategies. In particular, by using this
approach we are achieving absolute gains with respect to the ref-
erence B-BoW of a 3.1% and 2.7%, for a vocabulary of size 1000
and 4000, respectively. Hence, we will consider this fusion strategy
as the final choice for our object recognition system in ego-centric
videos.

5.3 Experiments under the constrained scenario
As we mentioned before, the constrained scenario is that one in

which all the subjects wearing cameras are recorded in the same
environment and interacting with the same object instances.

Results for the ADL dataset under the constrained scenario are
shown in the first column of Table 2 in terms of mAP (mean Aver-
age Precision), and its standard deviation (category deviation). It is
worth noting that we show only the results of those objects consid-
ered as ’active’ in the dataset ground-truth annotations, e.g. those
objects that are either manipulated or observed by the main actor
in the ego-centric video. We consider these objects as the main
source of information for detecting an action, so that the rest of the
visual information (background) is less relevant and only useful for
horizontal tasks as context identification.

As we have already mentioned, to simulate the constrained en-
vironment, we have randomly divided the whole set of frames into
a training and test set (50/50%) without taking into account the
video to which each frame belongs. In this dataset, we are com-
paring the performance of our approach with the reference method
B−BoW , the ideal case I−BoW , and the Discriminatively Trained
Part-Based Model (DPM) [16], which was the approach used by the
authors of the dataset [30] to address the object recognition task.

Furthermore, in Figure 6 we include detailed per-category per-
formance. Base on these results, we can draw the following con-
clusions:

• Our proposal outperforms the reference B-BoW by guiding
the recognition process to the salient areas of each frame.
This result is consistent along almost all the categories in
the dataset, and supports the idea that using visual saliency
generates more accurate object representations and reduces
the effect of clutter.

• The approach using ideal masks is, as expected, the one yield-
ing the best performance. However, a deeper by category
analysis shows remarkable conclusions: in general, provid-
ing an accurate localization of the object (I-BoW) helps the

recognition process and improves the performance. This ob-
servation is particularly noticeable for relatively small ob-
jects such as the ones belonging to the categories ‘foodsnack’,
‘knife_spoon_fork’, ‘milk_juice’ or TV. However, when the
objects are too small, such as the instances of ‘comb’, ‘dent-
floss’ or ‘pills’, we have observed that the ground truth bound-
ing boxes, restricted to the object and lacking any informa-
tion about object context, give not enough information to
successfully detect its presence. In contrast, due to the fact
that the saliency maps usually cover more area in the image
(object, hands, even spatial neighboring context), our pro-
posal achieves notably better results than the I-BoW. In ad-
dition, the reference B-BoW also achieves better results than
I-BoW for these classes, although its performance is still be-
low our approach.

• The performance of the DPM is poor when compared any
BoW method. From our point of view, the rationale behind
is that this method has been designed to get good generaliza-
tions of object categories, what prevents from taking advan-
tage of the high visual similarity between training and test
samples in the constrained scenario. Hence, we believe that
its relative performance with respect to our approach should
drastically improve in the unconstrained scenario.

In addition, we have also evaluated our approach in the GTEA
dataset. This dataset represents the constrained scenario in a more
realistic way, due to the fact that we can take training and test sam-
ples from different videos. Hence, we have followed the same eval-
uation setup proposed by the authors [15]. In particular, we have
developed a multiclass classifier so that each image is considered to
contain just one object of interest. Our proposal achieves a global
classification accuracy of 36.8% in this dataset, which compares
well with the 35% obtained by the authors of the dataset [15] when
they matched the highest detection score to the ground truth anno-
tations.

5.4 Experiments under the unconstrained sce-
nario

The unconstrained scenario corresponds to the challenging sit-
uation in which users perform their activities at several locations,
thus interacting with heterogeneous instances of the object cate-
gories. Consequently, the large intra-class variation jointly with
the reduced number of object instances, are expected to lead to poor
generalization in recognition process.

In our experiments, we have used the videos corresponding to
half of the subjects {2, 3, 5, 7, 8, 12, 13, 14, 17, 18} for training,
and the remainder videos for test.

Average results of this study are shown the second column of
Table 2, whereas Figure 7 shows detailed per-category AP. We next
draw the main conclusions of this experiment:

• As expected due to the challenging nature of this scenario,
the performance is drastically lower for all the automatic ap-
proaches (from AP ∼ 0.6 to AP ∼ 0.10). This illustrates how
challenging is the problem of object recognition when just a
few instance are available for each object.

• Furthermore, the I-BoW, that uses ground-truth masks in test,
now notably outperforms any automatic approach. This fact
stresses the importance of a good previous localization of the
object of interest for its localization.

• Our proposal again outperforms the basic reference (B-BoW).
The improvement is once more consistent along almost all
the categories.



0

0.2

0.4

0.6

0.8

1
A

P
AP by category in ADL dataset for the constrained scenario

1 
ba

sk
et

2 
be

d

3 
bl

an
ke

t

4 
bo

ok

5 
bo

ttl
e

6 
ce

ll

7 
ce

ll_
ph

on
e

8 
cl

ot
h

9 
co

m
b

10
 c

on
ta

in
er

11
 d

en
t_

flo
ss

12
 d

et
er

ge
nt

13
 d

is
h

14
 d

oo
r

15
 e

le
ct

ric
_k

ey
s

16
 fo

od
_s

na
ck

17
 fr

id
ge

18
 k

et
tle

19
 k

ni
fe

_s
po

on
_f

or
k

20
 la

pt
op

21
 la

rg
e_

co
nt

ai
ne

r

22
 m

ic
ro

w
av

e

23
 m

ilk
_j

ui
ce

24
 m

op

25
 m

ug
_c

up

26
 o

ve
n_

st
ov

e

27
 p

an
28

 p
er

so
n

29
 p

ill
s

30
 p

itc
he

r

31
 s

ho
e

32
 s

ho
es

33
 s

oa
p_

liq
ui

d

34
 ta

p

35
 te

a_
ba

g

36
 th

er
m

os
ta

t
37

 to
ot

h_
br

us
h

38
 to

ot
h_

pa
st

e

39
 to

w
el

40
 tr

as
h_

ca
n

41
 tv

42
 tv

_r
em

ot
e

43
 v

ac
uu

m

44
 w

as
he

r_
dr

ye
r

A
ve

ra
ge

 

 

I-BoW

B-BoW

Proposal

DPM

Figure 6: Per-category results (AP) for the constrained scenario achieved by various methods in the ADL dataset
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Figure 7: Per-category results (AP) for the unconstrained scenario achieved by various methods in the ADL dataset. Some categories

cannot be computed in this scenarios due to the lack of samples in training/test sets.

Table 2: Test execution times of our approach compared with

the DPM implementation in [16]. We show single threading

(S.T.) and multi-threading (M.T.) execution time.

Algorithm S.T. M.T.

DPM [16] 60.4s 10.9s
Proposal 15.7s 4.1s

• The DPM now achieves competitive results, even slightly su-
perior to the ones of our proposal. As we previously stated,
this technique learns object models with a high degree of
generalization, which is better suited for this unconstrained
rather than for the constrained scenario.

As a conclusion, we can state that our approach yields good re-
sults in the constrained scenario, outperforming state-of-the-art ap-
proaches, and obtains competitive results in the unconstrained one.
In addition to the classification results, it offers two main advan-
tages over other alternatives: 1) it does not require precise localiza-
tion of objects in the training data, what minimizes the human effort
in the database annotation, and 2) as we will see in the next section,
its computational complexity is low when compared to sliding win-
dow methods.

5.5 A study of the computational time

In Table 2, we show a comparison between the average execu-
tion times of our proposal and the DPM to run one category object-
detector in a test frame. We included results using a single thread-
ing (S.T.) and multi-threading in a 2.10GHz computer with 4 cores,
and hyper-threading enabled.

For our proposal, the execution time comprises the generation of
the saliency maps, the SURF feature extraction process, the com-
putation of the weighted histograms, and the classification using a
SVM with χ2 kernel. It is worth noting that some of the computa-
tions for the spatial saliency map are implemented in GPU so that
they cannot be translated to S.T. case (spatial saliency takes about
0.05 sec per frame in the GPU). The rest of the calculus are made
with the CPU under the aforementioned circumstances.

For the DPM, we run the implementation in [16], made in Matlab
with optimized c routines for all the steps in the process that require
most of the execution time.

As we can see in the tables, our approach shows much lower
computational times in comparison with DPM. From our point of
view, the rationale behind is the fact that using the saliency maps,
we avoid the heavy scanning process of a sliding window approach
as the DPM.

Furthermore, it is also worth noting that, since the saliency maps
are automatically computed in both training and test data, our me-
thod does not need bounding boxes for training, what dramatically
reduces the human resources devoted to the database annotation



when compared to the DPM.

6. CONCLUSIONS AND FUTHER WORK
In this paper we have presented a method for object recognition

in egocentric videos. Our proposal aims to drive the recognition
process using visual saliency. In particular, spatial, temporal and
geometric cues found in egocentric videos are exploited to improve
the object recognition, generating more precise representations of
the area of interest in a frame, as well as enhancing the robustness
against cluttered backgrounds.

We have also evaluated several fusion strategies to generate spatio-
temporal-geometric saliency maps from their basic constituents, as
well as some post-processing techniques that improve the compact-
ness, a property that has turned out to be very important for object
recognition.

In addition, rather than simply performing foreground/background
segmentation to restrict the recognition process to the areas of in-
terest, we have proposed a soft application of saliency that controls
the influence of pixels in the final object representation based on
their saliency. We have combined saliency with the well known
Bag of Words paradigm by proposing a saliency weighting method
to compute image signatures.

Having in mind the context of this work, which is the automatic
analysis of videos for the diagnosis, assessment, maintenance and
promotion of self-independence of people with dementia, we have
assessed our model in two particular scenarios of interest: a) a con-
strained scenario in all the subjects perform actions in the same
room and, therefore, interact with the same object instances, and b)
an unconstrained scenario that corresponds to recordings made at
different locations, so that users interact with various instances of
the same objects.

Our experiments have shown that this method outperforms the
basic BoW model and achieves closer results to an hypothetical
case in which optimal foreground masks are available in test. Fur-
thermore, our approach compares well, and outperforms DPM and
the full method in [15] under the constrained scenario. Further-
more, the computational time is less than half of the DPM one.

However, the notable decrease in performance in case of an un-
constrained scenario reveals that our method needs further devel-
opment. Indeed, in an unconstrained scenario the variability of ob-
ject instances intra-category requires drastically new recognition
approaches. Here we are in the case of “concept recognition”. As
we know from e.g. TRECVID challenge [29] concept recognition
is a complex and open research problem and we are amongst those
working on it.
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