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Abstract. It is shown that the logical bases of the static perturbation method, which is currently used in static
bifurcation analysis, can also be applied to dynamic bifurcations. A two-time version of the Lindstedt–Poincaré
Method and the Multiple Scale Method are employed to analyze a bifurcation problem of codimension two. It is
found that the Multiple Scale Method furnishes, in a straightforward way, amplitude modulation equations equal
to normal form equations available in literature. With a remarkable computational improvement, the description
of the central manifold is avoided. The Lindstedt–Poincaré Method can also be employed if only steady-state
solutions have to be determined. An application is illustrated for a mechanical system subjected to aerodynamic
excitation.
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1. Introduction

It is known that, within the framework of the local bifurcation theory [1], analytical techniques
make it possible to reduce a multidimensional dynamical system to a lower-dimensional
equivalent system that captures all the qualitative aspects of the original system behavior. The
dimension of the reduced system is equal to the sum of the algebraic multiplicity of the Jacobian
matrix critical eigenvalues [2, 3]. The center manifold reduction [2] is the most commonly
followed approach. It calls for two steps: (I) the description of the manifold on which the
post-critical steady-state dynamics takes place and (II) the transformation of the bifurcation
equations into the simplest form. The first step requires the solution of a functional equation,
which is often solved by series expansions; the second step calls for the use of normal form
theory. Normal form equations for low codimension bifurcations are well known in literature
and have been extensively studied. However, explicit expressions of the coefficients of the
reduced system in terms of the coefficients of the original system are not available for general
systems. Therefore, the whole procedure described above has to be repeated for each specific
problem, thus entailing a larger computational effort.

On the other hand, other methods have also been used in literature to solve static and
dynamic bifurcation problems, including the averaging method [4], the harmonic balance
method [5] and the multiple scale method [6]. In addition, the Hopf method, used to analyze
Hopf bifurcations of codimension one [7], clearly appears as an extension of the Lindstedt–
Poincaré Method [8, 9]. Recently, the Lindstedt–Poincaré Method and the Multiple Scale
Method have also been extended to discrete-time dynamical systems [10]. All these methods
are borrowed from nonlinear dynamics [11] and follow the same logic underlying the theory
of static perturbation, where bifurcated paths are approximated by series [8, 12, 13].
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Although the methods quoted are perhaps less elegant than the center manifold reduction,
they generally require less computational effort. Among them, in the authors’ opinion, the
multiple scale method is the best tool to study both static and dynamic bifurcations of a
general system, regardless of the codimension. The ideas related to the use of the method
of multiple scales as a simplification method can be traced to the works by Nayfeh [14],
Smith and Morino [15], Maslowe [16], Moroz [17] and Nayfeh and Balachandran [6, 18].
Within bifurcation analysis, the main advantage of the method is the possibility to obtain
the reduced equations without describing in advance the central manifold, neither expressing
the Jacobian matrix at the critical state in Jordan form. In practice, only the right and left
critical eigenvectors need to be evaluated and elementary operations have to be performed.
As a result, bifurcation equations are obtained, whose coefficients are expressed in closed
form in terms of the derivatives of the original vector field, evaluated at the critical state,
similarly to the theory of static bifurcation of conservative systems. As an alternative, the
Lindstedt–Poincaré method can be used with identical advantages in order to find steady-state
bifurcating solutions. However, if the latter approach is followed, stability analysis is much
more complex.

In this paper, both methods are illustrated with reference to a non-resonant double Hopf
bifurcation occurring in a two control parameter dynamic system, i.e. for a bifurcation of
codimension two. An application of the procedure is presented to analyze the post-critical
behavior of a simple mechanical system subjected to aerodynamic excitation. In contrast to
the general theory illustrated in the first part of the paper, the applicative analysis is here
developed by working on the second order form of the equation of motion.

2. Position of the Problem

The equations of motion of an autonomous dynamical system, reduced in local form [8], are

_x = F(x;�); (1)

where x 2 Rn is the state vector and � 2 Rm the control parameters vector. Equation (1)
admits the trivial equilibrium solution consisting of the set of states � := f(x;�) j x = 0g.
From Lyapunov’s theory, it is well known [19] that the equilibrium position x = 0 is stable
(or attracting) if all eigenvalues �i(�) of the Jacobian matrix

Fx(0;�) :=
@F(x;�)

@x

����
x=0

(2)

have negative real part, while it is unstable if at least one of the eigenvalues has positive real
part. This paper considers systems of type (1) depending on two control parameters, namely
� = f�; �gT . It is assumed that the trivial solution looses its stability at a bifurcation point
O � (x = 0; � = � = 0) in which two pairs of conjugate eigenvalues of the Jacobian matrix
simultaneously across the imaginary axis (double Hopf bifurcation). The following spectral
properties are assumed to hold:

1. At the bifurcation point the Jacobian matrix F0
x := Fx(x = 0; � = � = 0) has two pairs of

purely imaginary eigenvalues�1;3 = �i!10; �2;4 = �i!20. In addition, the frequency!10

and !20 are assumed to be incommensurable (non-resonant eigenvalues). The associated
right eigenvectors uj (j = 1; 2) are solutions of the following algebraic problems

F0
xuj = i!j0uj (3)
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Figure 1. Stability boundary diagram.

being u3 = �u1 and u4 = �u2; the associated left eigenvectors satisfy the equations

(F0
x)

T vj = �i!j0vj (4)

being v3 = �v1 and v4 = �v2. Right and left eigenvectors are orthonormal, i.e. vH
i

uj = �ij ,
where H denotes transpose conjugate and �ij is the Kronecker symbol.

2. At bifurcation, all the remaining eigenvalues �h, h � 5, lie on the left side of the complex
plane.

3. The critical eigenvalues

�1;3 = �1(�; �)� i!1(�; �)

�2;4 = �2(�; �)� i!2(�; �)

�j(0; 0) = 0 (j = 1; 2) (5)

satisfy the following transversality conditions

det

"
�1� �1�

�2� �2�

#
6= 0; (6)

where

�j� :=
@�j

@�

�����=0
�=0

; �j� :=
@�j

@�

�����=0
�=0

(7)

with (j = 1; 2). These properties generalize the simple Hopf bifurcation condition [1].
The graphs of the equations �j(�; �) = 0, j = 1; 2, in the parameter plane define the

diagram of linear stability, also called stability boundary diagram; an example is shown in
Figure 1. The critical point associated with a double Hopf bifurcation occupies an isolated
position at the intersection of the Hopf boundary lines. Condition (6) requires that the two
lines have no common tangent at the intersection point, in such a way that no directions in
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the (�; �)-plane exist in which the critical state persists. In Figure 1 it has been assumed that
�j� > 0 for j = 1; 2. It implies transversality for both pairs of critical eigenvalues when
only � is increased from zero, � being kept null. To underline the different role of the two
parameters, sometimes a parameter like � is called the distinguished parameter [3] while �

the splitting parameter [20].
Steady-state solutions which bifurcate from point O and their stability have to be deter-

mined. However, the system behavior around a double Hopf bifurcation is far more complex
than around a single Hopf bifurcation [2, 3]. In contrast to the latter, where only period-
ic motions occur, quasi-periodic motions take place in the former if the eigenvalues !j0

(j = 1; 2) are incommensurable [21]. This implies the presence of two different temporal
scales and, hence, a resultant motion on a two-dimension torus [19].

In the following, the problem is addressed in two ways. First, a modified version of the
classical Lindstedt–Poincaré Method (LPM) of determining steady-state solutions is presented;
the Multiple Scale Method (MSM) is then applied to obtain amplitude-modulation equations.

3. The Two-Times Lindstedt–Poincaré Method

A monoparametric family of double-periodic solutions of the form8>><
>>:

x = x("; �1; �2)

� = �(")

� = �(")

(8)

is sought, where

�j = !j(")t; j = 1; 2 (9)

are independent time-scales, !j (") are unknown "-dependent circular frequencies and " is a
perturbation parameter. Equations (82) and (83) are the parametric equation of an unknown
curve on the (�; �)-plane on which double-periodic solutions of given amplitudes and unknown
periods exist.

By accounting for Equations (8) and for the chain rule d=dt = !1(")@=@�1 +!2(")@=@�2,
the following identity follows from Equation (1):�

!1(")
@

@�1
+ !2(")

@

@�2

�
x("; �1; �2) = F[x("; �1; �2); �("); �(")]; 8";8(�1; �2) (10)

with the periodicity condition

x("; �1 + 2�; �2 + 2�) = x("; �1; �2): (11)

Under the assumption of regularity, MacLaurin series of the form8>>>>>>><
>>>>>>>:

x("; �1; �2)

�(")

�(")

!1(") � !10

!2(") � !20

9>>>>>>>=
>>>>>>>;

=

1X
k=1

"k

k!

8>>>>>>><
>>>>>>>:

xk(�1; �2)

�k

�k

!1k

!2k

9>>>>>>>=
>>>>>>>;

(12)
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are introduced, where " = 0 selects the bifurcation point O. By differentiating k times
Equations (10) with respect to the parameter ", and evaluating the derivatives at " = 0, the
perturbative equations of k-th order are obtained; for k = 1; 2; 3, by using Equation (12), they
read:

L0x1 = 0

L0x2 = 2
�
!11

@

@�1
+ !21

@

@�2

�
x1 � 2(�1F0

x� + �1F0
x�)x1 � F0

xxx2
1

L0x3 = 3
�
!11

@

@�1
+ !21

@

@�2

�
x2 + 3

�
!12

@

@�1
+ !22

@

@�2

�
x1

� 3(�1F0
x� + �1F0

x�)x2 � 3(�2F0
x� + �2F0

x�)x1 � 3(�1F0
xx� + �1F0

xx�)x
2
1

� 3F0
xxx1x2 � 3(�2

1 F0
x�� + 2�1�1F0

x�� + �2
1F0

x��)x1 � F0
xxxx3

1; (13)

where

L0 := �!10
@

@�1
� !20

@

@�2
+ F0

x: (14)

Moreover, from Equations (11), the periodicity conditions at the k-th order are similarly
obtained

xk(�1 + 2�; �2 + 2�) = xk(�1; �2): (15)

In previous equations the apex 0 indicates that the related quantity is calculated at " = 0,
while the subscripts x; �; � denote partial differentiation. All the derivatives of F with respect
to the parameters � and � only, have been posed equal to zero so that Equations (13) admits
the trivial solution xk = 0;8(k; �; �).

The non-decaying solution of (131) (i.e., the generating solution of the perturbative process)
is

x1 = A1u1e
i�1 +A2u2e

i�2 + c:c:; (16)

where Aj = 1=2aj exp(i�j) (j = 1; 2) is a complex constant, with real amplitude aj and
phase �j , “c.c.” stands for the complex conjugate of preceding terms and uj (j = 1; 2) is the
right eigenvector of F0

x, associated with the eigenvalue i!j0 (Equation (3)). Substitution of
(16) in (132) leads to

L0x2 = 2(i!11 � �1F0
x� � �1F0

x�)A1u1e
i�1 + 2(i!21 � �1F0

x� � �1F0
x�)A2u2e

i�2

�A2
1F0

xxu2
1e

i2�1 �A2
2F0

xxu2
2e

i2�2 � 2A1A2F0
xxu1u2e

i(�1+�2) �A1 �A1F0
xxu1�u1

�A2 �A2F0
xxu2�u2 � 2A1 �A2F0

xxu1�u2e
i(�1��2) + c:c: (17)

The solvability of Equation (17) requires the coefficients of the resonant terms to be orthogonal
to the left eigenvector vj of F0

x associated with i!j0 (see Appendix A), thus obtaining,

AjvHj (i!j1 � �1F0
x� � �1F0

x�)uj = 0; (j = 1; 2): (18)
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By separating real and imaginary parts and using vH
j

uj = 1, it follows that2
66664
a1�1� a1�1� 0 0

a2�2� a2�2� 0 0

a1!1� a1!1� �a1 0

a2!2� a2!2� 0 �a2

3
77775

8>>>><
>>>>:

�1

�1

!11

!21

9>>>>=
>>>>;

=

8>>>><
>>>>:

0

0

0

0

9>>>>=
>>>>;
; (19)

where coefficients �j�; �j�; !j� ; !� (j = 1; 2) are given in Appendix B, where it is shown
that they are the partial derivatives of �j and !j evaluated at " = 0. Equations (19) admit the
trivial solution

�1 = �1 = !11 = !21 = 0: (20)

By solving Equation (17), and omitting the complementary function,

x2 = A2
1z11e

i2�1 +A2
2z22e

i2�2 +A1 �A1z1�1 +A2 �A2z2�2

+ 2A1A2z12e
i(�1+�2) + 2A1 �A2z1�2e

i(�1��2) + c:c: (21)

is found, where the zrs’s and zr�s’s (r; s = 1; 2) are solutions of the non-singular algebraic
problems

(ip!10E + iq!20E� F0
x)zrs = F0

xxurus;

(ip!10E� iq!20E� F0
x)zr�s = F0

xxur�us; (22)

where p and q are the real coefficients of �1 and �2, respectively, of the associated exponential
functions in Equation (21). Moreover, the following properties hold:

zsr = zrs;�zr�s = z�rs:

Taking into account Equations (20), substitution of Equations (16) and (21) in (133) leads to

L0x3 = 3(i!12 � �2F0
x� � �2F0

x�)A1u1e
i�1

� 3A2
1
�A1[F0

xx(2u1z1�1 + z11�u1) + F0
xxxu2

1�u1]e
i�1

� 6A1A2 �A2[F0
xx(u1z2�2 + u2z1�2 + �u2z12) + F0

xxxu1u2�u2]e
i�1

+ 3(i!22 � �2F0
x� � �2F0

x�)A2u2e
i�2

� 3A2
2
�A2[F0

xx(2u2z2�2 + z22�u2) + F0
xxxu2

2�u2]e
i�2

� 6A2A1 �A1[F0
xx(u2z1�1 + u1z2�1 + �u1z12) + F0

xxxu1�u1u2]e
i�2

+ c:c:+ NST; (23)

where “NST” stands for non-secular terms. Solvability conditions read2
66664
a1�1� a1�1� 0 0

a2�2� a2�2� 0 0

a1!1� a1!1� �a1 0

a2!2� a2!2� 0 �a2

3
77775

8>>>><
>>>>:

�2

�2

!12

!22

9>>>>=
>>>>;

= �2

2
66664
a1R111 a1R122

a2R112 a2R222

a1I111 a1I122

a2I112 a2I222

3
77775
(
a2

1

a2
2

)
; (24)

where the coefficientsR’s and I’s are given in Appendix C. Under transversality condition (6),
Equations (24) make it possible to determine the quantities �2, �2, !j2 (j = 1; 2) as functions
of the amplitudes aj . Two classes of solutions are found.
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1. Single-mode (or periodic) solutions, with (a1 = a1P 6= 0, a2 = 0) or (a1 = 0, a2 =

a2P 6= 0):

�2 = �
2Rjjj

�j�
a2
jP
�

�j�

�j�
�2; (j = 1; 2)

!j2 = 2

 
Ijjj �

!j�

�j�
Rjjj

!
a2
jP

+

 
!j� � !j�

�j�

�j�

!
�2; (25)

where it has been assumed that �j� 6= 0. If �j� = 0, due to condition (6), �j� 6= 0;
therefore, Equations (241), (242) can be solved with respect to �2.

2. Mixed-mode (or quasi-periodic) solutions, with (a1 = a1Q 6= 0, a2 = a2Q 6= 0):

�2 = 2
(�1�R112 � �2�R111)a

2
1Q + (�1�R222 � �2�R122)a

2
2Q

�1��2� � �2��1�
;

�2 = 2
(�2�R111 � �1�R112)a

2
1Q + (�2�R122 � �1�R222)a

2
2Q

�1��2� � �2��1�
: (26)

By substituting Equations (26) into (243;4) the frequency corrections !j2 are obtained as
functions of ajQ.

It can be easily checked that, by solving perturbation equations of higher orders, it follows

!1h = !2h = �h = �h = 0; h = 1; 3; 5; : : : (27)

Therefore, the lower-order approximation of the steady-state solutions is8>>>>>>><
>>>>>>>:

x =
P2

j=1 "aj Re uj cos
�
!j0 +

"
2

2 !j2t+ �j

�
� "aj Im uj sin

�
!j0 +

"
2

2 !j2t+ �j

�
+O("2)

� = "
2

2 �2 +O("4)

� = "
2

2 �2 +O("4);

(28)

where �j are arbitrary initial phases. By fixing a1 and a2 and varying ", a straight line is
described on the (�; �)-plane, on which the true amplitudes "aj linearly increase.

4. The Multiple Scale Method

A monoparametric family of solutions of the type8>><
>>:

x = x("; t0; t1; : : :)

� = �(")

� = �(");

(29)

where t0 = t, t1 = "t; : : : ; tk = ("k=k!)t are independent temporal scales, is sought. Under
hypotheses of regularity, Equations (29) are expressed in MacLaurin series as8>><
>>:

x

�

�

9>>=
>>; =

1X
k=1

"k

k!

8>><
>>:

xk
�k

�k

9>>=
>>; ; (30)
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where xk = xk(t0; t1; : : :) and " = 0 selects the bifurcation point O. The time derivative is
expressed as

d
dt

= d0 + "d1 +
"2

2!
d2 + � � �+

"k

k!
dk + � � � ; (31)

where dk = @=@tk . Guided by the results obtained in the previous section, the odd terms
of the control parameter expansion are assumed to be zero and only temporal scales of even
order are considered. The following perturbation equations up to order three are obtained:

(d0E� F0
x)x1 = 0

(d0E� F0
x)x2 = F0

xxx2
1

(d0E� F0
x)x3 = 3(�2F0

x� + �2F0
x�)x1 + 3F0

xxx1x2 + F0
xxxx3

1 � 3 d2x1 (32)

The non-decaying solution of (321) is

x1 = A1(t2; t4; : : :) u1e
i!10t0 +A2(t2; t4; : : :)u2e

i!20t0 + c:c:; (33)

where Aj(t2; t4; : : :) = 1=2aj(t2; t4; : : :) exp[i�j(t2; t4; : : :)] (j = 1; 2) is a function of the
slow time scales, with real amplitude aj and phase �j . Substitution of Equation (33) in (322)
leads to

(d0 E� F0
x)x2 = A2

1F0
xxu2

1e
i2!10t0 +A2

2F0
xxu2

2e
i2!20t0 + 2A1A2F0

xxu1u2e
i(!10+!20)t0

+A1 �A1F0
xxu1�u1 +A2 �A2F0

xxu2�u2

+ 2A1 �A2F0
xxu1�u2e

i(!10�!20)t0 + c:c: (34)

Equation (34) does not contain resonant terms; for this reason, temporal scales and control
parameter derivatives of odd order are unnecessary. By solving Equation (34)

x2 = A2
1z11e

i2!10t0 +A2
2z22e

i2!20t0 +A1 �A1z1�1 +A2 �A2z2�2

+ 2A1A2z12e
i(!10+!20)t0 + 2A1 �A2z1�2e

i(!10�!20)t0 + c:c: (35)

is obtained, where zrs has the same meaning as in the previous section. By substituting
Equations (33) and (35) in (323) it follows that

(d0 � F0
x)x3 = 3(�d2 + �2F0

x� + �2F0
x�)A1u1e

i!10t0

+ 3A2
1
�A1[F0

xx(2u1z1�1 + z11�u1) + F0
xxxu2

1�u1]e
i!10t0

+ 6A1A2 �A2[F0
xx(u1z2�2 + u2z1�2 + �u2z12) + F0

xxxu1u2�u2]e
i!10t0

+ 3(�d2 + �2F0
x� + �2F0

x�)A2u2e
i!20t0

+ 3A2
2
�A2[F0

xx(2u2z2�2 + z22�u2) + F0
xxxu2

2�u2]e
i!20t0

+ 6A2A1 �A1[F0
xx(u2z1�1 + u1z2�1 + �u1z12) + F0

xxxu1�u1u2]e
i!20t0

+ c:c:+ NST: (36)

This equation contains terms that would lead to secular terms; to eliminate them, the orthog-
onality of the coefficients of the resonant terms to the critical left eigenvectors vj has to be
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imposed, leading to

d2A1 = vH1 f(�2F0
x� + �2F0

x�)A1u1 +A2
1
�A1[F0

xx(2u1z1�1 + z11�u1) + F0
xxxu2

1�u1]

+ 2A1A2 �A2[F0
xx(u1z2�2 + u2z1�2 + �u2z12) + F0

xxxu1u2�u2]g

d2A2 = vH2 f(�2F0
x� + �2F0

x�)A2u2 +A2
2
�A2[F0

xx(2u2z2�2 + z22�u2) + F0
xxxu2

2�u2]

+ 2A2A1 �A1[F0
xx(u2z1�1 + u1z2�1 + �u1z12) + F0

xxxu1�u1u2]g: (37)

By separating real and imaginary parts of the solvability conditions, the amplitudes and
phases modulation equations on the t2-scale are obtained. By coming back to the t scale and
reabsorbing the parameter " they read:(

_a1 = (�1�� + �1��)a1 +R111 a
3
1 +R122 a1a

2
2 +O(ja1j

5 + ja2j
5)

_a2 = (�2�� + �2��)a2 +R112 a
2
1a2 +R222 a

3
2 +O(ja1j

5 + ja2j
5);

(38)

(
_�1 = (!1�� + !1��) + I111a

2
1 + I122 a

2
2 +O(ja1j

4 + ja2j
4)

_�2 = (!2�� + !2��) + I112 a
2
1 + I222 a

2
2 +O(ja1j

4 + ja2j
4):

(39)

The amplitude modulation equations (38) are uncoupled from the phase modulation equa-
tions (39) and can be studied, for example, by phase techniques. Since they are invariant under
the transformations a1 ! �a1 and a2 ! �a2, is sufficient to consider positive a1 and a2 only.
Equations (38) constitute the bifurcation equations in standard normal form for a non-resonant
double Hopf bifurcation [3]. Their complete classification, containing twelve different cases,
is shown in Guckenheimer and Holmes [2]. Constant solutions of Equations (38) are deter-
mined by setting _a1 = _a2 = 0. These solutions correspond to one-frequency periodic motion
or two-frequency quasi-periodic motions of the original system, Equation (1). They coincide
with the steady-state solutions (Equations (25, 26)) found with the LPM, as it can be seen by
multiplying Equation (24) by "3 and reabsorbing " in the amplitudes and in the control para-
meters. Equations (38) make it possible to detect the stability of periodic and quasi-periodic
motions by analyzing the stability of equilibrium points.

5. Two-Rod System under Aerodynamic Excitation

In this section, the procedure described above is applied to the structure illustrated in Figure 2a.
The structure consists of two vertical rigid rods of length l, constrained by two visco-elastic
hinges of torsional rigidity kH and damping coefficient cH > 0. The rods are joined at their
ends by a visco-elastic device, that either dissipates or puts energy into the system, whose
rigidity iskD and damping coefficient cD 6= 0. The structure is loaded by a fluid flow of uniform
velocity U in a direction orthogonal to the plane of the motion. The exciting mechanism is
such that an aerodynamic force, depending onU and on the shape of the cross-section, arises in
the plane of motion leading to possible Hopf bifurcations (galloping instability). By assuming
the rotations q1 and q2 as Lagrangian parameters (Figure 2b), applying the quasi-static theory
for aerodynamic forces and expanding nonlinearities up to third order (see, e.g., [22]), the
following non-dimensional equations of motion are found:8>><
>>:

�x+ (�x � �au) _x+ x = 2�xy2 + 4�a�xy _y + c2( _x
2 + _y2) +

c3
u
( _x3 + 3 _x _y2)

�y + (�y � �au) _y + !2
0y = 2�x2y + 4

3�y
3 + 4�a�(x2 _y + xy _x+ y2 _y) + c2 _x _y

+
c3
u
( _y3 + 3 _x2 _y):

(40)
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Figure 2. (a) System of two rigid rods under aerodynamic excitation; (b) Lagrangian parameters.

In Equations (40), modal co-ordinates have been used to uncouple the linear part; namely

x =
1
2
(q1 + q2); y =

1
2
(q1 � q2) (41)

are the amplitude of the antisymmetric (q1 = 1, q2 = 1) and the symmetric (q1 = �1, q2 = 1)
modes, respectively. Moreover, the following positions have been made:

u =
�b

m!x
U ; !2

x
=

3kH
ml3

; � =
2kDl2

kH
; !2

0 = 1 + �;

�x =
3cH
ml3!x

; �y = �x + �a�; �a =
jcd + c0

l
j

2
; � =

3cD
ml!x

1
�a

c2 =
3

16

�
�bl

m

�
(c00l + cl + 2c0d); c3 = �

1
20

�
�bl

m

�2

(c
000

l + c0l + 3c00d + 3cd); (42)

where � is the air density; b is an appropriate characteristic length of the cross-section of the
rods; m is the mass per unit length of the rods; �x and �y are the modal structural dampings;
�a is the aerodynamic modal damping; cd and cl are the drag and lift non-dimensional
coefficients, respectively; c0

d
, c00

d
, c0

l
, c00

l
and c000

l
are their derivatives with respect to the attack

angle; !0 = !y=!x is the ratio between the two undamped frequencies, assumed to be
incommensurable; u is the non-dimensional wind velocity, which is assumed as a control
parameter; � is the non-dimensional damping of the visco-elastic device, assumed as a control
splitting parameter. In Equations (40) the dot denotes differentiation with respect to non-
dimensional time � = !xt.

Equations (40) are in second-order local form. To apply the theory developed above, they
should be expressed in form (1); however, as an example, perturbative methods will be applied
directly to them.

5.1. STABILITY ANALYSIS OF THE TRIVIAL PATH

The trivial equilibrium position x = y = 0 loses its stability through a Hopf bifurcation
when the coefficient of the velocities _x and _y in Equations (40) vanish. This occurs for two
critical wind velocities, uc1 = �x=�a and uc2 = �x=�a + �, which trigger an antisymmetrical
and a symmetrical galloping mode, respectively. By posing � := u � uc1, and assuming



Bifurcation Analysis from Multiple Complex Eigenvalues 203

Figure 3. Stability boundaries in the parameter space for the two-rod system.

� and � as control parameters, the stability diagram of Figure 3 is obtained. In this figure
the two boundary stability curves are determined by the equations � = 0 and � = �. For
positive damping � and increasing �, two successive Hopf bifurcations, associated with the
antisymmetric and the symmetric modes, occur; for negative damping � the two bifurcations
occur in the reverse order.

5.2. PERTURBATION ANALYSIS

When the MSM is applied to Equations (40), the following set of perturbation equations is
drawn:(

(d2
0 + 1)x1 = 0

(d2
0 + !2

0)y1 = 0
(43)

(
(d2

0 + 1)x2 = 2c2((d0x1)
2 + (d0y1)

2)

(d2
0 + !2

0)y2 = 2c2 d0x1 d0y1
(44)

8>>>>>>><
>>>>>>>:

(d2
0 + 1)x3 = 3�2�a d0x1 � 6 d0 d2x1 + 6 c3

uc
d0x1(d0y1)

2 + 6 c3
uc
(d0x1)

3

+ 6c2(d0x1 d0x2 + d0y1 d0y2) + 12�x1y
2
1

(d2
0 + !2

0)y3 = 3(�2 � �2)�a d0y1 � 6 d0 d2y1 + 6 c3
uc
(d0x1)

2 d0y1

+ 3c2(d0x1 d0y2 + d0x2 d0y1) + 6 c3
uc
(d0y1)

3

+ 12� x2
1y1 + 8� y3

1

(45)

in which dh := @=@ �h and d2
0 := @2=@2 �0 with h = 0; 2. The general solution of (43) is(

x1 = A1(�2)e
it0 + c:c:

y1 = A2(�2)e
i!0t0 + c:c:

(46)

By substituting Equations (46) in Equations (44) and solving it,(
x2 = 2

3c2A
2
1e

i2t0 � 2c2 �A1A1 + 2
3c2A

2
2e

i2!0t0 + c2!
2
0
�A2A2 + c:c:

y2 = 2c2
!0

2!0�1A1 �A2e
i(1�!0)t0 + 2c2

!0
2!0+1A1A2e

i(1+!0)t0 + c:c:
(47)
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are found. Elimination of the resonant terms from Equations (45) leads to two ordinary
differential equations in the amplitudes Aj(�2) (j = 1; 2). After expressing Aj in polar form
(i.e. Aj = (1=2) exp(i�j)), separating real and imaginary parts and absorbing the parameter
", the following equations are obtained

(
_a1 = 1

2�a�a1 + 1
4
c3
uc
!2

0a1a
2
2 + 3

8
c3
uc
a3

1

_a2 = 1
2�a(� � �)a2 + 1

4
c3
uc
a2

1a2 + 3
8

c3
uc
!2

0a
3
2;

(48)

8>><
>>:

_�1 = �1
6c

2
2a

2
1 �

�
2!2

0�1
4!2

0�1
!

2
0c

2
2

2 +
�

2

�
a2

2

_�2 = �1
4

�
c2

2
!0

4!2
0�1

+ 2 �

!0

�
a2

1 �
1
4

�
1
3!0c

2
2 + 2 �

!0

�
a2

2:
(49)

The amplitude Equations (48) are uncoupled from the phases �1 and �2, which can be
evaluated successively. In order to draw the bifurcation diagram it is necessary to determine
the steady-state solutions of the dynamical system (48) and to perform stability analysis.

5.3. EXISTENCE AND CLASSIFICATION OF STEADY-STATE SOLUTIONS

Equations (48) admit the trivial solution a1T = a2T = 0. Non-trivial steady-state solutions
with one or two non-vanishing components are sought. If a2 = 0, Equation (472) is identically
satisfied, while (471) and (481) yield to

a2
1P = �

4
3
uc

c3
�a�; �1P =

2
9
c2

2uc

c3
�a�� + �10; (50)

respectively. Similarly, if a1 = 0, Equation (471) is identically satisfied, while Equations (472)
and (482) yield to

a2
2P =

4
3
uc

c3

�a

!2
0
(� � �); �2P =

 
�

1
3

�
1
3
!0c

2
2 + 2

�

!0

�
uc�a

c3!
2
0
(� � �)

!
� + �20; (51)

respectively. Both solutions (50) and (51) correspond to periodic responses of the original
system (40), whose first-order approximations are given by Equations (46). It is apparent that,
since aj is real, solutions (50) and (51) exist only for certain ranges of the control parameters,
depending on the sign of c3. For example, if c3 < 0 (as is the case with a square cross-section)
solution (50) exists for � > 0 and solution (51) for � � � < 0.

Finally, if both a1 and a2 are different from zero, solution (50) gives

a2
1Q = �

8
5
�auc

c3

�
�

2
+ �

�
; a2

2Q = �
12
5

�auc

c3!
2
0

�
�

3
� �

�
; (52)

while the corresponding �jQ (j = 1; 2) are obtained by direct substitution of (51) in (49).
With reference again to a square cross-section, the domain of definition of solution (52) is
�=2 + � > 0 and �=3 � � > 0. Since the frequencies of the two interacting modes are
incommensurable, the resultant motion is quasi-periodic.
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Figure 4. Bifurcation diagram in the (�; �) parameter plane and phase portraits for the double rod system (c3 < 0).

5.4. STABILITY AND BIFURCATION ANALYSIS

Let aj0 be a steady-state solution to Equation (48) and �aj a perturbation. The stability of aj0

depends on the evolution of the perturbed motion, governed by the variational equation

(
� _a1

� _a2

)
=

2
4 �a�

2 +
c3

4uc

�
!2

0a
2
20 + 9

2a
2
10

�
c3!

2
0

2uc
a10a20

c3
2uc

a10a20
�a(���)

2 +
c3

4uc

�
9
2!

2
0a

2
20 + a2

10

�
3
5 ( �a1

�a2

)
; (53)

where the matrix J of the coefficients is the Jacobian of the vectorial field defined by the right
hand side of (48) and calculated on aj0. In particular, J has a diagonal form for trivial solutions
(a10 = 0, a20 = 0, J = JT ),

JT =

2
4 �a

2 � 0

0 �a

2 (� � �)

3
5 (54)

for antisymmetric periodic modes (a10 = a1P , a20 = 0, J = JAP ) and for symmetric periodic
modes (a10 = 0, a20 = a2P , J = JSP )

JAP =

2
4��a� 0

0 �a

2

�
�

3 � �
�
3
5 ; JSP =

2
4 �a

3

�
� + �

2

�
0

0 �a(� � �)

3
5 : (55)

On the other hand, for mixed modes, J = JQ is a full matrix; which trace and determinant are

tr JQ = �
3
5
�a(2� � �); det JQ =

�2
a

5
(� + 2�)(� � 3�): (56)
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Figure 5. Bifurcated steady-state amplitudes vs. � along: (a) arrow I; (b) arrow II in Figure 4.

Figure 6. Stable equilibrium paths as � is varied along: (a) arrow I; (b) arrow II in Figure 4.

Previous results (Equations (50) to (56)) have an effective geometric representation in the
bifurcation diagram of Figure 4, obtained for c3 < 0, in which phase-portraits are sketched
for different regions of the control parameters plane. To illustrate the phenomenology, two
representative paths, I and II, have been selected on the diagram. By moving along line I
(� > 0) from the negative half-plane, the trivial equilibrium position looses its stability at
point A after a pitchfork bifurcation and a stable antisymmetric solution arises. For increasing
values of �, a second static bifurcation occurs at point B and an unstable symmetric mode
appears. Finally, if � is further increased, the antisymmetric periodic solution bifurcates at
pointC in a quasiperiodic stable solution. An analogous discussion can be applied for the line
II (� < 0).

The steady-state paths (Equations (50) to (51)) are plotted on the (aj ; �)-plane in Figure 5.
The stable paths are represented by solid lines, the unstable paths by dashed lines. At the
marked points, bifurcations occur, as already described with reference to Figure 4. In particular,
if the splitting parameter � vanishes, all the bifurcation points A to F coalesce and a unique
stable steady-state quasi-periodic motion exists, directly bifurcating from the trivial state.
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Stable steady-state paths are also represented on the (a1; a2)-plane (Figure 6) together with
the associated deflection shapes. However, while in periodic motions the shapes are preserved,
in quasi-periodic motions they change continuously.

If the aerodynamic coefficient c3 > 0 (as is the case with rectangular sections with a large
aspect ratio (e.g., 1:3), with wind acting on the short side [23]), the post-critical behavior is
of a subcritical type and stable postcritical solutions do not exist.

6. Concluding Remarks

The Lindstedt–Poincaré Method (LPM) and the Multiple Scale perturbation Method (MSM)
have been arranged to analyze non-resonant double (codimension two) Hopf bifurcations of
a general two control parameter dynamical system. The following remarks can be made.
1. In the two-time version of the LPM, by expanding the two frequencies !j(") and the two

control parameters �j(") in a series of a perturbation parameter ", linear equations in the
"-derivatives of !j and �j are obtained at each step, in terms of the amplitudes ai of the
two interacting modes. Therefore, bifurcated paths are described in the form �j = �j(ai).
In order ascertain stability of these paths, Floquet theory should be employed to study the
variational equation.

2. In the MSM, amplitude and phase modulation equations identical to normal form equations
are obtained. As they depend on parameters �j , to obtain bifurcated paths in the form
ai = ai(�j), nonlinear equations in the amplitudes have to be solved. Stability analysis
is then easily accomplished using the same modulation equations.

3. Both methods are straightforward and can be applied to any order to improve approxima-
tion. In addition, they furnish closed-form expressions for coefficients that could be used
directly in applications, thus avoiding the need of developing the procedure each time.

4. An example has been developed in details, using the equations of motion in second
order form. This approach requires a lighter computational burden with slightly formal
differences in comparison with the general theory. Around the bifurcation point, the
structure under analysis is a quasi-Hamiltonian linear system. Therefore, the critical
eigenvectors are real and remarkable simplifications in the procedure are obtained. Similar
problems have been addressed in technical literature in the analysis of free motions of two
weakly coupled nonlinear oscillators [6, 24].

5. A comparative study of the MSM and the center manifold method (CMM) has been
performed by Moroz [17] for a particular two-parameter system undergoing a Bogdanov–
Takens bifurcation. In that analysis it is concluded that CMM requires less computational
efforts than MSM, and there is less likelihood of omitting important nonlinear terms.
However, such a conclusion is strongly related to the particular system under analysis
(i.e., a nilpotent Jacobian matrix) and to the steps that are followed (the two methods are
not applied to the same form of the original equation). The conclusion drawn here, which
completely agrees with Nayfeh and Balachandran [6], refers instead to general systems,
especially if they are characterized by large dimensions. In addition, the method presented
here, is systematic and consistent, so that no possibilities arise of omitting any term.

6. The LPM and the MSM can be easily extended to analyze higher codimension bifurcation
problems, whether static, dynamic or mixed. In addition, resonances can be accounted for,
practically without any additional effort. Forthcoming papers will deal with this subject.
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Appendix A: Solvability Conditions for Perturbation Equations (13)

At the k-th step of the perturbative process, the perturbation equation appears as follows

L0xk(�1; �2) =
X
l;m

flmei(l�1+m�2) + c:c:; flm 2 Cn; l;m 2 Z; l;m � k: (A1)

By taking into account periodicity conditions (15), Equation (A1) admits the solution

xk(�1; �2) =
X
l;m

blme
i(l�1+m�2) + c:c: blm 2 Rn; l;m 2 Z; l;m � k; (A2)

where blm is the solution to

(�il!10 � im!20 + F0
x)blm = flm: (A3)

Since the algebraic operator on the left hand side of Equation (A3) is singular for

l = �1;m = 0; l = 0;m = �1; (A4)

Equation (A3) admits solutions if and only if (solvability conditions)

vH
l

f10 = 0; vH2 f01 = 0: (A5)

Since the vectors f�l�m are complex conjugate of flm, conditions relevant to l = �1 and
m = �1 are automatically satisfied.

Appendix B: First-Order Derivatives of the Critical Eigenvalues

Coefficients appearing in solvability conditions (Equations (19), (24), (38), and (39)) are
defined as follows:

�j� = Re(vH
j

F0
x�uj); !j� = Im(vH

j
F0

x�uj)

�j� = Re(vH
j

F0
x�uj); !j� = Im(vH

j
F0

x�uj)
(B1)

Their meaning as first-order derivatives of the critical eigenvalues emerges from the stability
analysis of the trivial path � . It is governed by the variational equation

� _x = Fx(0; �; �)�x (B2)

from which the eigenvalue problem

Fx(0; �; �)w(�; �) = �(�; �)w(�; �) (B3)

follows. Under the spectral hypotheses assumed for the operator Fx(0; �; �), (Section 2), the
equilibrium path � is asymptotically stable if � < 0, and � = 0 and unstable if � > 0
and � = 0. In order to analyze the stability of � for arbitrary variations of both parameters,
consider Equation (B2) calculated in a point of � near the double bifurcation point O (i.e.
� � 1; � � 1). Under these hypotheses, Equation (B3) can be considered as a perturbation
of the eigenvalue problem

F0
xw0 = �0w0 (B4)
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in which F0
x := Fx(0; 0; 0), �0 = �(0; 0) and w0 = w(0; 0). Therefore, the eigenvalues

�(�; �) and the eigenvectors w(�; �) of problem (B3) can be determined using a perturbative
procedure. By assuming for �;w; � and � the expressions
8>>>><
>>>>:

�

w

�

�

9>>>>=
>>>>;

=

1X
k=0

"k

k!

8>>>><
>>>>:

�k

wk

�k

�k

9>>>>=
>>>>;

(B5)

the following perturbation equations are obtained

(F0
x � �0E)w0 = 0;

(F0
x � �0E)w1 = �1w0 � (�1F0

x� + �1F0
x�)w0: (B6)

To study the stability of � , only the critical eigenvalues �j0 = !j0 (j = 1; 2) are of interest,
since the remaining ones are a great distance from the imaginary axis. From Equation (B61)

w0 = uj (B7)

follows and (B62) reads

(F0
x � i!j0E)w1 = [�j1 � (�1F0

x� + �1F0
x�)]uj : (B8)

Since, by hypothesis, matrix (F0
x � i!j0E) is singular, Equation (B8) admits a solution if and

only if the right hand side is orthogonal to the left eigenvector vj , defined by Equation (4).
Hence,

�j1 = vHj [(�1F0
x� + �1F0

x�)uj] (B9)

follows, where the normalization condition vH
j

uj = 1 has been used. By truncating (B51) at
the "-order and absorbing the parameter ", the following expression is obtained for the critical
eigenvalues

�j = i!j0 + vH
j
[(�F0

x� + �F0
x�)uj] +O(�2 + �2): (B10)

From Equation (B10), by putting �j = �j + i!j , it follows that coefficients (B1) are the
control parameter derivatives at the critical state of the real and imaginary parts of �j (i.e. the
so-called first-order sensitivities of the critical eigenvalues).

Appendix C: Coefficients in Equations (38) and (39)

By defining

cjjj := vH
j
[F0

xx(2ujzj�j + zjj�uj) + F0
xxxu2

j
�uj]; (j = 1; 2); (C1)

c122 := 2vH1 [F0
xx(u1z2�2 + u2z1�2 + �u2z12) + F0

xxxu1u2�u2]; (C2)

c112 := 2vH2 [F0
xx(u2z1�1 + u1z2�1 + �u1z12) + F0

xxxu1�u1u2]; (C3)
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the following positions hold in Equations (38) and (39)

Rjjj =
1
8

Re(cjjj); Ijjj =
1
8

Im(cjjj); R1j2 =
1
8

Re(c1j2); I1j2 =
1
8

Im(c1j2): (C4)
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