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Abstract 

 

A prospective study was performed on neurosurgical samples from 18 patients to 

evaluate the use of Full-Field Optical Coherence Tomography (FF-OCT) in brain 

tumor diagnosis. 

FF-OCT captures en face slices of tissue samples at 1µm resolution in 3D with a 

typical 200!m imaging depth. A 1cm" specimen is scanned at a single depth and 

processed in about 5 minutes. This rapid imaging process is non-invasive and 

requires neither contrast agent injection nor tissue preparation, which makes it %#!

particularly well suited to medical imaging applications.  

Temporal chronic epileptic parenchyma and brain tumors such as meningiomas, low-

grade and high-grade gliomas, and choroid plexus papilloma were imaged. A 

subpopulation of neurons, myelin fibers and CNS vasculature were clearly identified. 

Cortex could be discriminated from white matter, but individual glial cells as 

astrocytes (normal or reactive) or oligodendrocytes were not observable. 

This study reports for the first time on the feasibility of using FF-OCT in a real-time 

manner as a label-free non-invasive imaging technique in an intra-operative 

neurosurgical clinical setting to assess tumorous glial and epileptic margins.  

  &#!
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1 Introduction 

 

1.1 Primary CNS tumors  

Primary central nervous system (CNS) tumors represent a heterogeneous group of 

tumors with benign, malignant and slow-growing evolution. In France, annual 

incidence of primary CNS tumors is 5000 new cases (Rigau et al 2011). Despite 

considerable progress in diagnosis and treatment, the survival rate following a 

malignant brain tumor remains low and there are a reported 3000 annual deaths from 

CNS tumors in France (INCa 2011). Overall survival from brain tumors depends on 

the complete resection of the tumor mass, as defined on postoperative imaging, and '#!

associated with updated adjuvant radiation therapy and chemotherapy regimen for 

malignant tumors (Soffietti et al 2010). Therefore, there is a need for evaluating the 

completeness of the tumor resection at the end of the surgical procedure, as well as 

an intraoperative identification of the different components of the tumor, i.e. tumor 

tissue, necrosis, infiltrated parenchyma (Kelly et al 1987). In particular, the 

persistence of non visible tumor tissue or isolated tumor cells infiltrating brain 

parenchyma may lead to additional resection. 

 

For low-grade tumors located close to eloquent brain areas, a maximal safe resection 

sparing functional tissue warrants the current use of intraoperative techniques that (#!

guide a more complete tumor resection. During awake surgery, speech or fine motor 

skills are monitored, while cortical and subcortical stimulations are performed to 

identify functional areas (Sanai et al 2008).  Intraoperative MRI provides images of 

the surgical site as well as tomographic images of the whole brain that are sufficient 

for an approximate evaluation of the abnormal excised tissue, but offer low resolution 
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(typically 1 to 1.5 mm) and produce artifacts at the air-tissue boundary of the surgical 

site.  

 

Histological and immunohistochemical analysis of neurosurgical samples remains the 

current gold standard method used to analyze tumorous tissue. However, these )#!

methods require long (2 to 3 day) multiple steps, and use of carcinogenic chemical 

products that would not be technically possible intra-operatively. To obtain 

extemporaneous information, intra-operative cytological smear tests are performed. 

However the information on the tissue architecture is thereby lost and the analysis is 

carried out on only a limited area of the sample (1mm x 1mm). 

 

Intraoperative optical imaging techniques are recently developed high resolution 

imaging modalities that may help the surgeon to identify the persistence of tumor 

tissue at the resection boundaries. Using a conventional operating microscope, 

illuminating the operative field by a Xenon lamp, gives an overall view of the surgical *#!

site but is limited by the poor discriminative capacity of the white light illumination at 

the surgical site interface.  Better discrimination between normal and tumorous tissue 

has been obtained using fluorescence properties of tumor cells labeled with 5-ALA 

administered preoperatively. Tumor tissue shows a strong ALA-induced PPIX 

fluorescence at 635 and 704 nm when the operative field is illuminated with a 440nm-

filtered lamp. More complete resections of high grade gliomas have been 

demonstrated using 5-ALA fluorescence guidance (Stummer et al 2000), however 

brain parenchyma infiltrated by isolated tumor cells is not fluorescent, reducing the 

interest of this technique when resecting low-grade gliomas.  

 +#!
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Refinement of this induced fluorescence technique has been obtained using a 

confocal microscope and intraoperative injection of sodium fluorescein. A 488 nm 

laser light illuminates the operative field and a tissue contact analysis is performed 

using a handheld surgical probe (field of view less than 0.5 x 0.5 mm) which scans 

the fluorescence of the surgical interface at the 505 – 585 nm band. Fluorescent 

isolated tumor cells are clearly identified at a depth from 0 to 500!m from the 

resection border (Sanai et al 2011), potentially making this technique interesting in 

low-grade glioma resection. 

 

On review of the state-of-the-art, a need is identified for a quick and reliable method "##!

of providing the neurosurgeon with architectural and cellular information without the 

need for injection or oral intake of exogenous markers in order to guide the 

neurosurgeon and optimize surgical resections. 

 

1.2 Full-Field Optical Coherence Tomography: 

Introduced in the early 1990s (Huang et al. 1991), Optical Coherence Tomography 

(OCT) uses interference to precisely locate light deep inside tissue. The photons 

coming from the small volume of interest are distinguished from light scattered by the 

other parts of the sample by the use of an interferometer and a light source with short 

coherence length. Only the portion of light with the same path length as the reference ""#!

arm of the interferometer, to within the coherence length of the source (typically a few 

!m), will produce interference. A two-dimensional B-scan image is captured by 

scanning. Recently, the technique has been improved, mainly in terms of speed and 

sensitivity, through spectral encoding.  
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A new OCT technique called Full-Field Optical Coherence Tomography (FF-OCT) 

enables both a large field of view and high resolution over the full field of observation 

(Dubois et al 2002, 2004). This allows navigation across the wide field image to 

follow the morphology at different scales and different positions. FF-OCT uses a 

simple halogen or light-emitting diode (LED) light source for full field illumination, "$#!

rather than expensive, bulky lasers and point-by-point scanning components required 

for conventional OCT. The illumination level is low enough to maintain the sample 

integrity: the power incident on the sample is less than 1mW/mm2 using deep red 

and near infrared light. FF-OCT provides the highest OCT 3D resolution of 1.5 x 1.5 x 

1 !m3 (X x Y x Z) on unprepared label-free tissue samples down to approximately 

200!m - 300!m depth over a large field of view that allows digital zooming down to 

the cellular level. Interestingly, it produces en face images in the native field view 

(rather than the cross-sectional images of conventional OCT), which mimic the 

histology process, thereby facilitating the reading of images by pathologists. 

Moreover, as for conventional OCT, it does not require tissue slicing or modification "%#!

of any kind (no tissue fixation, coloration, freezing, paraffin embedding). FF-OCT 

image acquisition and processing time is less than five minutes for a typical 1cm2 

sample (Assayag et al 2013) and the imaging performance has been shown to be 

equivalent in fresh or fixed tissue (Assayag et al 2013, Dalimier and Salomon 2012). 

In addition, FF-OCT intrinsically provides digital images suitable for telemedicine. 

 

Numerous studies have been published over the past two decades demonstrating 

the suitability of OCT for in vivo or ex vivo diagnosis. OCT imaging has been 

previously applied in a variety of tissues such as the eye (Swanson et al 1993, 

Grieve et al 2004), upper aerodigestive tract (Betz et al 2008, Ozawa et al 2009, "&#!
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Chen et al 2007), gastrointestinal tract (Tearney et al 1998), and breast tissue and 

lymph nodes (Adie and Boppart 2009, Boppart et al 2004, Hsiung et al 2007, Luo et 

al 2005, Nguyen et al 2009, Zhou et al 2010, Zysk and Boppart 2006).  

 

In the CNS, published studies that evaluate OCT (Bizheva et al 2005, Böhringer et al 

2006, 2009, Boppart et al 1998, Boppart 2003) using time-domain (TD) or spectral 

domain (SD) OCT systems had insufficient resolution (10 to 15µm axial) for 

visualization of fine morphological details. A study of 9 patients with gliomas carried 

out using a TD-OCT system led to classification of the samples as malignant versus 

benign (Böhringer et al 2009). However, the differentiation of tissues was achieved "'#!

by considering the relative attenuation of the signal returning from the tumorous 

zones in relation to that returning from healthy zones. The classification was not 

possible by real recognition of CNS microscopic structures. Another study showed 

images of brain microstructures obtained with an OCT system equipped with an ultra-

fast laser that offered axial and lateral resolution of 1.3µm and 3µm respectively 

(Bizheva et al 2005). In this way, it was possible to differentiate malignant from 

healthy tissue by the presence of blood vessels, microcalcifications and cysts in the 

tumorous tissue. However the images obtained were small (2mm x 1mm), captured 

on fixed tissue only and required use of an expensive large laser thereby limiting the 

possibility for clinical implementation.  "(#!

 

This study is the first to analyze non-tumorous and tumorous human brain tissue 

samples using FF-OCT. 

 

2 Materials and Methods 
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2.1 Instrument 

The experimental arrangement of FF-OCT (Figure 1A) is generally based on a 

configuration that is referred to as a Linnik interferometer (Dubois et al 2002). A 

halogen lamp is used as a spatially incoherent source to illuminate the whole field of 

an immersion microscope objective. The signal is extracted from the background of ")#!

incoherent backscattered light using a phase-shifting method implemented in 

custom-designed software. This study was performed on a commercial FF-OCT 

system (LightCT, LLTech, France). 

 

Capturing “en face” images allows easy comparison with histological sections. The 

resolution, pixel number and sampling requirements result in a native field of view 

that is limited to about 1mm2.  The sample is moved on a high precision mechanical 

platform and a number of fields are stitched together to display a significant field of 

view (Beck et al 2000). The FF-OCT microscope is housed in a compact setup 

(Figure 1B) that is about the size of a standard optical microscope (310x310x800mm "*#!

L x W x H). 
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Figure 1: system schematic (A), photograph (B), sample holder close up (C), sample 

close up (D) 

 

2.2 Imaging Protocol 

All images presented in this study were captured on fresh brain tissue samples from 

patients operated on at the Neurosurgery Department of Sainte-Anne Hospital, Paris. 

Informed and written consent was obtained in all cases following the standard 

procedure at Sainte-Anne Hospital from patients who were undergoing surgical "+#!

intervention. Fresh samples were collected from the operating theater immediately 

after resection and sent to the pathology department. A pathologist dissected each 

sample to obtain a 1-2cm2 piece and made a macroscopic observation to orient the 

specimen in order to decide on which side to image.  The sample was immersed in 

physiological serum, placed in a cassette, numbered, and brought to the FF-OCT 
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imaging facility in a nearby laboratory (15 minutes distant) where the FF-OCT images 

were captured. The sample was placed in a custom holder with a coverslip on top 

(Figures 1C, 1D). The sample was raised on a piston to rest gently against the 

coverslip in order to flatten the surface and so optimize the image capture. The 

sample is automatically scanned under a 10X 0.3 numerical aperture (NA) immersion $##!

microscope objective. The entire area of each sample was imaged at a depth of 

20µm beneath the sample surface. This depth has been reported to be optimal for 

comparison of FF-OCT images to histology images in a previous study on breast 

tissue (Assayag et al 2013). Once FF-OCT imaging was done, each sample was 

immediately fixed in formaldehyde and returned to the pathology department where it 

underwent standard processing in order to compare the FF-OCT images to histology 

slides. 

 

3 Results 

18 samples from 18 adult patients (4 male, 14 female) of age range 19-81 years $"#!

have been included in the study: 1 mesial temporal lobe epilepsy and 1 cerebellum 

adjacent to a pulmonary adenocarcinoma metastasis (serving as the non-tumor brain 

samples), 7 diffuse supratentorial gliomas (4 WHO gradeII, 3 WHO grade III), 5 

meningiomas, 1 hemangiopericytoma, and 1 choroid plexus papilloma. Patient 

characteristics are detailed in Table 1. 

 

3.1 FF-OCT imaging identifies myelinated axon fibers, neuronal cell bodies and 

vasculature in the human epileptic brain and cerebellum 

The cortex and the white matter are clearly distinguished from one another (Figure 

2). Indeed, a subpopulation of neuronal cell bodies (Figures 2B, 2C) as well as $$#!
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myelinated axon bundles leading to the white matter could be recognized (Figure 2D, 

2E). Neuronal cell bodies appear as black triangles (Figure 2C). Myelinated axons 

are numerous, well discernible as small fascicles and appear as bright white lines 

(Figure 2E). As the cortex does not contain many myelinated axons, it appears dark 

grey. Brain vasculature is visible (Figures 2F and 2G), and small vessels are 

distinguished by a thin collagen membrane that appears light grey. Of note, based on 

myelinated axon diameter, we show that FF-OCT lateral resolution is better than 

1.5!m, this value being in accordance with its theoretical value of about 1!m. Video 

1 in supplementary material shows a movie composed of a series of en face 1!m 

thick optical slices captured over 100!m into the depth of the cortex tissue. The $%#!

myelin fibers and neuronal cell bodies are seen in successive layers.  
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Figure 2: Cortex is distinguished from white matter. Cortex appears grey. B-C 

neuronal cell bodies, D-E myelinated axon bundles leading to white matter, F-G 

vasculature. B and F Hemalun and phloxin stainings and D Luxol blue staining. 

Rectangles indicate locations of zooms: top = C, middle = E, bottom = G. Scale bars 

show 500µm (A), 50µm (B, C, F, G) and 80µm (D, E). 

 

 $&#!

The different regions of the human hippocampal formation are easily recognizable 

(Figure 3). Indeed, CA1 field and its stratum radiatum, CA4 field, the hippocampal 

fissure, the dentate gyrus, and the alveus are easily distinguishable. Other structures 

become visible by digital zooming in on the FF-OCT image. The large pyramidal 

neurons of the CA4 field (Figure 3B) and the granule cells that constitute the stratum 

granulosum of the dentate gyrus are visible, as black triangles and as small round 

dots, respectively (Figure 3D).  

 

Figure 3: Hippocampus. CA1 field and stratum radiatum, CA4 field, the hippocampal 

fissure, the dentate gyrus, and the alveus are distinguished. A-B pyramidal neurons $'#!
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of CA4, C-D granular cells constitute the stratum granulosum of the dentate gyrus. A 

and C Hemalun and phloxin stainings. Rectangles indicate locations of zooms: top = 

B, bottom = D. Scale bars show 40µm (A, B), 80µm (C, D), 900µm (E). 

 

 

In the normal cerebellum, the lamellar or foliar pattern of alternating cortex and 

central white matter is easily observed (Figure 4A). By numerical zooming, Purkinje 

and granular neurons also appear as black triangles or dots, respectively (Figure 

4C), and myelinated axons are visible as bright white lines (Figure 4E). 

 $(#!

Figure 4: Cerebellum. A-B: the lamellar or foliar pattern of alternating cortex and 

central white matter. C-D, E-F zooms show cerebellar cortex and granular layer, in E-

F Purkinje and granular neurons are distinguished as black triangles or dots, 

respectively, and myelinated axons as bright white lines. B, D and F Hemalun and 

phloxin stainings. Rectangles indicate locations of zooms: top = C-D, bottom = E-F. 

Scale bars show 500µm (A, B), 350µm (C, D), 100µm (E, F) 
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3.2  FF-OCT images distinguishes meningiomas from haemangiopericytoma in 

meningeal tumors  $)#!

The classical morphological characteristics of a meningioma are visible on the FF-

OCT image: large lobules of tumorous cells appearing in light grey (Figure 5A), 

demarcated by collagen-rich bundles (Figure 5B), which are highly scattering and 

appear a brilliant white in the FF-OCT images. The classical concentric tumorous cell 

clusters (whorls) are very clearly distinguished on the FF-OCT image (Figure 5D). In 

addition the presence of numerous cell whorls centered with central calcifications 

(psammoma bodies) is revealed (Figure 5F). Collagen balls appear bright white on 

the FF-OCT image (Figure 5H) and calcifications appear black generating a target-

like image (Figure 5H). 

 $*#!

Figure 5: Meningioma psammoma. B-C collagen bundles, D-E whorls, F-G 

calcifications, H-I collagen balls. C, E, G and I Hemalun and phloxin stainings. 

Rectangles indicate locations of zooms: top left = H, top middle = F, top right = D, 

bottom = B. Scale bars show 500µm (A), 50µm (B,C), 10µm (D, E, F, G, H, I). 
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Mesenchymal non-meningothelial tumors such as hemangiopericytomas represent a 

classic differential diagnosis of meningiomas. In FF-OCT, the hemangiopericytoma 

shows a more monotonous appearance than meningiomas, with a highly vascular 

branching component with starghorn-type vessels (Figure 6A, 6C). $+#!

 

Figure 6: Hemangiopericytoma. A-B collagen network and branching vascular space.  

Starghorn sinusoids appear white. C-D vessel. B and D Hemalun and phloxin 

stainings. Scale bars show 250µm. 

 

 

3.3 FF-OCT images identifies choroid plexus papilloma  

The choroid plexus papilloma appears as an irregular coalescence of multiple 

papillas composed of elongated fibrovascular axes covered by a single layer of 

choroid glial cells (Figure 7).  By zooming in on an edematous papilla, the axis %##!

appears as a black structure covered by a regular light grey line (Figure 7B). If the 

papilla central axis is hemorrhagic, the fine regular single layer is not distinguishable 

(Figure 7C).  Additional digital zooming in on the image reveals cellular level 

information and some nuclei of plexus choroid cells can be recognized. However, 
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cellular atypia or mitosis are not visible. These represent key diagnosis criteria used 

to differentiate choroid plexus papilloma (grade I) from atypical plexus papilloma 

(grade II). 

 

Figure 7: Papilloma – cauliflower-like aspect. B-E empty papilla, C-D blood filled 

papilla, D-G single layer of plexus cells. E, F and G Hemalun and phloxin stainings. %"#!

Rectangles indicate locations of zooms: top = C, middle = D, bottom = B. Scale bars 

show 150µm (A), 50µm (B, C, E, F), 20µm (D, G). 

 

 

3.4 FF-OCT images detect the brain tissue architecture modifications generated 

by diffusely infiltrative gliomas 

Contrary to the choroid plexus papillomas which have a very distinctive architecture 

in histology (cauliflower-like aspect), very easily recognized in the FF-OCT images  

(Figure 7A to G), diffusely infiltrating glioma do not present a specific tumor 

architecture (Figure 8) as they diffusely permeate the normal brain architecture. %$#!

Hence, the tumor glial cells are largely dispersed through a quite nearly normal brain 

parenchyma (Figure 8E). In our experience, diffuse low-grade gliomas (less than 
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20% of tumor cell density) are not recognized on FF-OCT images. The presence of 

infiltrating tumorous glial cells attested by high magnification histological observation 

(irregular atypical cell nuclei compared to normal oligodendrocytes) is not detectable 

with the current generation of FF-OCT devices. However, in high-grade gliomas, 

(Figure 8G-K), the loss of normal parenchyma architecture is easily observed.  

 

Figure 8: Glioma. Three different cases are shown here (A-B; C-F; G-L). A-B 

microcysts in an oligo-astrocytoma grade 2; C-D microcystic areas in an astrocytoma %%#!
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grade 2; E-F: Enlarged Virchow-Robin spaces in an astrocytoma grade 2; G-H 

microvessels (arrow) and tumorous glial cells in an oligo-astrocytoma grade 3; I-J 

pseudo-palisading necrosis in an oligo-astrocytoma grade 3. Necrosis appears as 

dark diamond shaped area. White powdery substance in center of dark space (white 

arrow) is lysed cells (necrotic cells/centers). Dark arrow on histology shows a vessel. 

K-L vasculature in an oligo-astrocytoma grade 3 is immediately visible in white in FF-

OCT images, while in histology an additional coloration is required to visualize this 

feature. B, D, F, H and J Hemalun and phloxin stainings and CD34 immunostaining 

(L). Scale bars show 250µm (A, B), 100µm (C-F), 20µm (G, H), 10µm (I-L). 

 %&#!

4 Discussion 

We present here the first large size images (i.e. on the order of 1-3 cm") acquired 

using an OCT system that offer a spatial resolution comparable to histological 

analysis, sufficient to distinguish microstructures of the human brain parenchyma.  

Firstly, the FF-OCT technique and the images presented here combine several 

practical advantages. The imaging system is compact, it can be placed in the 

operating room, the tissue sample does not require preparation and image 

acquisition is rapid. This technique thus appears as a promising tool suitable 

intraoperatively to help neurosurgeons and pathologists. 

Secondly, resolution is sufficient (on the order of 1µm axial and lateral) to distinguish %'#!

brain tissue microstructures. Indeed, it was possible to distinguish neuron cell bodies 

in the cortex and axon bundles going toward white matter. Myelin fibers of 1µm in 

diameter are visible on the FF-OCT images. Thus FF-OCT may serve as a real-time 

anatomical locator. 
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In addition, histological architectural characteristics of meningothelial, fibrous, 

transitional and psammomatous meningiomas were easily recognizable on the FF-

OCT images (lobules and whorl formation, collagenous-septae, calcified psammoma 

bodies, thick vessels). In this way, psammomatous and transitional meningiomas 

presented distinct architectural characteristics in FF-OCT images in comparison to 

those observed in hemangiopericytoma. Thus, FF-OCT may serve as an %(#!

intraoperative tool, in addition to extemporaneous examination, to refine differential 

diagnosis between pathological entities with different prognoses and surgical 

managements. 

Diffuse glioma was essentially recognized by the loss of normal parenchyma 

architecture. However, FF-OCT images allowed glioma detection only if the glial cell 

density is greater than 20%. The FF-OCT technique is therefore not currently suitable 

for the evaluation of low tumorous infiltration or tumorous margins. This evaluation at 

the individual tumor cell level is only possible by IDH1R132 immunostaining in IDH1 

mutated gliomas in adults (Preusser et al 2011). One of the current limitations of the 

FF-OCT technique for use in diagnosis is the difficulty in estimating the %)#!

nuclear/cytoplasmic boundaries, the size and form of nuclei as well as the nuclear-

cytoplasmic ratio of cells. This prevents precise classification into tumor subtypes 

and grades.  

To increase the accuracy of diagnosis of tumors where cell density measurement is 

necessary for grading, perspectives for the technique include development of a 

multimodal system (Harms et al 2012) to allow simultaneous co-localized acquisition 

of FF-OCT and fluorescence images. Use of this multimodal setup may be of interest 

in further exploration of the possibility of diagnosis and tumor grading direct from 

optical images, as the fluorescence channel images would show cell nuclei. 
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However, the use of contrast agents for the fluorescence channel means that the %*#!

multimodal imaging technique is no longer non invasive, and this may be undesirable 

if the tissue is to progress to histology following optical imaging. 

 

In its current form therefore, FF-OCT is not intended to serve as a diagnostic tool, but 

should rather be considered as an additional intraoperative aid in order to determine 

in a short time whether or not there is suspicious tissue present in a sample. It does 

not aim to replace histological analyses but rather to complement them, by offering a 

tool at the intermediary stage of intraoperative tissue selection. In a few minutes, an 

image is produced that allows the surgeon or the pathologist to assess the content of 

the tissue sample. The selected tissue, once imaged with FF-OCT, may then %+#!

proceed for conventional histology procedures in order to obtain the full diagnosis 

(Assayag et al 2013, Dalimier and Salomon 2012).  

 

Development of FF-OCT to allow in vivo imaging is underway, and first steps include 

increasing camera acquisition speed. First results of in vivo rat brain imaging have 

been achieved with an FF-OCT prototype setup, and show real-time visualization of 

myelin fibers (Ben Arous et al 2011) and movement of red blood cells in vessels 

(Binding et al 2011). To respond more precisely to surgical needs, it would be 

preferable to integrate the FF-OCT system into a surgical probe. Work in this 

direction is currently underway and preliminary images of skin and breast tissue have &##!

been captured with a rigid probe FF-OCT prototype (Latrive and Boccara 2011). 

 

In conclusion, we have demonstrated the capacity of FF-OCT for imaging of human 

brain samples. This technique has potential as an intraoperative tool for determining 
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tissue architecture and content in a few minutes. The 1µm3 resolution and wide field 

down to cell level views offered by the technique allowed identification of features of 

non-tumorous and tumorous tissue such as myelin fibers, neurons, 

microcalcifications, tumor cells, microcysts, and blood vessels. Correspondence with 

histological slides was good, allowing use in clinical practice for tissue selection for 

biobanking for example. Future work to extend the technique to in vivo imaging by &"#!

rigid probe endoscopy is underway. 
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Supplementary material  

 

Video 1 in shows a movie composed of a series of en face 1!m thick optical slices 

captured over 100!m into the depth of the cortex tissue. The myelin fibers and 

neuronal cell bodies are seen in successive layers. Field size is 800!m x 800!m. 


