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Abstract

It is a well-known fact that the scanning electron microscopic image

acquisition is mainly affected by nonlinearities and instabilities of the col-

umn and probe-specimen interaction; in turn producing a shift in the

image points with respect to many parameters, time, in particular . Even

though this drift is comparatively less in modern SEMs, it is still an im-

portant factor to consider in most of the SEM based applications. In this

paper, a simple and real-time method is proposed to estimate the global
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drift from a set of target images using image phase correlation and to

model its evolution by using the recursive equations of time and magnifi-

cation. Based on the developed model, it is opted to use a Kalman filter

in real time for accurate estimation and removal of the drift from images.

The developed method is tested using the images from a tungsten fila-

ment gun SEM (Jeol JSM 820) and a field effect gun SEM (FEI Quanta

200) and the derived results show the effectiveness of the developed algo-

rithm and also demonstrates its ability to be used in robotics as well as

in material characterization under SEM.

Scanning electron microscope, calibration, drift, principal

differential analysis

Nomenclature

SEM scanning electron microscope

RMS root mean square

PDA principal differential analysis

ODE ordinary differential equation

PDE partial differential equation

SISO single input single output

w.r.t with respect to

t, t0, tf time, initial time, final time

T sampling time for calibration image acquisition

g, g0, gf1, gf magnification, initial magnification, intermediate magnification, final magnification

A,F state matrices

C,G output matrices
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1 Introduction

1.1 Related work

In general, SEM is a powerful imaging instrument based on the electron-matter

interaction. Conventionally it is comprised of an electron gun (to produce a

continuous beam of electrons) along with many apertures and coils in order to

reduce the generated beam diameter, accelerate, deflect and focus the beam

on the supplied scanning surface of a specimen. As a final step, the images

are produced by detecting the emitted electrons using special electron detec-

tors (figure 1). Since the commercialization of SEM in 1970s it has become an

essential tool in the study of nanomaterials and micronano systems mainly be-

cause of its advantages in observation, analysis and manipulation (Marchman,

1997),(Kasaya et al., 2004), (Sutton et al., 2006), (Sievers and Fatikow, 2006),

(Jaehnisch and Fatikow, 2007), (Charlot et al., 2008), (Kratochvil et al., 2009),

(Tosello et al., 2010), (Arnoult et al., 2010).

However, SEM image acquisition is known to be affected over time, mainly

because of the presence of nonlinearities and instabilities during the raster scan-

ning a specimen surface by the electron beam. As a result there is a shift in

the image points w.r.t their projection model which in turn decomposes into

drift and distortion (Maune, 1976), (Mizuno et al., 1997), (Santo et al., 2002),

(Sutton et al., 2006), (Charlot et al., 2008),(Vignon et al., 2001), (Sinram et al.,

2002), (Cornille, 2005), (Mizuno et al., 1997) and (Sicignano et al., 2004). Most

of their work addresses the calibration of the projection and the distortion, very

little deal with the calibration of drift. According to (Cornille, 2005), (Sutton

et al., 2006),(Sutton et al., 2007) the pixel drift is estimated by the disparity

between pairs of points and is fitted by B-splines w.r.t time. This model is

used to estimate the drift and to remove it, in real time. The final accuracy is
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very high that shows the relevance of the method and the fact it is convenient

for metrology applications. This paper addresses the calibration of the drift in

SEM images. It is focused on fast computation and removing of global drift in

the images, instead of local drift. It also introduces the magnification of the

SEM in the evolution of the drift and is convenient for robotic applications that

require usually smooth change of magnification.

1.2 Contribution

The main contributions of this work are analysing and modelling the drift and

developing a real-time algorithm to correct it. Generally the drift in a SEM

is defined as the shift of pixels w.r.t to time, but many other constraints are

also involved in the problem such as the physical magnification of the SEM,

notably. As an initial approach the evolution of the drift is studied using image

phase correlation w.r.t both time and magnification and is modelled by recursive

equations of time and magnification. Many experiments with SEM require the

dynamic change of magnification to fit with both the field-of-view and resolution.

The developed model is such that it can deal with this change, accurately. The

next contribution of the work is relative to the formalism adopted, Kalman

filtering, which enables real time correction of the drift in images. The model of

the drift is retrieved from a set of data obtained by phase correlation between

the different pair of images, and is updated for every sampling step by taking

into account the dynamic of the noise in the process.

1.3 Contents

Section 2 exposes the causes of the drift and the assumptions considered on

which our current developments are based. Section 3 describes the way how the

drift is estimated from a set of targeted image frames using phase correlation.
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Section 4 addresses the learning stage of the approach developed: the estimation

of the model of the drift with respect to time and magnification. Section 5

describes real time estimation and removal of the drift by using a Kalman filter.

And finally, sections 6 and 7 presents respectively the results of the application

of the approach to a tungsten filament gun SEM and a field effect gun SEM.

2 Preliminary assumptions

As mentioned earlier, the pixel drift is a result of instabilities present during the

electron-specimen interaction and focusing inside the column. The main causes

can be summarized as follows:

• Firstly, the image acquisition involves a lot of processes (probe beam emis-

sion, thining by magnetic lenses subjected to hysteresis, scanning by coils

subjected to hysteresis, ...) that are not stable.

• Secondly, the specimen (possible defects or dust on the surface) is charged

by electrons that causes the deflection of the electron beam, particularly

for non conductive specimen. It affects also the emission of secondary

electrons because of the low energy (about 50 eV). The consequence is a

displacement of points in the images and thus, drift.

• Thirdly, thermal drift occurs since all components in the system are sub-

ject to temperature variations. These variations lead to expansion or

contraction and to a deviation of the measured position.

One may see that too many phenomena intervene in the formation of the drift

to make possible it description by theoretical equations. Empirical solutions

are mandatory: the fitting of experimental drift by a function which define the

model of the data and the use of the latter to estimate the drift in real time. The
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empirical solution proposed in the paper is based on the assumptions described

below.

1. SEM images are produced pixel by pixel following a rastering process.

Rigorously speaking, the calibration of the drift requires the tracking of

the pixels one by one: a drift function is associated to each. However, in

this paper only the global drift between frames is considered that is easily

assessed using cross correlation between pair of frames as exposed below.

2. The second assumption is to consider the drift as a function of two inde-

pendent variables, the conventional time t, and the physical magnification

of the SEM, g: y(g, t), ŷ(g, t), t0 ≺ t ≺ tf , g0 ≺ g ≺ gf . Indeed the drift

is magnification dependant and many experiments require the change of

magnification.

3 Experimental drift computation

Suppose I(x, y) and I ′(x, y) be two pixels belonging to two image frames ac-

quired at two different times. Suppose I ′(x, y) be I(x, y) shifted by (δx, δy)
⊤:

I ′(x, y) = I(x− δx, y − δy) (1)

Let their Fourier transforms be respectively F (u, v) and F ′(u, v):

F ′(x, y) = F (u, v) exp−i2π(
u

M
δx +

v

N
δy) (2)

The correlation between F (u, v) and the conjugate of F ′(u, v) may be:

R(u, v) =
F (u, v)F ′(u, v)

|F (v, v)F ′(u, v)|
= exp−i2π(

u

M
δx +

v

N
δy) (3)
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with M ×N the format of both images. R(u, v) corresponds to the Fourier

transform of the Dirac impulse shifted by δ = (δx, δy)
⊤, in the spatial domain:

δ defines the drift between the pixels I(x, y) and I ′(x, y). The computation of

the inverse Fourier transform H(δx, δy) of all the pixels of both images gives a

kind of histogram with respect to the shift δx and δy: to each shift (δx, δy)
⊤)

is associated the sum of Dirac impulses of the pair of pixels being shifted by

that value. Finally the maximum of H(δx, δy) enables to define the global

∆ = (∆x,∆y)
⊤ drift between the second frame with respect to the former.

A calibration sample with random patterns, then convenient for drift mea-

surement, is positioned upon the stage inside the chamber. It remains static

and a set of images are acquired at time t from t0 to tf with a sampling step T

and magnification g from g0 to gf with a sampling step G. The experimental

drifts are obtained as described in algorithm 1.

for g = g0 to gf do
timer = 0;
t = t0;
for t = t0 to tf do

Acquire an image frame of the calibration sample;
timer = timer + T ;

end

Compute the drift between the first image and the followings as
described above;
Change the area of scan to reduce the effect of the sample
contaminations;

end

Algorithm 1: Algorithm for the computation of experimental drift

4 Modeling

Let consider the SEM as a SISO system with:

• an input u(g, t) equals to zero,

• a state vector x(g, t),
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• an output y(g, t) corresponding to the drift.

Assume this system is described by the following recursive equations:

y(g, t−m) + am−1(g)y(g, t− (m− 1)) + · · ·+ a0(g)y(g, t) = 0 (4)

ai(g − n) + bi,n−1ai(g − (n− 1)) + · · ·+ bi,0ai(g) = 0 (5)

with y(g,m− 1) to y(g, 0) and ai(n− 1) to ai(0) not null.

Above equations lead to the following state models:

x(g, t) = A(g)x(g, t− 1) (6)

y(g, t) = Cx(g, t) (7)

αi(g) = Fiα(g − 1) (8)

ai(g) = Gαi(g) (9)

The states x and α are defined respectively as followed:

x(t) = (y(t), y(t− 1), · · · , y(t− (m− 1))⊤ (10)

αi(g) = (ai(g), ai(g − 1), · · · , ai(g − (n− 1))⊤ (11)

The matrices are defined as followed:
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A(g) =

























0 1 0 · · · 0

0 0 1 · · · 0

0 0 0 · · · 0

0 0 0 · · · 1

−a0(g) −a1(g) −a2(g) · · · −am−1(g)

























(12)

Fi =

























0 1 0 · · · 0

0 0 1 · · · 0

0 0 0 · · · 0

0 0 0 · · · 1

−bi,0 −bi,1 −bi,2 · · · −bi,n−1

























(13)

C =

(

1 0 · · · 0

)

(14)

G =

(

1 0 · · · 0

)

(15)

The problem is the estimation of respectively the matrix A(g) (the weighting

functions ai(g)) and the matrices Fi (the weighting constants bi,j) using the

drift obtained from the calibration images. Many solutions may be found in the

literature but we will adopt the PDA approach which consists in:

1. fitting the experimental data z(s) by some combination of B-splines ẑ(s),

2. minimizing the following quadratic function J = N−1
∑nb

i

[

∑

j=0
ρj

dj

dsj
ẑ
]2

,

with ρj the weighting coefficients (i.e. aj(g) and bi,j) and ẑ corresponding

to ŷ and aj .

The modeling algorithm may be that described in algorithm 2:
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for g = g0 to gf do

for t = t0 to tf do
Estimate the coefficients ai(g) by means of PDA;

end

Estimate the coefficients bi,j by means of PDA;
end

Algorithm 2: Algorithm for modeling

5 Image frames correction

We suppose that the values of x(g, t) are corrupted by a zero mean noise ω(g, t)

with the covariance Q(g). ω is supposed representing all the phenomena in-

volved in the image formation and leading to noise in the image frames. The

drift y(g, t) is obtained from the computation of correlation and then may be

considered as free of noise. As a consequence we will consider the usual noise

of the output to be null. The equations of the system are then:

x(g, t) = A(g)x(g, t− 1) + ω(g, t) (16)

y(g, t) = Cx(g, t) (17)

These equations enable to write the Kalman filter time update equations

(prediction),

x̂(g, t|t− 1) = A(g)x̂(g, t− 1|t− 1) (18)

P(g, t|t− 1) = A(g)P(g, t− 1|t− 1)A(g)⊤ +Q(g) (19)

and the Kalman filter state update equations (correction),

K(g, t) = P(g, t|t− 1)C⊤(C(g)P(g, t|t− 1)C(g)⊤)−1 (20)
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x̂(g, t|t) = x̂(g, t|t− 1) +K(g, t)(y(g, t)− C(g)x̂(g, t|t− 1)) (21)

P(g, t|t) = (I−K(g, t)C(g))P(g, t|t− 1) (22)

P is the state error covariance.

Considering any image frame acquired at time t and magnification g, it

drift may estimated as described above and then removed according to the

algorithm 3.

while true do
Acquire image frame at t and g;
Predict the state according to the equation 18;
Predict the state error covariance according to the equation 19;
Compute the Kalman filter gain according to equation 20;
Update the state according to equation 21;
Update the state error according to equation 22;
Extract the two components of the drift ∆x and ∆y;
Replace every point I(x, y) of the image frame by I(x−∆x, x−∆y);

end

Algorithm 3: Algorithm for filtering and correction

Of course it is necessary to initialize the process before:

1. two images will be acquired at two different times and their drift will be

used as initial data,

2. the state error covariance matrix will be null.

Finally the complete calibration procedure may be described by the flow chart

of figure 2.
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6 Application to a tungsten SEM

6.1 Experimental drift

The calibration method developed so far is applied onto a Jeol JSM 820 SEM

(figure 1). It is equipped with a Tungsten filament that can support from 0.3

up to 30KV of acceleration voltage. During all the experiments the acquisition

characteristics are: high vacuum, 15KV , 20mm working distance, 512 × 512

pixels image format, 30s scanning time per image. The specimen is a gold-on-

silicon specimen with the particle size up to 500 nm (figure 3).

A set of 55 images per magnification are acquired each 30 seconds. The

magnification is tuned from 100× until 30, 000× with a step of 500×. Some of

these images are shown in figure 4 with an illustration of the cross-correlation

resulting peaks between the first frame and the followings (figure 5).

The two components of the drift vector of all images across time and mag-

nification are depicted in figures 6 and 7. The drift increases with time and

magnification in a nonlinear way. It reaches (20, 90)⊤pixels after 20 min and at

30 K× magnification, which is a really high value. It indicates the impossibility

to use that SEM without calibration for long time measurement experiment.

6.2 Correction

The PDA analysis exhibit a 2rd recursive for the time dependence and a 2nd

recursive for the magnification dependence. The performance of the approach

is evaluated through some validating image data. The obtained prediction error

curves across time and scales are depicted in figures 8 and 9. Less than 1.5

pixel error in the x-axis and less than 1 pixel error in y-axis can be observed.
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Also, 0.28 pixel of global RMS error in x-axis and 0.23 pixel of RMS error in

y-axis can be observed.

The computation time is evaluated for four implementations, Matlab, C++,

C++ with OpenMP (parallel programming package) and C, on a Intel dual core

2, 1 GB SDRAM (figure 10). These times are low enough to enable real time

use of the approach since the acquisition speed of the SEM is usually weak to

enable exploitable images.

7 Application to a FE SEM

7.1 Experimental drift

The calibration method is applied onto a Fei Quanta 200 which is equiped with

a FEG of the type Schotky. The experimental conditions are: High vacuum,

15KV , 3 Spot size, 10mm working distance, 1024× 884 pixels per image, 27.8s

scanning time per image. The specimen is a tin-on-carbon specimen with the

particle size up to 60 nm (figure 11).

The two components of the drift vector of all images across time and mag-

nification are depicted in figures 12 and 13.

As expected the results are comparatively better than the one from the

tungsten SEM. It is mainly because of the high stability provided by the FE

SEM.

8 Conclusion

Scanning electron microscopes, particularly those using tungsten filament, are

affected by drift. The calibration (estimation and correction) of this phe-

nomenon is an important issue if one want to use a SEM for measurement
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like in material characterization (deformation measurement) or in visual ser-

voing (sample handling). Some modern SEMs have improved the instabilities

and nonlinearities of the images formation and then reduce the drift drastically.

But these are few and most of SEMs still exhibits huge amount of drift and

then requires the use of calibration method to remove the drift. This problem

is investigated in the paper.

The developments are based on three main ideas:

• the estimation of the drift between a pair of images by means of phase

correlation which gives accurate results,

• the acquisition of some reference images with respect to time and magni-

fication and their use to estimate a model of the drift,

• the real time estimation of the drift using a Kalman filtering and it re-

moving from images.

Their application to the analysis of two types of SEM shows their relevance:

a tungsten filament SEM (Jeol JSM 820) exhibits more important values of

the drift than a field effect gun SEM one (Fei Quanta 200) and in both cases

the drift has been removed with accuracy, finally. The approach enables to

overcome the limitation of state-of-the-art drift calibration methods to handle

smooth variations of magnification scales.

But the experiments point out some limitations of the method which will be

investigated deeper.

The resolution of the method will be improved by replacing the PDA approach

by a more accurate parameters estimation method, and by estimating accurately

the state error covariance from the images of the target specimen.

The work will be extended from global drift over a pair of images to the local

drift of every pair of pixels. Indeed the material is not uniform and the drift is
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specific to every pair.

Recent works with pressure controlled SEM suggest an existing influence of the

pressure on the drift and the spatial distortion especially at very high magnifi-

cations (Arnoult et al., 2010). It is planned to introduce the pressure as another

variable and to quantify its impact. Henceforth, it will be challenging to val-

idate the approach with further experiments at very high magnification scales

as enabled by FEG based SEMs.
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Figure 1: Tungsten SEM: view and composition.
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Figure 2: Flow chart describing the complete calibration procedure proposed

Figure 3: Tungsten SEM: images of the gold-on-silicon calibration specimen at
10K× (left) and 30K× (right).
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Figure 4: Tungsten SEM: some images of the gold-on-silicon calibration speci-
men at four different times and three different magnifications.
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Figure 5: Tungsten SEM: the cross-correlation functions between the first image
and the followings of figure 4: the bright points correspond to the maximum.
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Figure 6: Tungsten SEM: the drift with respect to time and magnification along
x-axis.

24



Figure 7: Tungsten SEM: the drift with respect to time and magnification along
y-axis.
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Figure 8: Tungsten SEM: the absolute error of drift with respect to time and
magnification along x-axis.
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Figure 9: Tungsten SEM: the absolute error of drift with respect to time and
magnification along y-axis.
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Figure 10: Tungsten SEM: the execution speed (in ms) of the correction for four
implementations.

Figure 11: FE SEM: images of the tin-on-carbon calibration specimen at 1K×
(left) and 10K× (right).
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Figure 12: FE SEM: the drift with respect to time and magnification along
x-axis.
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Figure 13: FE SEM: the drift with respect to time and magnification along
y-axis.
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