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Efficient image signatures and similarities using tensor products of local descriptors

David Picard, Philippe-Henri Gosselin

ETIS, CNRS ENSEA Universite Cergy-Pontoise F-95000 Cergy-Pontoise

Abstract

In this paper, we introduce a novel image signature effective in both image retrieval and image classification. Our approach is based
on the aggregation of tensor products of discriminant local features, named VLAT (vector of locally aggregated tensors). We also
introduce techniques for the packing and the fast comparison of VLATs. We present connections between VLAT and methods like
kernel on bags and Fisher vectors. Finally, we show the ability of our method to be effective for two different retrieval problems,
thanks to experiments carried out on similarity search and classification datasets.
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1. Introduction

Content Based Image Retrieval (CBIR) has been a main topic
of interest at the the crossroad of many research communi-
ties for the last 20 years. These communities include (but
are not limited to) Image Processing, Computer Vision, Ma-
chine Learning and Data Mining. During these years, inter-
esting results were obtained on image collections designed on
purpose by the community. With the tremendous amount of
available images, CBIR is now even more challenging. For
instance, Flickr repository contains more than 6 billion im-
ages as of 2011. These amounts also increased the number of
searched concepts, and raised the need for computational effi-
ciency. In [1], Smeulders et al. identify several main areas for
CBIR, depending on what the user intends, like image search
and image classification tasks.

In the search task, we are interested in the fast retrieval of
a single image and its near duplicates within a very large col-
lection [2]. For instance, let us consider a collection of images
taken from Paris streets. A typical search query could be to re-
trieve all images of the front side of the Sacré Cœur. The query
can be instantiated by presenting an example image to the sys-
tem, or by typing a keyword. In such system, the collection is
huge (up to several millions of images), and the resulting sets
are small (usually less than ten images). The main challenges
are threefold. The first one is to obtain a good recall, i.e. to
retrieve almost all targeted images. The second challenge is to
perform the retrieval with low computational complexity with
respect to the collection size. In many cases, sub linear com-
plexity is targeted [3, 4, 5], but linear complexity can also be
relevant if indexes are small and/or similarity can be computed
very quickly [6]. The third challenge is to lower the storage
cost of the indexing method [7].
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In the classification task, the goal is to label a collection of
images with respect to a set of predetermined semantic cate-
gories. The categories are well defined objects (such as per-
sons, cars, etc) or more complex semantic grouping of images
(such as indoor, landscapes, urban areas, etc). Recent meth-
ods make a heavy use of machine learning techniques, such as
SVM [8, 9, 10] or Boosting [11, 12]. A classifier is trained
for each desired concept on a separate image set where corre-
sponding labels are available. These classifiers are then used to
label the collection. In such systems, the main challenges are
twofold: firstly, to produce accurate classifiers, and secondly to
perform the labeling in reasonable time.

In this paper, we introduce a novel image signature for im-
age search and image classification tasks. We first present in
the second section the characteristics of these tasks, and an
overview of state of the art approaches in these scopes. Then we
detail our propositions based on tensors aggregation in the third
section, and techniques to save memory and computations. In
the fourth section, we present results for similarity search and
classification tasks on Holidays and VOC2007 datasets. In the
last section, we discuss the relationships between our proposi-
tions and current methods from the literature.

2. State of the art image signatures and similarities

As stated in the introduction, CBIR offers several challeng-
ing tasks. Thus, current retrieval systems often differ depending
on which tasks they address. However, we can identify from all
systems a significant number of similar processing stages. The
first one is the automatic extraction of a set of highly discrim-
inant local features from the images [13, 14]. This set can be
the result of specifically detected or uniformly sampled regions
of interest [15]. In all cases, we assume in this paper that a set
Bi = {bri}r of vector descriptors bri ∈ RD are extracted from
image i.

The goal of the hereby studied step is to produce an image
signature and the associated similarity measure. It that can ei-
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ther be used for database indexing in the case of the search task,
or be taken as input by a learning machine in the case of the
classification task. In this scope, two main approaches can be
highlighted. The first consists in keeping all descriptors from
each image, and then in designing complex similarity measures
on these sets. The second approach produces a single vector
from the aggregation of all descriptors and uses standard vector
based similarities.

2.1. Kernels on Bags approaches

Given two sets (named bags) Bi and B j of local descriptors
extracted from image i and image j, and a similarity function
k(·, ·) on descriptors, a simple way of measuring the similarity
K(·, ·) over the bags is to compute the sum of similarity of all
possible pairing between elements of Bi and B j:

K(Bi,B j) =
∑

r

∑
s

k(bri,bs j) (1)

This approach is known as the kernel on bags method and has
been widely studied in the machine learning community [16].
Providing k is a kernel, it is easy to prove that K is also a kernel
and thus can be used with any kernel learning algorithm.

However, the sum kernel often offers low discriminative out-
put, since it is the average similarity between elements of the
bags. It is even more the case when the number and variety
of descriptors in bags increase. To tackle this problem, Lyu
proposed a refined sum kernel by increasing the discriminative
power of the minor kernel k [17]:

Klyu(Bi,B j) =
∑

r

∑
s

k(bri,bs j)p (2)

Providing k has output in the range [0, 1], power parame-
ter p ≥ 1 increases the discriminative ability of the minor ker-
nel. Thus, only highly similar elements of the bags will be ac-
counted for.

Gosselin et al. [18] further refined the power sum kernel by
approximating a soft max function over the similarities between
elements in the bags:

Kso f tmax(Bi,B j) =

∑
r

∑
s

k(bri,bs j)p


1
p

(3)

When p increases, k tends to the maximum similarity
k(bri,bs j) among possible pairs (bri,bs j). It is however not
known if this function is a Mercer kernel. In practice, it is ob-
served to be semi-definite positive (sdp) on many datasets.

Further investigations on kernel on bags similarities have
been proposed recently, which have been proven to be success-
ful in many areas such as image retrieval, interactive search and
graph matching [19, 20, 21].

The main drawback of kernel on bags methods is their high
computational cost. The average cost is O(T 2D) where T is
the average size of the bags and D the dimension of local fea-
tures. For very large bags (several thousands of features), the
cost becomes prohibitive, especially if the similarity is used
intensively by the learning algorithm. Although acceleration

schemes have been proposed [22], we believe this prohibitive
cost is the main argument why kernels on bags have not been
widely used in CBIR.

2.2. Aggregating approaches

A way of getting rid of the complexity of the bags is to find
a mapping function encoding a set of descriptors into a single
vector.

2.2.1. Bag of Words
Historical approaches for mapping the set of descriptors into

a single vector compute a visual codebook composed of pro-
totypes of descriptors, and then find the occurrences of these
prototypes (denoted visual codewords or visual words) within
an image [23, 24, 25]. The codebook is generally obtained by
clustering a large set of descriptors. The approach is known as
the “Bag of Words” (BoW) method, and has been adapted from
text retrieval methods.

A simple way of mapping a set of descriptors into a vector is
to compute a histogram of visual words. Further improvements
consist in changing the value added to the related bin of the
histogram. Gemert et al. [26] propose various schemes based
on visual word ambiguity, where the assigned value is related
to the similarity of the descriptor to the selected visual word,
and can be normalized with respect to its similarity to other
visual words.

2.2.2. Coding/pooling schemes
In [27], the authors propose to decompose the BoW approach

into two distinct steps. The first step, called the coding step, in-
volves the mapping of a single descriptor onto the codebook. In
the second step, called the pooling step, all mapped descriptors
are aggregated into a single vector.

In first BoW approaches, the values of a mapped descrip-
tor are all zeros, except for the dimension corresponding to the
closest visual word. The pooling step is simply the sum of all
mapped vectors.

In the coding scheme of [27], a mapped vector α? is the result
of a reconstruction problem :

α? = argmin
α
||b −Wα||2 + ||d ◦ α||2 (4)

With b being a descriptor, W the codebook matrix, α the
projection coefficients and d a locality constraint (e.g. farther
visual words have a higher cost than closer words). The output
vector α? is thus optimized with respect to its reconstruction er-
ror and constrained to the projection on few nearby codewords.

They also propose an alternative to the sum pooling step by
computing the maximum coefficient among descriptors of the
set. The max pooling step is shown to have great impact on the
classification performances [28].

Other pooling steps include taking into account the spatial
distribution of visual words. In [29], the authors propose a spa-
tial pyramid matching scheme (SPM) where descriptors are ag-
gregated in a subarea of the image depending on scale parame-
ters, inspired by the Pyramid Matching Kernel of [30].
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2.2.3. Fisher Vectors - VLAD
More recently, Perronnin et al. [31, 32] proposed a novel ap-

proach to map a set of descriptors to a single vector. In this
method, the authors assume that the bag of descriptors Bi can
be modeled by a Gaussian mixture, with a probability density
function denoted as uλ of parameters λ. The derivative of the
log-likelihood of Bi with respect to the parameters describes
each parameter contribution to the global likelihood:

GBi
λ =

1
T
∇λ log uλ(Bi) (5)

Using the Fisher information matrix, one can rewrite this
derivative such that the dot product between rewritten vectors
is an efficient kernel. The mapped vectors are thus the follow-
ing for each Gaussian c:

GBi
µ,c =

1
T
√
ωc

∑
r

γc(bri)
(

bri − µc

σc

)
, (6)

GBi
σ,c =

1
T
√
ωc

∑
r

γc(bri)
[
(bri − µc)2

σ2
c

− 1
]
, (7)

Where (ωc,µc, σc) are the weight, mean and standard devia-
tion of Gaussian c, and γc(bri) the normalized likelihood of bri

to Gaussian c. The output vector is obtained by concatenation,
Gµ =

⋃
c GBi
µ,c and Gσ =

⋃
c GBi
σ,c. The final feature vector is of

size 2 × D ×C, where D is the dimension of input space and C
the number of Gaussians.

To our knowledge, Fisher vectors and related methods ob-
tain state of the art classification performances when using sin-
gle SIFT descriptors with linear classifier and when properly
normalized [33, 34]. These properties make them attractive
for large scale classification challenges, as linear classifiers are
almost costless compared to kernel based classifiers. Further-
more, the number of Gaussians needed to achieve good perfor-
mances is far less than the typical size of the codebook in the
BoW approaches. The clustering of high-dimensional spaces in
many cluster being a difficult task, the Fisher vectors method is
consequently more robust.

In [32], Jegou et al. propose an approximation of Fisher vec-
tors by aggregating local descriptors (VLAD - Vectors of Lo-
cally Aggregated Descriptors). Given a codebook obtained by
clustering a large set of descriptors, they compute the centered
sum of all descriptors Bci = {brci}r ⊆ Bi from image i and clus-
ter c:

νc =
∑

r

brci − µc (8)

The output vector is obtained by concatenating νc for all c,
and is thus of size D×N. Note that VLAD and FV are used with
smaller codebook (from 16 to 4096) than BoW related tech-
niques (from 4000 to millions). Consequently, the computation
of the codebook is faster, and results are more stable from one
codebook to another.

3. VLAT - A tensor based aggregation

Our approach extends VLAD by aggregating tensor prod-
ucts of local descriptors, hence the name Vector of Locally Ag-
gregated Tensors (VLAT). Preliminary results were published
in [35]. We first compute a visual codebook of C visual words
over a sample image set S using k-means. Let us denote µc the
center of cluster c and Tc the mean tensor of centered descrip-
tors belonging to cluster c:

µc =
1
|c|

∑
i

∑
r

brci (9)

Tc =
1
|c|

∑
i

∑
r

(brci − µc)(brci − µc)>, (10)

With |c| being the total number of descriptors in cluster c for
the whole image sample set S , and brci the descriptors of image
i belonging to cluster c.

To compute the signature of an image i, and for each cluster
c, we aggregate in Ti,c centered tensors of centered descriptor:

Ti,c =
∑

r

(brci − µc)(brci − µc)> − Tc (11)

Each Ti,c is flattened into a vector vi,c. The VLAT signature
vi for image i consists in the concatenation of vi,c for all clusters
c:

vi =
(
vi,1 . . . vi,C

)
(12)

The size of then VLAT is C × D × D, with C the number of
clusters and D the dimension of descriptors. However, due to
symmetry in the proposed tensors, half of the coefficients are
discarded.

For each cluster c, vi,c can be seen as the difference between
the covariance matrix of descriptors in Bi belonging to cluster c
and the covariance matrix Tc of cluster c. VLAT thus measures
deviations of second order statistics of image i with respect to a
reference cluster c, whereas VLAD measures deviations of first
order statistics only. Theoretically, higher order of tensors can
be considered, measuring deviations of higher order statistics in
Bi with respect to cluster c.

As in [33], we can further improve VLAT by applying proper
normalization steps. First we compute the power norm of vi to
produce vector v′i , which is simply raising each coordinate j of
vi to power α:

∀ j, v′i[ j] = sign(vi[ j])|vi[ j]|α, (13)

With α = 0.5 as a typical parameter value. Then, we compute
the signature xi of image i by applying `2-norm to v′i :

xi =
v′i
||v′i ||2

(14)

It is worth noticing that VLAT is very easy to compute and
does not require complex models of the feature space. Any
method producing a clustering of the descriptors can be used
to obtain the signatures. Moreover, VLAT is very fast to com-
pute on current CPU and GPGPU, since most computations are
performed with simple linear algebra.
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3.1. Scalability issues - packing

The size in VLAT signature is quadratically increasing with
descriptor space dimension D, and thus quickly leads to large
feature vectors. A first and simple way of reducing this over-
head is to apply principal component analysis (PCA) to visual
descriptor space. Typically, SIFT descriptors can be reduced
from D = 128 to D′ = 64 dimension with negligible lost of in-
formation. Furthermore, PCA can be used to perform a whiten-
ing step before VLAT computations.

In order to save memory use, we propose a packing proce-
dure to reduce the size of VLAT indexes. The idea is to store the
tensor of cluster c for image i in a format close to the original
expression, i.e. a bag of virtual descriptors {pr′ci}r′ci. Similarly
to Eq. (11), the approximate aggregated tensor is expressed us-
ing {pr′ci}r′ci:

Pi,c =

n′ci∑
r′=1

λr′cipr′cip>r′ci − nciTc (15)

where we chose the parameters {(λr′ci,pr′ci)}r′ such as the er-
ror with the original tensor Tic is minimized. We evaluate this
error as the relative Euclidean distance between the two tensors:

Err(Pi,c,Ti,c) =
||Ti,c − Pi,c||
||Ti,c||

(16)

The parameters {(λr′ci,pr′ci)}r′ are computed using an eigen-
decomposition of image descriptors Bci falling in cluster c:

Bci = PciΛciP>ci =

nci∑
r=1

λrprcip>rci (17)

where Pci is an orthonormal matrix andΛci a diagonal matrix.
Next we select the n′ci largest eigenvalues such as a target er-

ror is reached. Let us note that the error can be easily computed
since the prci vectors are orthonormal:

||Ti,c − Pi,c||2 = ||
nci∑
r=1

λrprcip>rci −
n′ci∑

r′=1

λr′pr′cip>r′ci||2

= ||
nci∑

r=n′ci+1

λrprcip>rci||2

=

nci∑
r=n′ci+1

λ2
r

A first use of this packing procedure for the comparison of
two images i, j is to reconstruct VLAT estimates T̂i,c and T̂ j,c

using the packed VLATs Pi,c and P j,c, and then compute the
dot product 〈T̂i,c, T̂ j,c〉. This is relevant for small codebooks,
but with larger ones, it is much more efficient to compute a
straight comparison of packed VLATs:

〈Pi,c,P j,c〉 =
〈 n′ci∑

r′=1

λr′cipr′cip>r′ci − nciTc,

n′c j∑
s′=1

λs′c jps′c jp>s′c j − nc jTc

〉

=

n′ci∑
r′=1

n′c j∑
s′=1

λr′ciλs′c j〈pr′cip>r′ci,ps′c jp>s′c j〉 + ncinc j||Tc||2

−nc j

n′ci∑
r′=1

λr′ci〈pr′cip>r′ci,Tc〉 − nci

n′c j∑
s′=1

λs′c j〈ps′c jp>s′c j,Tc〉

=

n′ci∑
r′=1

n′c j∑
s′=1

λr′ciλs′c j〈pr′ci,ps′c j〉2 + ncinc j||Tc||2 − nc j fci − nci fc j

(18)
with fci =

∑n′ci
r′=1 λr′ci〈pr′cip>r′ci,Tc〉.

Thanks to some index overhead to store fci values, the com-
putational complexity is O(C ×D×n′ci ×n′c j). With larger code-
books, image descriptors are more and more spread into differ-
ent clusters, and n′ci × n′c j tends to be negligible when compared
to descriptors dimensions D. This context leads a complexity
of O(C×D), which is far less than the O(C×D×D) complexity
of unpacked VLATs.

Packed VLATs significantly reduce memory footprint, espe-
cially with larger codebooks. For instance, on the Holidays
dataset [36] with 1024 clusters, standard VLATs needs about
8MB per image, whereas the packed VLATs with no recon-
struction error need less than 1.5MB per image. This size can
be reduced at the cost of some loss of performance. For in-
stance with 20% reconstruction error, memory footprint drops
to 0.8MB. This size can be compared to usual BoW signatures
with 200.000 values, which also needs 0.8MB of storage using
32-bit float values. Furthermore, the size of packed VLATs is
bounded by the number of extracted descriptors, whereas the
size of standard VLAT always grows with the size of the code-
book.

Let us note that this packing technique can be combined with
other techniques. One can reduce the descriptors dimension
though PCA, like we mentioned earlier. For instance, with the
same example of 1024 clusters and descriptors reduced in size
to 64 dimensions, the size of the standard VLAT is then about
2MB, and with a 20% reconstruction error, the size of a Packed
VLAT is around 0.2MB. Size can be further reduced using post-
processing techniques, like Kernel PCA and/or Product Quan-
tizer [6]. In the former case, Packed VLAT can be used to speed
up the processing, and signature of a few kB can be created.
In the later case, very small signatures can be created (a few
bytes).
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Query image Similar images

Figure 1: Images from Holidays database.

4. Experiments

We carried out experiments of both image search and image
classification CBIR tasks on well known datasets.

4.1. Search task - Holidays dataset

The Holidays dataset [36] consists in 1491 images of holi-
days photographs (cf. Fig. 1). This set contains 500 categories,
each one depicting a specific scene or object. The first image of
each category is considered as a query, and the correct answers
are the remaining images of the category. We used the same
descriptors and experimental setup as in [37]. All parameters
of the method (dictionaries and mean tensors) were trained us-
ing the 10,000 first images of the Flickr60k dataset. Images
and SIFT descriptors from this dataset are also available on the
holidays website.

The first results are displayed in Table 1, where we present
the mean Average Precision (mAP) according to different code-
books and error rates using Packed VLATs and power normal-
ization. Let us first focus on the last column, where results with-
out any reconstruction error are presented. As we can see, we
obtain very good performances, and with 1024 or more clusters
we obtain results close to 75% of mAP. This is comparable to
results of Hamming Embedding in [38] with the same descrip-
tors. However, unlike [38], we use a simple dot product metric
and no geometric constraint based re-ranking techniques. Now
if we observe the effect of packing with reconstruction error,
mAP decreases a bit with 10% and 20% error rates, and starts
to drop with more than 30% reconstruction error.

We present in Figures 2(a) and 2(b) curves that show rela-
tions between the memory size of features and the correspond-
ing performance. Both figures (a) and (b) show the mAP ac-
cording to the average memory footprint of a Packed VLAT in-
dex for one image. The only difference between the two figures
is the use of the power normalization (cf Eq. (13)). Each curve
in these figures is with the same codebook, but with different
error rates. The first point to the left of each curve is the result
with 50% error rate, the next one with 40%, etc. The last point
to the right of each curve is the result without any error.

When error rate decreases, the size of indexes increases reg-
ularly before reaching a maximum. This maximum is related

Error rate
Dict. Size 50% 40% 30% 20% 10% 0%

64 53.6 56.9 59.0 61.8 63.7 64.1
256 57.7 62.2 65.1 67.9 70.3 71.5
1024 58.7 64.3 68.5 72.7 74.7 74.8
4096 61.2 65.7 69.6 72.3 74.1 76.1

Table 1: Mean Average Precision (%) using Packed Vectors of Locally Aggre-
gated Tensors on Holidays database, with different codebook sizes and recon-
struction error rates.

to the average size of extracted descriptors, which is around
1.35MB in these experiments (around 2,768 SIFT vectors per
image using 32-bit float values). As we observed previously,
there is a large mAP decrease with more than 30% of error
(third dot from the left of each curve). We can also see that with
1024 clusters and higher, all parameters return close values: the
mAP is about the same, the indexes size is near 1.45MB with
no error and near 1MB with 10% error. If we consider power
normalization, we observe a gain around 5%.

However, as one can see in Figures 3(c) and 3(d), the com-
putational time is very different. These figures are similar to
the previous ones, with the difference that mAP is presented ac-
cording to the average computation time for the comparison of
two image features in milliseconds. Without power normaliza-
tion, we can use the computational trick we presented in sec-
tion 3.1, Eq. (18) which saves a lot of computations, especially
if we use large codebooks. However, with power normalization,
we have to reconstruct the VLAT vector during image com-
parison, which leads to more computations. Let us note that
these computational times are still very low when compared to
kernels on bag computational times. For instance, the average
computational time for the comparison of two images using the
bag kernel of Eq. (1) with a Gaussian minor kernel is about
1000 ms.
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Figure 2: Mean Average Precision (%) using Packed Vectors of Locally Aggregated Tensors on Holidays database, according to the average size of image indexes.

64 clusters
256 clusters
1024 clusters
4096 clusters

0.50

0.55

0.60

0.65

0.70

0.75

0.0 0.5 1.0
Com putat ional t im e (m s)

P
e

rf
o

rm
a

n
ce

 (
%

 m
A

P
)

64 clusters
256 clusters
1024 clusters
4096 clusters

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0 5 10 15 20 25
Com putat ional t im e (m s)

P
e

rf
o

rm
a

n
ce

 (
%

 m
A

P
)

(c) Without power normalization (d) With power normalization

Figure 3: Mean Average Precision (%) using Packed Vectors of Locally Aggregated Tensors on Holidays database, according to the average computational time for
the comparison of two image features.
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aeroplane* bicycle* bird* boat bottle

bus car* cat* chair cow

table dog* horse* bike person*

plant sheep sofa train* tv

Figure 4: Images from PASCAL Visual Object Classes Challenge 2007. *Cat-
egories where our method gives the best results.

4.2. Classification task - VOC 2007 database
The PASCAL-VOC challenge is one of the most used bench-

mark for the image classification task. In its 2007 revision,
it consists in about 10,000 images and 20 categories [39], as
shown on figure 4. The parameters of the method (dictionaries
and mean tensors) are trained using the canonical train sub-
set. These parameters are the same for all categories. For each
category, a classifier is trained on the canonical trainval sub-
set, and evaluated on the test subset. The standart performance
measurement for this dataset is mean Average Precision (mAP)
over the 20 classes.

4.2.1. Experimental setup
We extracted dense simplified SIFT features on a 2 pixels

grid. Our implementation is close to that of the software pro-
vided by [34]. We used 4 different scales of SIFT with 4, 6, 8
and 10 pixels cell size respectively. We used a simple k-means
clustering in order to obtain a codebook of 512 clusters. Prior to
clustering, SIFT are compressed to 48 dimensions using PCA.

VLAT vectors are normalized using the power norm with
α = 0.5, then further `2 normalization is applied. The classi-
fication was done using linear SVM trained with a fast stochas-
tic gradient descent algorithm provided by [40], for which the
hyper-parameters (C and the number e of epochs) are set to de-
fault values (C = 10 and e = 100), regardless of the category.

4.2.2. Results
In table 2, we report results of Fisher Vectors (FK and IFK)

taken from [33], linear local coding (LLC), supervectors (SV)
and improved Fisher vectors (FK) taken from [34], and the win-
ning method of VOC 2007 campain (VQ) along with our VLAT
implementation. We also report in this table the presence of sig-
nificant characteristics of compared methods, denoted by a ×
symbol. Namely, VQ and IFK from [33] used multiple features
(e.g. sift and colors) to achieve these performances, whereas

methods from [34] (FK, LLC and SV) use an ultra-dense SIFT
sampling strategy (every 2 or 3 pixels) and a spatial pyramid
scheme.

We achieve 60.8% mAP, which is less than FK, but better
than recent methods like LLC and SV, which sounds promising
for VLAT. In table 3, we report detailed comparison of VLAT
with the bests methods of [34]. The VLAT approach manages
to obtain the best results on categories airplane, bicycle, bird,
car, cat, dog, horse, person and train.

5. Discussion

In the hereby section we discuss the relationship of VLAT to
well known approaches.

5.1. Relation to Kernels on Bags

Using the dot product as minor kernel for the power kernel
of Lyu et al., and with parameter p = 2, leads to the following
similarity function:

K(Bi,B j) =
∑

r

∑
s

〈bri,bs j〉2 (19)

This can be factorized as follows:

K(Bi,B j) =
∑

r

∑
s

(b>ribs j)2 (20)

=
∑

r

∑
s

(brib>ri)
>bs jb>s j (21)

=

∑
r

brib>ri

> ∑
s

bs jb>s j

 (22)

This factorization is indeed the dot product applied to the
sum of tensors products of all {bri}r. Hence, our method seems
to be closely related to kernels on bags.

However, we observe two differences with our VLAT ap-
proach. Firstly, our approach splits the bag according to a clus-
tering, and sums the contribution of each split. The equivalent
kernel on bags would be the following:

K(Bi,B j) =
∑

c

∑
r

∑
s

〈bcri, bcs j〉2 (23)

The second difference lies in the centering applied to the ten-
sors. This centering can be viewed as a affine transform in
mapped space. Thus, VLAT appears to be a kernel on bags
with the following explicit mapping:

K(Bi,B j) =
∑

c

∑
r

∑
s

〈bcrib>cri − Tc , bcs jb>cs j − Tc〉 (24)

VLAT is thus the explicit linear writing of a highly non-linear
kernel on bags. Although implicit mappings have been a ma-
jor advantage allowing efficient learning algorithm with non-
linear similarities using the kernel trick, explicit mappings have
a clear computational advantage. They transfer the highest part
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VQ[39] IFK [33] FK [34] LLC[34] SV[34] VLAT
NLK ×
MF × ×
SP × × × × ×

UDSS × × × ×
mAP 59.3 60.3 61.7 57.3 58.2 60.8

Table 2: Mean Average Precision (%) of different methods. Results are reported from respective papers. For the methods, VQ: vector quantization, IFK: improved
fisher vectors, FK: fisher Vectors, LLC: Linear Local Coding, and SV: Supervectors. For the configurations, NLK: Non-linear Kernel, MF: Multiple Features, SP:
Spatial Pyramid, and UDSS: Ultra-dense Sift sampling (i.e. every 2 or 3 pixels).

airplane bicycle bird boat bottle bus car
FK 79.0 67.4 51.9 70.9 30.8 72.2 79.9
SV 74.3 63.8 47.0 69.4 29.1 66.5 77.3

VLAT 81.7 72.6 53.1 69.5 27.4 68.9 82.5
cat chair cow table dog horse mbike

FK 61.3 56.0 49.6 58.4 44.8 78.8 70.8
SV 60.2 50.2 46.5 51.9 44.1 77.9 67.1

VLAT 61.4 52.8 46.3 56.1 48.1 80.8 70.0
person plant sheep sofa train monitor mean

FK 85.0 31.7 51.0 56.4 80.2 57.5 61.7
SV 83.1 27.6 48.5 51.1 75.5 52.3 58.2

VLAT 86.4 31.7 36.9 52.3 81.8 55.7 60.8

Table 3: Mean Average Precision (%) for Fisher vectors (FK), Supervectors (SV) and VLAT on all categories of VOC2007 dataset. Results are reported from [34].

of the cost from the online similarity computation to the offline
signature calculation.

This relationship can explain the excellent behavior of VLAT
in image search task, where descriptor matching methods
achieve the best performances.

5.2. Relation to Fisher Vectors
In order to relate VLAT to Fisher Vectors (FV), let us con-

sider the diagonal terms in equation 11:

Ti,c[t, t] =
∑

r(brci[t] − µc[t])2 − σc[t]2

= σc[t]2 ∑
r

[
(brci[t]−µc[t])2

σc[t]2 − 1
] (25)

With σc being the standard deviation vector of cluster c. In
these diagonal only terms, the main appearing differences with
Fisher Vectors are the following: contributions are summed for
all descriptors in FV, whereas they are summed only for the
descriptors of the corresponding cluster in VLAT. Moreover,
FV weight the contribution by the likelihood of descriptors to
the corresponding cluster.

FV are also normalizing the resulting sum by the number of
descriptors in the bags and the weight of the clusters, which is
consistent with assigning descriptors to all clusters. In VLAT,
as the assignment is only with respect to the corresponding clus-
ter, there is no need to such normalization schemes. In fact,
VLAT diagonal can be seen as a hard assignment variant of FV.

This close relationship between VLAT and FV can explain
their comparative performances in image classification.

6. Conclusion

In this paper, we introduced a new efficient image signature
in two different tasks on content based image retrieval, i.e. im-
age search and image classification. Our scheme is based on

the aggregation of tensor products of local descriptors named
VLAT. We showed our VLAT approach to be closely related to
kernels on bags methods which are known to be efficient for
image search tasks. We also found relation between VLAT and
Fisher vectors, which are known to be efficient in image classi-
fication tasks. We also carried out experiments on well known
image datasets for these two tasks (namely VOC2007 and Hol-
idays), and achieved near state of the art performances. These
results highlight the ability of our signatures to be effective in
similarity search and in classification. Moreover, we provide
an easy generalization of our approach to higher order of ten-
sors. Future works will investigate the extra information added
by these higher orders.
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