
HAL Id: hal-00799068
https://hal.science/hal-00799068v1

Submitted on 11 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Boosted kernel for image categorization
Alexis Lechervy, Philippe-Henri Gosselin, Frédéric Precioso

To cite this version:
Alexis Lechervy, Philippe-Henri Gosselin, Frédéric Precioso. Boosted kernel for image categorization.
Multimedia Tools and Applications, 2013. �hal-00799068�

https://hal.science/hal-00799068v1
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Boosted Kernel for Image Categorization

Alexis Lechervy · Philippe-Henri

Gosselin · Frédéric Precioso

Received: date / Accepted: date

Abstract Recent machine learning techniques have demonstrated their ca-
pability for identifying image categories using image features. Among these
techniques, Support Vector Machines (SVM) present the best results, partic-
ularly when they are associated with a kernel function. However, nowadays
image categorization task is very challenging owing to the sizes of benchmark
datasets and the number of categories to be classified. In such a context, lot
of effort has to be put in the design of the kernel functions and underlying
high-level features.

In this paper, we propose a framework to learn an effective kernel function
using the Boosting paradigm to linearly combine weak kernels. We then use
a SVM with this kernel to categorize image databases. More specifically, this
method create embedding functions to map images in a Hilbert space where
they are better classified. Furthermore, our algorithm benefits from boosting
process to learn this kernel with a complexity linear with the size of the training
set.

Experiments are carried out on popular benchmarks and databases to
show the properties and behavior of the proposed method. On the PASCAL
VOC2006 database, we compare our method to simple early fusion, and on
the Oxford Flowers databases we show that our method outperforms the best
MKL techniques of the literature.

Keywords Image categorization · Kernel Machines · Boosting

Alexis Lechervy · Philippe-Henri Gosselin
ETIS - CNRS - ENSEA - Univ of Cergy-Pontoise, BP44 F95014 Cergy-Pontoise - France
email: {alexis.lechervy,philippe-henri.gosselin}@ensea.fr

Frédéric Precioso
I3S - UMR7271 - UNS CNRS, F06903 Sophia Antipolis - France
email: precioso@polytech.unice.fr

2 Alexis Lechervy et al.

1 Context

Recent years have seen exponential growth of image and multimedia data.
Recent machine learning techniques have demonstrated their capability for
identifying image categories from image features, like SVM or Boosting. On the
one hand, SVM classifiers can be successfully applied to all datasets requiring
few training samples, thanks to kernel trick [19]. However, the performance of
classification depends highly on kernel design. On the other hand, the boosting
classifiers have good performance [20] and they can be tuned more easily by
using weak classifiers based on simple features but they require to be trained
on large training sets.

Nowadays, the challenges of Image categorization task lie in the size of the
test databases and the large number of categories to be considered. The SVM
has been originally proposed for binary classification contexts and its extension
to multi-class problems is not straight forward. In most cases, one-against-all or
one-versus-ones strategies are considered. In other words, multi-class learning
is derived to multiple binary classification problems. Several adaptations have
been recently proposed for multi-class [23,15,13,17,9].

One of the main issues when designing a multi-class method is to achieve
both a good inter-class separability while being robust to intra-class variations.
It is obvious that not any unique descriptor can have the same discriminative
power for all classes. In this paper we propose an intrisically multi-class method
to learn a major kernel function as a combination of a set of diverse and
complementary minor kernels. There are several ways to learn and combine
kernels such as linear combinations [1,3], geometric combinations [18] or even
more general combinations [22]. When working on the Gram matrix, values of
the kernel function itself can be learnt directly [11] or indirectly with metric
learning [6].

In this paper, we propose a method to learn a combination of kernels using
the Boosting approach. In the remaining of this section, we present techniques
for linear combination of kernels and the involved objects like Alignment and
centering. Then, we present the Boosting in this specific context. In Section 2,
we present the approach we propose. It differs from other approaches thanks
to choice of rank one weak kernels, and more specifically to the design of
the learners target used in the Boosting process. In Section 3, we propose a
detailed algorithm to implement the learning method. We also show, assuming
that the number of categories is negligible against the training set size, that
the complexity of this method is linear according to the size of the training
set. Finally, in the last section we present comparisons to others methods on
image databases.

1.1 Learning kernels as linear combinations

We want to address large multi-category databases thus memory and com-
putational complexity will drive many of our choices in this paper. We thus

Boosted Kernel for Image Categorization 3

focus on building a major kernel KT as a linear combination of minor kernel
functions kt:

KT (x,y) =

T
∑

t=1

βtkt(x,y), (1)

where x and y are two images and βt ≥ 0.
First methods to learn linear combinations are based on a joint optimiza-

tion of the coefficients in a conic combination of kernel matrices and the coef-
ficients of a discriminative classifier, usually Support Vector Machines [1]. In
this context, combined kernels kt are called base kernels, and they are related
to high level features. For instance, in the Multimedia Retrieval community
each base kernels correspond to high level features like Bag-of-Words (BoW)
[14].

Recently, the one-stage approach is criticized, since achieving a perfor-
mance superior to that of the uniform combination of kernels has proven to
be surprisingly difficult [2]. As a result, Cortes et al. propose a two-stage pro-
cedure: in the first stage, the method finds the optimal weights to linearly
combine the kernels, and in the second stage a SVM learns the optimal hyper-
plane using the learn kernel [3]. For these reasons, we also use the two-stage
approach in this method proposed in this paper.

In order to use the two-stage approach, a criterion is required to evaluate
the kernel combination, like the Kernel Alignment [5]:

A(K,K⋆) =
〈K,K⋆〉
‖K‖‖K⋆‖ (2)

where K is the n× n kernel matrix to evaluate, K⋆ is the n× n target kernel
matrix, 〈K,K⋆〉 is the Frobenius inner product, ‖K⋆‖ is the Frobenius norm,
and n is the number of images in the training set.

Let us note that this criterion evaluates a kernel function K using the
values of its Gram matrix K on a specific training set X. In the following we
will use bold symbol to represent all values of a function on a training set, for
instance Kij = K(xi,xj) with X = (xi)i∈[1,n].

For example the target kernel matrix K⋆ can be defined from the n × c′

matrix L of labels on the training set, K⋆ = LL⊤, with c′ the number of
categories and Lij = 1 if image i is in category j, 0 otherwise.

In order to deal with the unbalance of training data, an interesting ap-
proach we will use in this paper is the Centered Kernel Alignment [14]:

AH(K,K⋆) =
〈K,K

⋆〉
‖K‖‖K⋆‖

(3)

where K denote a centered matrix K:

K = HKH

withH = I− 1
n
11⊤, I being the n×n identity matrix and 1 a n×1 vector full of

ones. Note that Centered Kernel Alignment invariant to scale: AH(λK,K⋆) =
AH(K,K⋆) and shift: AH(K+ λ11⊤,K⋆) = AH(K,K⋆).

4 Alexis Lechervy et al.

1.2 Boosting: a way for combining a large number of kernels

First MKL techniques were used to combine high-level kernels. In Multimedia
Retrieval context, this approach allows to combine different visual descriptors
like colors, textures, keypoints, histogram of gradients, etc. Considering or
not their performance when compared to uniform combinations, this approach
requires already effective kernels and features. In other words, a lot of research
design is required to build the base kernels. Furthermore, it does not really
allow the learning of completely new kernel functions.

In order to be able to get a wider range of learning is to considerer a large
number of simple base kernels. To illustrate this idea, we can see these simple
base kernels as words, and a kernel combination as a sentence or a text. Then,
finding a kernel combination can be interpreted as the best description of a
database using relevant words. An example of this approach is proposed in
[12], where each simple base kernels is related to a visual word, and the kernel
combination is then related to a visual dictionary. A more mathematical view
of this idea is to considerer a family of kernel functions span by a set of
”atomic” simple kernel functions.

Before considering these simple kernel functions, we have to considerer
the method that will combine them. Actually, usual MKL techniques are not
able to process this case because of their computational complexity according
to the number of base kernel to combine, which is in most cases quadratic.
Furthermore, they are made to combine a finite set of base kernel.

In order to handle this, a strategy we propose to follow in this paper is the
Boosting approach [4]. In this context, the base kernels used to be called weak
kernel and the kernel combination the strong kernel. This approach iteratively
selects weak kernel functions kt and their corresponding weight βt during a
Boosting round t. There is several way to selects weak kernels. A first one
is to consider a finite set of weak kernel candidates, and select the one that
maximize some evaluation criterion. A second one is to ask a weak trainer for a
relevant weak kernel. The weak trainer is a procedure that creates a new weak
kernel that maximize the evaluation criterion. As a result, the possible kernel
combinations (or strong kernels) that can be built using a Boosting approach
is very large, allowing infinite possibilities in most cases.

Furthermore, the complexity linearly depends on the number T of selected
weak kernels, and not on the total number of possible weak kernels. The
method is not really sensitive to the setting of this hyperparameter T since,
as stated in very recent paper, “Boosting has demonstrated a remarkable (and
perhaps unique) resistance to overfitting, although it is affected by the presence
of outliers or high levels of noise” [7].

Boosted Kernel for Image Categorization 5

2 Proposed Approach

2.1 Rank one weak kernels

In order to learn our mapping, we propose to considerer rank one weak kernel
functions kt(x,y) = ft(x)ft(y), thus leading to the following strong kernel
expression:

KT (x,y) =
T
∑

t=1

βtft(x)ft(y) (4)

Since they are related to weak kernel functions kt, we call the functions ft
weak functions.

Eq. (1) becomes equivalent to:

KT (x,y) = 〈FT (x), FT (y)〉 = FT (x)
⊤FT (y), (5)

where

FT (x) = β
1

2 ⊙
(

f1(x) f2(x) . . . fT (x)
)

(6)

with ⊙ the Hadamard product.
As we need to evaluate functions on a training setX ⊂ X , we consider their

values on this set using bold symbols. For instance, values of weak functions
ft(.) on training set X are denoted ft ∈ R

n defined by, with n the size of the
training set:

∀xi ∈ X (ft)i = ft(xi) (7)

Similarly, values of the strong kernel can be expressed on the training set
as:

KT =

T
∑

t=1

βtftf
⊤
t = FTF

⊤
T . (8)

2.2 Boosting approach

We propose to build the major kernel KT using the Boosting approach. In
the literature, there is several definitions and interpretations for Boosting. In
this paper, we consider the one that attempts to minimize, or make small,
a continuous bound on the classification error (see for instance [8] and the
references therein).

This approach iteratively selects weak functions ft (or equivalently weak
kernels kt):

Ft =
(

Ft−1

√

βtft

)

⇔ Kt = Kt−1 + βtkt. (9)

For each boosting round t, we have to find the weak kernel kt or function
ft that increases the most the alignment on training set:

{βt, ft} = argmax
β>0,f

AH(Kt−1 + βff⊤,K⋆) (10)

6 Alexis Lechervy et al.

We perform this task in two stages. During the first stage, the basic idea is
to require from the weak learners to build a set Kt of weak kernel candidates
k. We expect that the weak learners provide weak kernels which increase the
overall alignment. As usually in boosting processes, the alignment increment
must be a weak increment, in order to get good generalization properties.

Actually, as we focus on rank one weak kernels k(x,y) = f(x)f(y), we
consider weak learners defining weak functions f . Hence, for each boosting
round t, we build a set Ft of weak function candidates. We also expect that
the weak learners not only provide weak functions but also increase the overall
alignment. However, as they are learners for functions rather than kernels, we
have to define a target function f⋆ which leads to a (weak) increment of the
overall alignment. We will present a solution for this problem in section 2.3,
but for now we assume that the weak learners provided us with a set Ft of
weak function candidates.

Thanks to this set Ft, we can run the second stage of resolution of Eq. (10).
For each weak function candidate f ∈ Ft, we compute the weight β⋆(f) max-
imizing the alignment:

β⋆(f) = argmax
β>0

AH(Kt−1 + βff⊤,K⋆). (11)

We end up with a set of candidate weak functions and their corresponding
weights. We then select the pair (function, weight) maximizing the alignment.
An interesting point about Eq. (11) is that it can be solved analytically [3].

2.3 Learner targets

Rather than using usual target kernels K⋆ like LL⊤, with L the label matrix,
we propose to consider the matrix Q of the QR decomposition of HL. We
center the matrix L with H to deal with unbalanced classes [14]. We only
select columns of Q whose corresponding diagonal element in R are not zero
(a.k.a. economic QR). Thus Q is a n × c full rank matrix. Our target Gram
matrix is then defined as K⋆ = QQ⊤. This choice of kernel target matrix is
to overcome the correlation between classes, thanks to the orthogonalization
performed by the QR decomposition.

Considering the weak function target f⋆, we propose a solution based on
equidistance of class centers, in order to deal with multi-class problems. In the
case of two-class context, this function can be defined by f⋆(xi) = 1 if the
sample xi is in the first class, −1 otherwise. However, in the case of multi-
class context, building f⋆ is not as straightforward since we need to spread
each class data around equidistant class centers [21,23,10]. The idea of our
method is then to move each center to make it equidistant from the others.

We propose to consider the barycenters of (orthonormalized) classes in the
space induced by the current combination kernel Kt = FtF

⊤
t :

Gt = Q⊤Ft. (12)

Boosted Kernel for Image Categorization 7

Each row of matrix Gt is the barycenter of one class in the space induced by
Kt. If we want equidistant class centers, it is sufficient to get matrix G⋆

t such
that G⋆

t (G
⋆
t)

⊤ is proportional to the identity matrix.
Based on this idea, we propose to work on the eigenvalues of GtG

⊤
t . More

specifically, we propose a strategy that will turn all eigenvalues of GtG
⊤
t to

1, which is equivalent to get the identity matrix, and thus equidistant class
centers. This can be achieved by working on the lowest eigenvalue of GtG

⊤
t :

ϕ(Gt) =
‖K⋆‖
‖Kt‖

argmin
λ

{λ ∈ spec(GtG
⊤
t)} (13)

Note that it can be shown that ϕ(Gt) ∈ [0, 1].
As we proceed iteratively, we can only focus on the new column g⋆

t to be
added to G⋆

t = [Gt−1,g
⋆
t]. In order to increase ϕ(G⋆

t), we propose to consider
a vector collinear to the eigenvector v associated to ϕ(Gt−1):

g⋆
t =

√

1− ϕ(Gt−1)v (14)

The normalization term
√

1− ϕ(Gt−1) ensures that GtG
T
t = I. Thanks to

this result, we can define the target function f⋆t for weak learners. We propose
to use f⋆t = argminf ‖Q⊤f − g⋆

t ‖22 subject to minimizing ‖f‖2. The solution is
f⋆t = Qg⋆

t .

2.4 Learning semantic features

As FT (.) will be the result of a training on high-level concepts, values ft(x) of
function ft on an image x are interpreted as semantic features.

In this article we propose a new supervised method to learn semantic fea-
tures for image categorization task. Since this new feature space is created
using supervised data, i.e. image labels on a training set, we call this space
the semantic space. The idea is to learn an explicit embedding of the most
relevant features to better represent each image category.

If we denote by X the low-level feature space (color, texture, keypoints...),
and S the semantic space, the mapping function F is:

FT : X → S
x 7→ FT (x)

(15)

Let us note that the function FT is independent from the learning process
that created it. Furthermore, it can be used to map any image inside or outside
the training set.

In this paper, we consider linear combination of kernels. The semantic space
S is thus a Hilbert space, i.e. a vector space with a dot product 〈., .〉. More
specifically, the dot product of S is the major kernel KT we aim to learn:

KT (x,y) = 〈FT (x), FT (y)〉 (16)

As usual in kernel machines, two formulations represent the same object: the
vectorial (or primal) view FT of the semantic S, and the kernel (or dual) view
KT .

8 Alexis Lechervy et al.

Algorithm 1. Learn boosted kernels

Input: Low-level feature spaces Xs, Orthogonal n×c label matrix Q, threshold θ, maximum
number T of weak functions
Compute initial weak functions (f1(x) f2(x) . . . fc(x)) using Algorithm 2
For rounds t=c+1,...,T:

[1] Compute barycenters matrix Gt−1 = Q⊤Ft−1

[2] Compute eigendecomposition Gt−1G
⊤
t−1

= VΛV⊤

Sort eigenvalues Λ in ascending order
For (λ,v) ∈ Λ×V:

[3] Compute g⋆ =

√

1− λ
‖K⋆‖

‖Kt−1‖
v

[4] Compute weak target f⋆ = Qg⋆

Foreach low-level feature space Xs

Run weak learner on training set X ⊂ Xs:
[5] f = argminw∈Xs

||Xw − f⋆||2 s.t. ||w||2 = 1
[6] Compute β⋆(f) using Eq. (11)
[7] If AH(Kt−1 + β⋆ff⊤,K⋆) > AH(Kt−1,K

⋆) + θ

Update Ft = (Ft−1

√
βtft)

Proceed to next round t+ 1
Endif

Endforeach

Endfor

If no weak kernel increases Alignment
T = t
Stop

Endif

Endfor

Output: Strong kernel KT (x,y) = 〈FT (x), FT (y)〉

Algorithm 2. Initialization of the proposed algorithm

Input: Low-level feature spaces Xs, Orthogonal n× c label matrix Q

For t=1,...,c:

Compute f⋆t = Q(:, t)
Foreach low-level feature space Xs

Compute fs using weak learner on training set X ⊂ Xs

If AH(fsf⊤s ,K⋆) > 0
Update Ft = (Ft−1 fs)
Proceed to next round t+ 1

Endif

Endforeach

Output: Weak functions (f1(x) f2(x) . . . fc(x))

3 Algorithm

3.1 Initialization

At the beginning no class is learnt, therefore we initialize our method account-
ing for each class at least once. The first c target functions f⋆t are then the
columns of the matrix, i.e. ∀t ∈ [1, c] f⋆t = Q(:, t). These target functions are

Boosted Kernel for Image Categorization 9

used independently to train weak learners. Weak learners is a free component
of our method that depends on the low-level features. In this paper, we used
Least Mean Square (LMS), but other functions can be used.

We present this initialization in Algorithm 2. Note that weak functions
can be created thanks to each available low-level feature (color, texture, key-
points, ...) but also to different descriptor parameters (feature size, metric, ...).
Consequently, the low-level feature spaces Xs in Algorithm 2 denotes different
features with different parameters. Then, for each class t ∈ [1, c], we select the
first one that lead to a positive Alignment.

The result of initialization is c weak functions: Fc =
(

f1 f2 . . . fc

)

, with

c the width of matrix Q.

3.2 Boosting rounds

Once the width of F equals the rank of Q, we can start the main learning, as
presented in Algorithm 1. For each round t, we first compute the barycenters
Gt, and the eigendecomposition of GtG

⊤
t . Then, we try each eigenvalue from

the smallest to highest. For each eigenvalue λ and its corresponding eigenvector
v, we compute a target function f⋆ (line [4] in Algo. 1). Once we have a target
function, we run a weak learner in order to get a weak function f for each
low-level feature space Xs. In this paper, we present this algorithm using LMS
(line [5] in Algo. 1), but other methods can be used.

Note that, as we are subject to the low-level features, weak learners will
not necessarily create weak functions f that match the weak target f⋆. For the
same reasons, each weak function f will not necessarily leads to a significant
increasing of Alignment. As a result, if we do not find a relevant weak function,
we proceed to the next low-level feature space Xs, until we find one. After
several rounds, the algorithm may not find a new weak function to add, and
the algorithm stops. Thus, the algorithm can select less weak functions that
the number T a user can ask for.

In order to help the creation of a strong kernel with a better generalization
capacity, we sort the different low-level feature spaces Xs according to their
expected generalization capacity. Thus, the algorithm first tries feature spaces
with the highest generalization capacity. In case of selection, we obtain the
most interesting weak function. This is usually the case during the first rounds,
but in the latter ones it is more and more difficult to select a weak function
with high generalization capacity.

To get low-level feature spaces with different level of generalization, one
can perform a PCA for each low-level feature, and then create new features
depending on the number of principal components. We assume that features
with fewer components less overfit than features with more components. This
example of algorithm based on PCA to arrange features according to their
hypothetical overfitting can certainly be improved in many ways.

10 Alexis Lechervy et al.

3.3 Linear complexity

In this section, we show that each round t of Algorithm 1 has a computational
complexity of O(nt), with n the size of the training sample.

Algorithm starts with the computation of the eigendecomposition of c× c

matrix GtG
T
t (lines [1] and [2]). The full eigendecomposition of this matrix

has a computational complexity of O(c3), but since we only consider first
eigenvalues, a O(c2) algorithm can be used. Concerning the computation of
the matrix GtG

T
t , we proceed iteratively:

GtG
T
t = Gt−1G

T
t−1 + β⋆

t gtg
T
t

Consequently, the main computations are the computations of gtg
T
t , which

can be performed in two steps. Firstly, we compute gt = Q⊤ft, which com-
plexity is O(nc) since f is a n vector and Q a n × c matrix. Secondly, we
compute gtg

T
t which complexity is O(c2).

Similarly to gt, f
⋆ = Qg⋆ is computed in O(nc) operations (line [4]).

In the remaining of the algorithm, computations mainly depend on vari-
ables g⋆ (line [3]), β⋆ (line [6]) and AH(Kt−1 + β⋆ff⊤,K⋆) (line [7]).

To compute these terms, we only need the following values: ‖K⋆‖, ‖ff⊤‖,
〈ff⊤,Kt−1〉, 〈ff⊤,K⋆〉, 〈Kt−1,K⋆〉 and ‖Kt−1‖.

In fact, we have:

g⋆ =

√

1− λ
‖K⋆‖
‖Kt−1‖

v.

The solution of Eq. (11) is

β⋆ =
‖Kt−1‖2〈k,K

⋆〉 − 〈Kt−1,k〉〈Kt−1,K
⋆〉

‖k‖2〈Kt−1,K
⋆〉 − 〈Kt−1,k〉〈k,K

⋆〉
.

And by definition, we have:

AH(Kt−1 + β⋆k,K⋆) =
〈Kt−1 + β⋆k,K

⋆〉
‖K⋆‖‖Kt‖

=
〈Kt−1,K

⋆〉+ β⋆〈k,K⋆〉
‖K⋆‖‖Kt‖

Firstly, in our case, ‖K⋆‖ =
√
c since Q is a full rank n × c orthonormal

matrix:

‖K⋆‖2 = Tr(K⋆K⋆⊤)

= Tr(QQ⊤QQ⊤)

= Tr(QQ⊤)

= Tr(Q⊤Q)

= Tr(Idc)

= c.

Boosted Kernel for Image Categorization 11

Secondly, computation of value ‖ff⊤‖ is O(n) since ‖ff⊤‖ = ‖Hf‖2 and
Hf = f − 1

n
11⊤f = f −mean(f) ∈ R

n.

Thirdly, values 〈ff⊤,K⋆〉 and 〈ff⊤,Kt−1〉 can be computed using the fol-
lowing property:

If v is a n vector and M is a n× c matrix, then 〈vv⊤,MM⊤〉 = ‖v⊤M‖2,
v⊤M ∈ R

n and the computation complexity is O(nc).

Consequently computation of value 〈ff⊤,K⋆〉 = ‖f⊤Q‖2 is O(nc), and

〈ff⊤,Kt−1〉 = ‖(Hf)⊤Ft−1‖2 is O(nt).
Finally for values ‖Kt−1‖ and 〈Kt−1,K⋆〉 we propose an iterative formu-

lation, which complexity is also linear using the same properties as previously:

‖Kt‖2 = ‖Kt−1‖2 + ‖ff⊤‖2 + 2β⋆〈Kt−1,ff⊤〉,

and
〈Kt,K⋆〉 = 〈Kt−1,K⋆〉+ β⋆〈ff⊤,K⋆〉.

To conclude about the complexity of the proposed algorithm, each round
t has a computational complexity of O(c2 +nc+nt) = O(nt), since c < n and
c < t.

Note that we did not considered the complexity of wear learners. This
is a free parameter the user of our method have to choose. Depending on
the choice of this parameter, one can get very different levels of complexity.
In this paper, we use LMS which training complexity is O(nd), with d the
dimension of visual features. In order to respect Boosting paradigm, one should
choose weak learner, corresponding thus to visual features with low dimensions.
Furthermore, in this case the computation of 〈ff⊤,Kt−1〉 can be performed in
O(dt) operations. Consequently, the complexity of the whole learning process
in the following experiments is linear with the size of the training set.

12 Alexis Lechervy et al.

4 Experiments

In this section, we show the advantages of our method through various exper-
iments. We have carried out two sets of experiments on real data. The first
experiments compare our method to a simple feature concatenation method,
and the second experiments compare it to MKL techniques proposed in the
literature.

4.1 Comparison to feature concatenation

In this experiments, we compare our method to a simple method using concate-
nation of features. We evaluate the performance on Visual Object Challenge
(VOC) 2006 dataset. This database contains 5304 images provided by Mi-
crosoft Research Cambridge and Flickr. The VOC2006 database contains 10
categories, example images are shown in Figure 4.1. Each image can belong to
several categories. There are two distinct sets, one for training (2618 images)
and one for testing (2686 images) with 9507 annotations (4754 object in train
and 4753 object in test).

We first carried out experiments using histogram visual features based on
CIEL⋆a⋆b⋆ colors (lab) and textures using quaternionic wavelets filters (qw).
Visual descriptors are projected on visual dictionaries of various size (from
16 et 128 visual words) to create different histogram features. Then, for each
feature and for each category, we train a linear SVM to classify the test set
of the database. The result of these runs are presented in the first rows of
Fig. 2. We also present in the ever last row the result using a concatenation
of all these features. In the latter case, the mean Average Precision (mAP) is
45.3%.

We also carried out an experiments using the proposed method. The pro-
cess is almost the same, except that we used the method to combine the
histogram features to create an embedding function FT (x) using the super-
vised data on the train set. This function is then used to create a new feature
x′ = FT (x) for any image x. This can be compared to the concatenation
method, which is another way to combine the histogram features. The new
feature is then used to train a linear SVM and to classify the test set. As
one can see in Fig. 2, we obtain a significant increment of 3% when compared
to a concatenation method. Note that we present here result with few visual
features, but the method can also be used with a very large number of visual
features. In fact, our method will produce better semantic features, or in the
worst case the performance will not change. This has to be compared to the
concatenation method whose performance can drop if too much visual features
are used.

Boosted Kernel for Image Categorization 13

1.Bus 2.Bicycle 3.Cat 4.Car 5.Cow

6.Dog 7.Horse 8.Motobike 9.Person 10.Sheep

Fig. 1 Categories from PASCAL Visual Object Challenge (VOC) database, 2006.

Feature 1 2 3 4 5 6 7 8 9 10 Mean
lab16 12.4 9.4 24.6 16.0 9.4 11.2 9.0 8.0 27.2 10.9 14.0
lab32 10.7 8.1 45.7 27.1 34.2 15.9 10.0 9.1 27.0 25.6 22.8
lab64 10.0 12.5 47.9 28.5 37.5 19.1 9.9 16.4 31.7 50.3 26.3
lab128 18.7 24.7 46.6 28.8 34.1 20.0 16.0 16.5 33.2 50.0 28.7
qw16 14.0 46.8 55.5 15.1 7.5 14.6 8.3 21.0 25.6 11.2 22.0
qw32 38.5 52.2 60.2 22.2 7.7 15.9 8.9 36.0 36.9 25.6 30.4
qw64 43.0 53.1 63.4 22.0 14.2 18.8 13.2 43.3 37.5 36.2 34.4
qw128 47.9 57.4 65.6 25.8 14.8 20.3 21.6 45.5 33.2 48.6 37.6

Concatenation 52.1 58.2 72.2 37.4 38.5 27.1 26.7 44.4 39.5 56.1 45.3
Proposed 52.2 63.1 75.9 43.8 41.6 27.6 27.2 52.7 41.9 56.6 48.3

Fig. 2 Average Precision (%) on VOC2006 database, Image categorization using linear
SVMs and different features. Each column presents results from one of the 10 categories, ex-
cept for the last one which presents result mean Average Precision. Correspondence between
category number and category name can be found in Fig. 4.1. The ever last row present
the result using a concatenation of all lab and qw features. The last row presents the result
using the proposed method to combine lab and qw features.

14 Alexis Lechervy et al.

Rounds 16 32 64 128 256 512 1024
T=50 78.24 78.24 78.24 78.24 78.24 78.24 78.24
T=100 83.73 83.73 83.73 83.73 83.73 83.73 83.73
T=200 84.12 84.80 85.78 85.88 85.88 85.88 85.88
T=300 . 84.80 86.27 85.88 86.47 86.47 86.47
T=400 . . 86.67 86.27 87.55 87.55 87.55
T=500 . . . 86.47 87.94 88.33 88.33

Fig. 3 Classification rates on Flower 17 according to the maximum dimension of features
(from 16 to 1024), and to the maximum number T of rounds in the proposed algorithm
(from 50 to 500).

Method Result
MKL 87.2 ± 2.7
NLP-β 87.9 ± 1.8
NLP-νMC 87.8 ± 2.1
NLP-B 87.3 ± 2.7
MKL-prod 85.5 ± 1.2
MKL-avg (l∞) 84.9 ± 1.9
CF (l∞) / AKM 86.7 ± 2.7
CG-Boost 84.8 ± 2.2
MKL (SILP or Simple) 85.2 ± 1.5
LP-β 85.5 ± 3.0
LP-B 85.4 ± 2.4
MKL-FDA (lp) 86.7 ± 1.2
Proposed 88.3 ± 1.1

Fig. 4 Classification rate on Flowers 17. Except for our proposition, results are reported
from [16]

4.2 Comparison to Multiple Kernel Learning (MKL)

In this section, we compare our method to state-of-the art Multiple Ker-
nel Learning (MKL) techniques. We use the Oxford databases [17], a usual
database in communities to compare kernel combination techniques. In these
experiments, we use the χ2 distance matrices D provided by the authors [17].
For each distance matrix, we compute a new matrix X = e−µfD, where µf is
set to be 1 over the mean value of the χ2 distances over all the training images
(like stated in [17]). Then we use the method based on a PCA to generate many
features with different hypothetical generalization capacities (cf section. 3.2).
Our method then produces a new feature thanks to the learned embedding
function FT (x), which is further used to train a SVM with a Gaussian ℓ2 ker-
nel. We conduct the experiments with the same protocol as in [17], we use the
same features, the same data split and the same performance metric (average
accuracy).

4.2.1 Flowers 17

Flowers 17 is a database of 17 categories of common flower in England. Each
category have 80 flower images. The dataset is made of 3 predefined random
splits. Each split is composed of 3 sets: training (40 images per class), valida-

Boosted Kernel for Image Categorization 15

tion (20 images per class) and test (20 images per class). We consider the visual
features given by the authors of this base1. These authors provide 7 χ2 dis-
tance matrices to describe different properties of the flowers: colour, shape and
texture histogram, HSV histogram, SIFT inside the foreground region, SIFT
on the foreground region boundary and Histogram of Oriented Gradients.

We run our method with different settings. In section 3.2 we discussed the
importance of the granularity of feature for a good generalization. In fact, we
build our classifier with features of different granularity. Initially, the coarsest
features (i.e in our case the feature with low dimensions) are tried first. If
the boosting algorithm fails to find a good kernel from these, then we consider
more refined features with more information and detail. In practice, after PCA
we keep features of 16, 32, 64, 128, 256, 512 and 1024 dimensions and we start
our selection with low dimensions features.

The results of this strategy are reported in Fig. 3. This table presents
the classification rate for different maximum values of feature dimensions and
rounds T (see Algorithm 1). For example, in the case where T is 300 and the
maximum feature dimension 128, the algorithm is allowed to select up to 300
weak kernels using features of dimension 16, 32, 64 or 128. In some cases the
algorithm does not select as much weak kernels as requested, for instance with
a maximum feature dimension of 16 (first column of results) and with T values
of 300, 400 and 500. In those cases, we did not report a result because it is the
same as for T = 200 since the algorithm did not select more than 200 weak
kernels.

One can also see that results are the same in the first row of results
(T = 50). Whatever is the maximum size of low-level feature dimensions,
the accuracy is always 78.24%. That means that, during the 50 first rounds
of the algorithm, only features of dimension 16 are selected. The same can
be observed in the second row of results (T = 100), and we have to wait for
T = 200 rounds to see the first selection of features of dimension 32. This
behavior is repeated with the increasing of rounds, showing the ability of the
method to selected more and more complex features as the number of rounds
increases.

We reported results from the literature [16] in Fig. 4. Our method outper-
forms these reference results, and gets lower standard deviation. This standard
deviation is computed thanks to the 3 data split predefined by the authors of
the dataset.

4.2.2 Flowers 102

Flower 102 database contains 8189 images divided into 102 flowers classes (cf.
Fig. 5). Each class consists in about 40 up to 250 images and the distribution
of the images between classes is unbalanced. The dataset is divided into three
sets: training, validation and test set. The training and validation sets consist

1 http://www.robots.ox.ac.uk/~vgg/data/flowers/17/index.html

16 Alexis Lechervy et al.

Blackberry lily Bolero deep blue Bougainvillea Bromelia

Camellia Columbine Orange dahlia Gazania

Fig. 5 Examples of categories from the database Flowers 102

Method Result
MKL [17] 72.8
MKL [16] 73.4
NLP-β 75.7
NLP-νMC 73.4
NLP-B 73.6
MKL-prod 73.8
MKL-avg 73.4
Proposed 77.8

Fig. 6 Classification rate on Flower 102. Except for our proposition, results are reported
from [16]

in 10 images per class (1030 images) while the test set has 6129 images with
at least 20 images per class.

Like [17] we use four different χ2 distance matrices2 to describe different
properties of the flowers: HSV histogram, SIFT inside the foreground region,
SIFT on the foreground region boundary and Histogram of Oriented Gradi-
ents.

In Fig. 6., we compare our method with the methods from the literature
and mainly to the reference method of the state of the art [16]. It can be seen
that our method provides a significant gain. Note that, since there is only
one single data split in the original benchmark, no standard deviation can
be computed. Changing the split process would bias the protocol which also
explains why no standard deviation is reported in any other paper considering
this benchmark.

5 Conclusion

This paper presents a new method to learn a kernel function for image catego-
rization in large databases. This method has several advantages in this specific
context, both during the training step, where the category models are learnt,
and during the categorization step, where images are categorized.

2 http://www.robots.ox.ac.uk/~vgg/data/flowers/102/index.html

Boosted Kernel for Image Categorization 17

Considering the training step, we follow a two-stage approach. We first
learn a kernel function, and then use it to train a SVM classifier for each
category. The kernel function is built using a Boosting approach, which allows
a combination from a very large number of weak kernels, actually infinite
thanks to well-chosen weak learners. Furthermore, we propose an algorithm to
perform this learning with a computational complexity linear with the size of
the training set. Note that we learn a single kernel function for all categories,
using all the labels from the categories, thanks to novel learners target in
the Boosting process. This property allows the method to take advantage of
any kind of relationship between categories, for instance hierarchy. From the
computational point of vue, this is also an interesting property for dealing
with current datasets, which number of categories grows more and more.

Considering the categorization step, the method we proposed creates an
embedding function that maps any image into a Hilbert space. The categoriza-
tion of any image is then the evaluation of this single function, followed by the
projection on the SVM hyperplanes (one for each category). Since the dimen-
sion of the Hilbert space where images are embedded is small, the computa-
tions for the projection on hyperplanes is negligible. Most of the computation
is then the embedding, that depends on the choice of the weak learners and
underlying visual features. However, since we expect from these learners to be
weak, a relevant choice is to use simple projection models and low dimension
features. For instance, in this paper, we used Least Mean Squares with features
from 16 to 1024 dimensions, and only with 128 dimensions we are still close to
the best results. As a result, the categorization step using our approach, with
a relevant tuning, leads to a fast processing of large databases.

The method we proposed also offers a wide range of new techniques, espe-
cially if we consider the weak learners. In this paper, we used a very simple
weak learner (LMS). However, many other choices can be done, such as linear
learners or k-Nearest-Neighbors... We have evaluated our method on real data.
The experiments show that the final centroids are representative of category
clusters. We compare our method with recent State-of-the-Art methods con-
sidering different types of features. Our method outperforms all other reference
methods, thereby showing the relevance of our approach.

We are currently working on a straight forward generalization of our method
to collaborative learning. Indeed, the same algorithm can easily target a ker-
nel matrix for collaborative learning context by considering several retrieval
session result as initial annotations of the classes.

References

1. Francis R. Bach and Gert R. G. Lanckriet. Multiple kernel learning, conic duality, and
the smo algorithm. In International Conference on Machine Learning, 2004.

2. C. Cortes. Invited talk: Can learning kernels help performance? In International Con-

ference on Machine Learning, page 161, 2009.
3. C. Cortes, M. Mohri, and A. Rostamizadeh. Two-stage learning kernel algorithms. In

International Conference on Machine Learning, 2010.

18 Alexis Lechervy et al.

4. K. Crammer, J. Keshet, and Y. Singer. Kernel design using boosting. In Advances in

Neural Information Processing Systems, pages 537–544. MIT Press, 2003.
5. N. Cristianini, J. Shawe-Taylor, A. Elisseff, and J. Kandola. On kernel target alignement.

In Advances in Neural Information Processing Systems, pages 367–373, Vancouver,
Canada, December 2001.

6. J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. S. Dhillon. Information-theoretic metric
learning. In International Conference on Machine Learning, volume 227, Corvalis,
Oregon, 2007.

7. A.R. Figueiras-Vidal and L. Rokach. An exploration of research directions in machine
ensemble theory and applications. In European Symposium on Artificial Neural Net-

works, Computational Intelligence and Machine Learning, 2012.
8. J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical

view of boosting. The Annals of Statistics, 2:337–374, April 2000.
9. P. Gehler and S. Nowozin. On feature combination for multiclass object classification.

In IEEE International Conference on Computer Vision, pages 221–228, 2009.
10. P.H. Gosselin and M. Cord. Feature based approach to semi-supervised similarity

learning. Pattern Recognition, Special Issue on Similarity-Based Pattern Recognition,
39:1839–1851, 2006.

11. P.H. Gosselin, M. Cord, and S. Philipp-Foliguet. Combining visual dictionary, kernel-
based similarity and learning strategy for image category retrieval. Computer Vision

and Image Understanding, Special Issue on Similarity Matching in Computer Vision

and Multimedia, 110(3):403–417, 2008.
12. P.H. Gosselin, F. Precioso, and S. Philipp-Foliguet. Incremental kernel learning

for active image retrieval without global dictionaries. Pattern Recognition, DOI:
10.1016/j.patcog.2010.12.006, 2010.

13. T.J. Hazen. Multi-class svm optimization using mce training with application to topic
identification. In IEEE International Conference on Acoustics, Speech, and Signal

Processing, pages 5350–5353, 2010.
14. M. Kawanabe, S. Nakajima, and A. Binder. A procedure of adaptive kernel combination

with kernel-target alignment for object classification. In ACM International Conference

on Image and Video Retrieval, 2009.
15. G. Madzarov, D. Gjorgjevikj, and I. Chorbev. A multi-class svm classifier utilizing

binary decision tree. Informatica, 33(1):233–242, 2008.
16. Krystian Mikolajczyk Muhammad Awais, Fei Yan and Josef Kittler. Augmented kernel

matrix vs classifier fusion for object recognition. In British Machine Vision Conference,
pages 60.1–60.11. BMVA Press, 2011. http://dx.doi.org/10.5244/C.25.60.

17. M-E. Nilsback and A. Zisserman. Automated flower classification over a large number
of classes. In Proceedings of the Indian Conference on Computer Vision, Graphics and

Image Processing, Dec 2008.
18. David Picard, Nicolas Thome, Matthieu Cord, and Alain Rakotomamonjy. Learning

geometric combinations of gaussian kernels with alternating quasi-newton algorithm.
In European Symposium on Artificial Neural Networks, Computational Intelligence and

Machine Learning, 2012.
19. J. Shawe-Taylor and N. Cristianini. Kernel methods for Pattern Analysis. Cambridge

University Press, ISBN 0-521-81397-2, 2004.
20. Kinh Tieu and Paul Viola. Boosting image retrieval. In IEEE International Conference

on Computer Vision and Pattern Recognition, pages 228–235, 2000.
21. V. Vapnick. Estimation of Dependences Based on Empirical Data. Springer-Verlag,

1982.
22. Manik Varma and Bodla Rakesh Babu. More generality in efficient multiple kernel

learning. In International Conference on Machine Learning, 2009.
23. R. Vert. Designing a m-svm kernel for protein secondary structure prediction. Master’s

thesis, DEA informatique de Lorraine, 2002.

