
HAL Id: hal-00799030
https://hal.science/hal-00799030v1

Submitted on 11 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Potential Integration of an Ontology-Based Data
Access Approach in NoSQL Stores

Olivier Curé, Fadhela Kerdjoudj, David Célestin Faye, Chan Le Duc, Myriam
Lamolle

To cite this version:
Olivier Curé, Fadhela Kerdjoudj, David Célestin Faye, Chan Le Duc, Myriam Lamolle. On the Poten-
tial Integration of an Ontology-Based Data Access Approach in NoSQL Stores. Emerging Intelligent
Data and Web Technologies, Sep 2012, Bucarest, Romania. pp.166-173. �hal-00799030�

https://hal.science/hal-00799030v1
https://hal.archives-ouvertes.fr

On The Potential Integration of an Ontology-Based Data Access Approach in

NoSQL Stores

Olivier Curé, Fadhela Kerdjoudj

Université Paris-Est Marne-la-Vallée, LIGM, France

{ocure,f.kerdjoudj}@univ-mlv.fr

David Faye

Université Gaston Berger de Saint-Louis, Sénégal

david-celestin.faye@ugb.edu.sn

Chan Le Duc, Myriam Lamolle

LIASD

Université Paris 8 Montreuil, France

{chan.leduc,myriam.lamolle}@iut.univ-paris8.fr

Abstract—NoSQL stores are emerging as an efficient alterna-
tive to relational database management systems in the context
of big data. Many actors in this domain consider that to gain
a wider adoption, several extensions have to be integrated.
Some of them focus on the ways of proposing more schema,
supporting adapted declarative query languages and providing
integrity constraints in order to control data consistency and
enhance data quality. We consider that these issues can be dealt
with in the context of Ontology Based Data Access (OBDA).
OBDA is a new data management paradigm that exploits the
semantic knowledge represented in ontologies when querying
data stored in a database. We provide a proof of concept
of OBDA’s ability to tackle these three issues in a social
application related to the medical domain.

Keywords-Ontology Based Data Access (OBDA); NoSQL;
Document store; SPARQL; Social Application

I. INTRODUCTION

NoSQL covers a wide range of technologies and data

architectures for managing web-scale data and having the

following common features: persistent data, non-relational

data, avoid join operations , distribution, massive horizontal

scaling, no fixed and flexible schemata, replication support,

individual usually procedural query systems rather than us-

ing a standard declarative query language, consistent within

a node of the cluster and eventually consistent across the

cluster and simple transactions. According to their data

model and replication/sharding strategy, we distinguish four

NoSQL categories, each one having its own specificities and

facilitating the management of some particular kind of data:

view of a database as something for storing a value (Key-

value Stores), more flexibility about stored data (Document

Stores), management of use cases like relationships (Graph

Databases) or aggregation of data (Column Databases).

Solutions in the NoSQL ecosystem are emerging in var-

ious domains such as social, scientific and even financial

applications. Nevertheless, many actors consider that in

order to increase its adoption rate, NoSQL systems need

to integrate some new features. In fact, the desired fea-

tures correspond to the ones found in Relational Database

Management Systems (RDBMS). We can identify three

important ones which are concerned with more schema,

more declarative query languages and more data integrity to

enhance data quality and business intelligence (BI) process-

ing. In fact, excluding ACID (Atomicity, Consistency, Iso-

lation and Durability properties expected from a RDBMS)

and consistency issues [18], after these additions a NoSQL

system may start resembling a RDBMS. We argue that the

integration of these features needs to consider the semantics

of the elements of the application domain. This could be

a major break through for both NoSQL stores and the

Semantic community since RDBMS is not really reactive

in integrating semantics.

Ontology Based Data Access (henceforth OBDA) may

be a good fit in this direction since it aims to represent

the concepts and properties of a domain with a formalized

ontology. OBDA provides a semantic conceptual schema

over a repository of data and, due to its logical formalism,

it is likely to support formal analysis, optimization and

reasoning. In this paper, we focus on the currently most

popular form of OBDA systems: those based on Description

Logics (DL) [3]. DL-based OBDA is largely motivated by

the Semantic Web and has mainly been studied for data

repositories corresponding to RDBMS. The main contribu-

tion of this work is to show that OBDA is even more needed

in the NoSQL ecosystem. Moreover, we consider that a

common OBDA approach can be designed for both RDBMS

and NoSQL, hence supporting a form of data integration

from both these data management systems.

This paper is organized as follows. In Section 2, we

present the background knowledge on OBDA and NoSQL.

Section 3 introduces a social medical application that will

serve as a running example. Section 4 tackles issues on the

three features identified for NoSQL systems: schema model-

ing, declarative language and constraint violation detection.

Section 5 contains a discussion and concludes the paper.

II. BACKGROUND KNOWLEDGE

In this section, we introduce the main notions needed to

understand the concepts used in this paper. Basically, we

present the main characteristics of DLs and in particular the

DLs that are used by OBDA in the context of the Semantic

Web. Then, we present some of the most popular NoSQL

data models, i.e. document and column family stores.

A. DL-based OBDA

DLs correspond to a fragment of first order logic with

sound and complete inference procedures. They are gener-

ally used to represent the knowledge of a particular applica-

tion domain and are composed of a TBox and an ABox that

respectively specify the general properties and the instances

of both concepts and roles. In this context, concepts and

roles correspond respectively to unary and binary predicates.

In the context of OBDA, specific tractable description

languages, denoted as the DL-Lite family [5]), have been

defined to express conceptual data models (e.g. Entity-

Relationship [7]) and object-oriented formalisms (e.g. basic

UML class diagram1). Among this DL-Lite family, the so-

called DL-LiteR have been selected as the basis for the

OWL2QL profile2. In this DL, the syntax of concept and

role expressions is as follows:

B → A | ∃R
C → B | ¬B
R→ P | P−

Q→ R | ¬R

where A denotes a concept, P denotes a role and P−

correspond to the inverse of the relation P .

TBox and ABox assertions are formed according to the

following syntax (with a and b denoting constants):

B ⊑ C and R ⊑ Q

B(a) and R(a, b)

The DL-Lite family has been specifically designed with a

perspective toward OBDA applications. For instance, MAS-

TRO [4] enables the definition of constraints and provides

reasoning services in the context of OBDA.

B. Document and Column family NoSQL stores

In the following, we present Document and Column

Databases because they are richer than key-value pairs and

also because many data structures (objects) can’t be easily

modeled as key-value pairs. Note that Graph Databases must

be thought as Document Databases with a special document

type with the additional quality of allowing to perform graph

operations.

Document databases focus on storage and access opti-

mized for documents as opposed to rows or records. The

data model is collections of documents, which contain key-

value collections. In a ”document” the values can be nested

documents or lists as well as scalar values. The attribute

1http://www.omg.org/uml/
2W3C, “OWL2 Profiles”, available at http://www.w3.org/TR/owl2-

profiles

names are not predefined in a global schema but dynamically

defined for each document at runtime. Moreover, unlike for

a tuple, a wider range of values are authorized. A document

store stores data in tree-like structures and requires the data

to be stored in a format understood by the database. In

theory, this storage format can be XML, JSON (JavaScript

Object Notation), Binary JSON (BSON), or just about any-

thing, as long as the database can understand the document

internal structure.

MongoDB3 is an open source, schema-free, document-

oriented database using a collection oriented storage. Col-

lections are analogous to tables in a relational database. Each

collection contains documents that can be nested in complex

hierarchies and still be easy to query and index. A document

is a set of fields, each one being a key-value pair. A key

is a string and the value associated can be a basic type,

a document, or an array of values. In addition, it allows

efficient storage of binary data including large objects (e.g.

photos and videos).

MongoDB provides support for indexes and object queries

for fetching data. Indexing techniques rely on B-Trees.

Multi-key indexes are also supported. Dynamic queries are

also supported with automatic use of indices, like RDBMSs.

It has a query optimizer, and allows ad-hoc queries. Mon-

goDB also supports map-reduce techniques for complex

aggregations across documents. MongoDB provide access

in many languages such as C, C++, C#, Ruby, Java, etc.

MongoDB scale reads by using replica sets and it scale

writes by using sharding. It is tolerant of incomplete data.

However it has less flexibity with querying (e.g. no JOINs

between collections)

Column family databases or big table-like databases[6]

are very similar on the surface to relational databases, but

they are quite different because they are oriented differently

to maximize disk performance. Here, the motivation is that

generally, a query doesn’t return every column of a record.

They store their data such that it can be rapidly aggregated

with less I/O activity. A big table-like database consists of

multiple tables, each one containing a set of addressable

rows. Each row consists of a set of values that are considered

columns.

Cassandra4 is a column family database having a data

model that is dynamic and column-oriented. Unlike a rela-

tional database, there is no need to model all of the columns

required by an application up front, as each row is not

required to have the same set of columns and columns can be

added with no application downtime. A table in Cassandra

is a distributed multidimensional map indexed by a key.

The value is an object that is highly structured and the row

key in a table is a string. Columns are grouped together

into sets called column families. Column Families contain

3http://www.mongodb.org
4http://www.cassandra.apache.org

multiple columns, each of which has a name, value, and a

timestamp, and which are referenced by row keys. There

are two kinds of column families: Simple and Super. Super

column families stands for column family within a column

family. The column families are fixed when a Cassandra

database is created, but columns can be added to a family

at any time.

The index of the row keys of a given column family serves

as primary index. It is the responsability of each participating

node to maintain this index for the subset of data it manages.

Additionnaly, because each node is aware of ranges of keys

managed by the others nodes, requesting rows can be more

efficient. Cassandra supports secondary indexes, i.e. index

on column values.

Cassandra allows fast lookups, and support for ordered

range queries. Cassandra is recognized to be really fast for

writes in a write-heavy environment. However, reads are

slower than writes. This may be caused by not using B-

trees and in-place updates on disk unlike all major relational

databases and some NoSQL systems. In terms of data access,

Cassandra has a very low level API that you access through

its RPC serialization mechanism, e.g. Thrift. Recently, Cas-

sandra query language(CQL) has appeared as an alternative

to the existing API.

III. RUNNING EXAMPLE: MEDICAL SOCIAL

APPLICATION

In order to illustrate our approach, we present a med-

ical social application which stores and processes patient

information concerning their diseases, allergies, and drug

prescriptions. We only propose an extract of the database

and ontology that currently composes the real application.

Concerning the database, it is represented in Figure 1

as a set of JSON documents. It makes an intensive use

of denormalization to support fast access to the data. Our

data extract highlights three entities which we will denote

as collections, namely Patient, Disease and Drug,

which concretely illustrate the kind of reasoning and query

rewriting one can perform with OBDA. The Patient

collection stores information on the patient (e.g. last and first

names, gender, date of birth, etc.), the kinds of allergies and

diseases she is suffering from and the list of treatments she is

following. Information related to the treatments contain the

start date and the (optional) end date, the drug identification

and name. Several interesting features of this application

require to reason over drugs, molecules and diseases data

and knowledge. The Disease collection stores informa-

tion on a particular disease. The Drug collection regroups

information such as name, molecule name, posology, etc. on

a drug product. They both contain a list of patients involved.

One important aspect in this social application is the

ability to integrate existing ontologies. For instance, the

Linked Open Data5 proposes an access to the Diseasome

5http://linkeddata.org

Table I
ONTOLOGY OF THE SOCIAL MEDICAL APPLICATION

1. Patient ⊑ Person 5. ∃sufferFrom− ⊑ Disease

2. Patient ⊑ ∃lastName 6. Patient ⊑ ∃sufferFrom

3. ∃lastName− ⊑ String 7. Disease ⊑ ∃sufferFrom−

4. ∃sufferFrom ⊑ Patient

ontology and the DBPedia repository proposes access to

the Anatomical Therapeutic Chemical system (ATC)6 that

classifies drug molecules. Thus in many application domain,

the integration of an ontology comes for free since it is

possible to reuse high quality and updated ontologies in a

format compatible with the Semantic Web.

Based on this database instance, we now propose in Table

I an associated DL-LiteR ontology.

The axioms of this ontology extract state that a patient

is a person (1), a patient has a last name (2) which corre-

sponds to a string of characters (3), similar axioms can be

stated for gender, first name, birth date, etc. Axioms (4-7)

specify that the domain and range of the sufferFrom role

are respectively the Patient and Disease concepts. A

similar pattern can be defined to state that a patient follows

a treatment and that a treatment contains a drug which cures

a disease.

IV. FEATURES OF AN OBDA SYSTEM FOR NOSQL

STORES

In this section, we tackle the issue of supporting three

important features desired in NoSQL stores: adding schema,

providing a declarative query language and supporting in-

tegrity constraints. In Figure 2, we provide an overview of

an architecture composed of three layers: query, semantic

and storage. The Storage layer is composed of standard

NoSQL databases but in this paper we concentrate on a

single instance (look for [9] for more details on integrating

several instances). The Semantic layer is the cornerstone

of this research and is dealt with in sub-sections IV-A and

IV-C. The Query layer is treated in sub-section IV-B In this

architecture, an end-user writes a SPARQL query7 which

is sent to the OBDA system. There it is translated using

mapping assertions and inferences over the ontology into a

set of queries that are executed on the NoSQL sources.

A. Schema features

Many functionalities depend on the addition of a schema

to NoSQL data models. Some of them are discussed in the

next sections of this work: generation and optimization of

queries, detection of integrity constraints violation.

6http://www.whocc.no/atc ddd index/
7http://www.w3.org/TR/rdf-sparql-query/

Figure 1. Database of the medical social application

Figure 2. Overview of OBDA architecture

Integrating a schema may be considered a complex task

as long as we want to retain the flexibility of schema-

less stores. Recall that this flexibility supports the efficient

storage of sparse data and eases the insertion of additional

fields in tuples. But tackling this addition is nevertheless

a big opportunity to integrate functionalities that we do

not get from existing database management systems, e.g.

dealing with the semantics of the underlying application

domain. We consider that it is the right timing for proposing

such an integration due to the recent emergence of NoSQL,

its receptiveness, reactivity and active community. It is

known that incorporating a novel feature is harder in well-

established ecosystems. For instance, the DL community

started several years ago to motivate and propose OBDA

as an alternative for conceptual schemata to the RDBMS

market. But these efforts have not payed off yet and all

major RDBMS vendors remain closed to the principle of

OBDA.

The difficulty of maintaining flexibility and integrating a

schema is related to (1) the notion of mapping schema and

instance elements and (2) query answering in the context

of a set of mapping assertions. Mapping assertions enables

to define correspondences between the target elements (i.e.

ontology concepts and roles in this work) and the sources

(i.e. keys and collections of NoSQL stores). Once these

correspondences are specified, queries can be expressed

in a query language of the target, translated in constructs

accepted by the sources which are executed to retrieve

results.

Concerning the mapping solution, it also needs to em-

phasize a form of flexibility by not imposing one-to-one

correspondences between schema and instance elements.

Thus an instance element (e.g. a key) may not be mapped

to an ontology element and some schema elements may

not be mapped to an instance element. This yields an

approach where the design of the ontology and the mapping

assertions correspond to the specific needs of an application.

For instance, one may design a version of our medical

application where allergy related information is not con-

sidered but knowledge on diseases and drug molecules are

stored in the ontology. Note that this approach fits the best

practices of application developers using NoSQL stores.

That is they tune the structure of the database instances to

fit the peculiar needs of an application, ensuring that certain

queries will perform very efficiently while many others may

be impractical.

In [9], we have proposed a mapping solution between

a relational schema and a set of NoSQL stores/RDBMS.

This mapping language can easily be adapted to the domain

of ontologies. It thus enables to link a single ontology

to a set of NoSQL sources. A main contribution of this

work was to integrate the notion of an access path in the

mapping assertions. This enables to tackle the issue of the

denormalized aspect of NoSQL stores. In fact, it enables

to reply to the following question: how one can relate an

ontology element to a NoSQL element that can be found in

several entities? For instance in our running example, this is

the case with patient identifiers which can be found in the

Patient, Disease and Drug collections. Depending on

the query asked, our system selects the mapping assertion

with the most efficient access path. This will support the

generation of a query that will retrieve information with

optimized performance.

We now adapt the mapping language of [9] to a target

ontology. It corresponds to the GAV (Global As View)

approach with sound sources [12] which stores possible

access paths for a target element. To specify access paths, an

end-user either specifies the ’*’ symbol which, like in SQL,

denotes the complete list of attributes of a given collection

or an attribute name, denoting that the source entity offers

an efficient access, either using a key or an index.

Definition 1 General syntax of a mapping assertion with

an access path specification on attribute α of the source is as

follows: EntityO ←−α EntityS(< key; value >) where

entityO and EntityS respectively denote a conjunction

of ontology elements and a conjunction of collections or

column families. Due to the schema flexibility of NoSQL

databases, we can not rely upon any attribute ordering in a

collection or column family. Hence, we must use attribute

names to identify distinct portions of a tuple. In order to map

EntityO and EntityS attributes, we introduce a ’AS’

keyword to define a correspondence between attribute sym-

bols of the mapping assertion. An entry of EntityO takes

the form of either a concept assertion(C(a) with C a concept

and a an individual) or a role assertion (R(a, b) with R a role

and a,b individuals). The individual labels used in EntityO

must correspond to the ones used in EntityS which we

are now specifing. An entry in EntityS is defined as a

key/value structure using a ’<key ; value>’ syntax,

where key is either (i) ’PKEY AS k’ or (ii) a variable

name (previously defined in a EntityS couple of the same

mapping) and value is either of the form (i) nameS AS

nameO (where nameS and nameO are resp. attribute names

from the source and the target) or (ii) of the form of a

possibly nested list comprehensions [item|item ← list]
(where item corresponds to an element of the set denoted

by list which is an attribute identifier of the source).

Finally, a keyword is introduced to denote the primary key

of the structure (i.e. ’PKEY AS’) and to manipulate it, e.g.

IN KEY.

Example 1 We now present two mapping

assertions in the context of our running example:

1 Disease(k),
←−−−
k, n, c Disease(<PKEY AS k;

dName(k, n), disName AS n,

dLabel(k, c), disComment AS c,

Patient(p) [p | p←Patients]>)

sufferFrom(p, k)

2 Patient(k),
←−−−−−
k, n, f, g Patient(<PKEY AS k;

lastName(k, n), lName AS n

firstname(k, f), fName AS f,

gender(k, g) gender AS g,

Disease(d), [d | d ← Diseases]>)

sufferFrom(k, d)
In these two mapping assertions recall that elements on

the left (resp. right) hand side of the arrow correspond to

ontology (resp. NoSQL) elements.

Mapping #1 enables to retrieve information related to a

disease. Each tuple in the NoSQL store will generate an

individual in the KB with type Disease. This individual

will have dName and dLabel properties storing respec-

tively the name and a comment on this disease. Finally, a

patient individual will be created in the KB for each patient

known to suffer from this disease. Note that the access

path specified for this mapping are the aliases k, n and c

corresponding to a disease identifier, name and comment.

That is this mapping is an efficient access path if one wants

to retrieve information from these attributes. In the case

of an absence of secondary index on the patients field

of the Disease collection, it is certainly not efficient to

retrieve all Patient or sufferFrom information from

this mapping assertion since it would require a complete

scan of all disease entries. Nevertheless, for retrieving all

patients suffering from a given disease, this mapping is a

good option.

In the next section, we explain how access path selection

impacts the generation of queries.

B. Declarative Query Language

A main advantage in using a DL-based OBDA approach

is to enjoy all the stack of technologies developed and main-

tained in the Semantic Web. Among them, RDF (Resource

Description Framework)8 plays a central role. It corresponds

to a directed, labeled graph data composed of so-called

triples, i.e. subject, predicate and object. Considered as a

data model, RDF comes with a query language named

SPARQL. It consists of a set of patterns which are matched

against an RDF graph. Elements of a pattern can be a URL,

a variable (starting with a ’?’ symbol) or a literal (only for

objects). Hence, a SPARQL query can be represented as a

graph. A frequently encountered query pattern takes the form

of a star since there is a central node in the query from which

several edges are departing. The identification of a star query

can be computed from measures, e.g. degree centrality, of

the centrality of vertices within a graph. Intuitively, the node

with the greatest number of links is considered central.

8http://www.w3.org/RDF/

Figure 3. Graph representation of Example 1’s query

Example 2 The following query retrieves the name and

comment of all stored diseases:

SELECT ?n,?c WHERE {?x rdf:type

Disease.?x dName ?n. ?x dLabel ?c}.
From the graph representation of Example 2’s query

displayed in Figure 3, it is clear that the variable ’x’ is

the central node of this star-query.

As shown in Figure 2, SPARQL queries sent to the

OBDA system are translated into queries compatible with

the NoSQL store. This kind of query answering is referenced

as on-demand since the information stays at the sources and

is retrieved from queries expressed over the target schema.

This requires a translation since the query facilities available

at both the target and the source are different, i.e. SPARQL

for the ontology and a specialized query language (e.g.

MongoDB) or some procedural code using an API (e.g.

CouchDB9). This translation implies two operations: (1)

generating several queries using ontology-based inferences

and (2) searching an efficient rewriting using mapping

assertions and their access paths.

Consider a SPARQL query asking for properties of an

individual of type A and an ontology containing axioms

B ⊑ A, C ⊑ A and B ⊑ ¬C. The KB may not contain

individuals explicitly defined as instances of A. This does

not mean that the result set of this query ought to be

empty since the KB may contain individuals of types B

and C. Hence, it is necessary to generate queries based

on computing the transitive closure of the concept A. A

standard DL reasoner or even explicitly stated subsumption

hierarchies enables to generate queries in an efficient and

transparent manner.

Example 3 In our running example, ATC codes are

explicitly represented as a hierarchy of DL concepts. With

our inference enabled approach, it is sufficient to express the

following query to retrieve all twelve Opium alkaloids and

derivatives that act as cough suppressants.

SELECT ?x WHERE {?x rdf:type Molecule.

FILTER regex(?x,‘‘R05DA’’).}
This is due to the concept hierarchy stating that X ⊑

R05DA with X ∈ {R05DA01, .., R05DA12}.
Concerning the generation of efficient rewriting of target

queries over the sources, our approach mainly uses the set

of mapping assertions and their access paths. The main

principle is to detect the central node of a (star-) query and to

9http://couchdb.apache.org/

search for a mapping assertion whose access path is defined

over the type of this central node.

Example 4 In the case of the query of Example 2, the

mapping assertion selected for the translation is the first

of Example 1. This is motivated by the type of ?x being

Disease and the access path being the most performant

for this mapping.

We have already emphasized that the set of queries exe-

cuted in an application using a NoSQL store is well defined

and motivates the manner one denormalizes the database.

This adequacy between application queries and physical

storage of the data is transposed into the mapping assertions.

This enables to define queries that may not require joins

although accessing information related to different domain

entities.

Example 5 Consider that our social medical application

enables an end-user to search for all male patients and their

diseases. This would correspond to the following query:

SELECT ?n ?f ?d WHERE {?p rdf:type

Patient. ?p lastName ?n. ?p firstName

?f. ?p gender ?g. ?p sufferFrom

?d. ?d rdf:type Disease. FILTER

regex(?g,"male")}
This is clearly a star-query with ?p being the central node.

Although the information returned by the query correspond

to the last and first names of a patient as well as disease

name, no join is needed. Thus, mapping assertion #2 is

clearly the most efficient.

Finally, it may be impossible to identify a single central

node in a query. In classical denormalized schemata, this is

encountered in queries requiring joins. Note that for appli-

cations requiring an intensive use of such queries, a denor-

malization is certainly preferred solution. For instance with

Example 6’s query, one may model the database instance

with both disease name and comment in the Patient

collection, hence replying without a join. Nevertheless, using

heuristics, a translation may be possible be without guaran-

teeing high performance query answering. Due to paper size

restrictions, we only provide a sketch of a strategy we have

designed. Intuitively it consists in partitioning the query into

a set of star-queries and taking advantage of roles relating

them, denoted linking-roles. For instance the original query

can be partitioned into n star-queries if n central nodes are

identified. Then each of them can be recursively partitioned

into star-queries until all sub queries can not decomposed.

These atomic queries can be translated using the approach

previously explained and each of them are being joined from

operations performed on linking-roles.

Example 6 Consider the following query that retrieves the

label and name of diseases as well as the last and first names

of patient who are suffering from this disease. Its graphical

representation (Figure 4) clearly emphasizes that it is not a

star-query since both nodes p and x have the same centrality

degree. Hence the query can be partitioned into two atomic

Figure 4. A non star-query

star-queries: the ones on each sides of the dashed line. Each

of them will be related using the sufferFrom role.

Our translation mechanism generates queries taking the

form of peculiar NoSQL query language or of a program

using a API provided by the NoSQL system. Currently, our

prototype generates Java programs for MongoDB and Cas-

sandra but we are working on generating CQL queries for

the latter. The heterogeneity of query language offers among

NoSQL systems makes it difficult to design an interoperable

framework. The ability to transform any NoSQL model into

a graph confirms that SPARQL is a good candidate for filling

the role of a common query language.

C. Integrity Constraints

In this paper, we consider that ontologies are correct or

are debugged using tools such as [10] or [16]. This implies

that inconsistencies must come from the data. This problem

recently started to draw some attention and two solutions can

be identified: (1) dealing with inconsistency-tolerant query

answering and (2) providing data quality tools.

Inconsistency-tolerant query answering has been identi-

fied to be intractable in data complexity for DL-Lite [11]

and the EL family [15]. It is the subject of on-going research

to develop algorithms and heuristics to practically solve this

problem in an efficient manner.

In this paper, we focus more on the second approach

which aims to detect the insertion of inconsistent data. The

mechanisms found in RDBMS is a major inspiration in

dealing with this issue: checking the violation of integrity

constraints, i.e. logical axioms such as functional or inclu-

sion dependencies [1], whenever a tuple is updated. This

main mechanisms associated to this detection are prevention,

i.e. forbidding the persistent storage of erroneous data, or

correction, i.e. cleaning the data to restore a correct value

[2]. Some of the axioms stored in the ontology can serve

as integrity constraints but one has to be careful with

the semantics adopted by DL [14]. The main difference

in terms of semantics between a KB and an RDBMS is

the Closed/Open World Assumption (henceforth CWA and

OWA). Intuitively, in OWA, one cannot assume that the

knowledge in the KB is complete while it is in CWA.

Several solutions have been identified to support integrity

constraints with an ontology [17]. A simple approach con-

sists in finding relevant axioms that could act as integrity

constraints and representing them as queries which are

executed when a tuple is updated. Finding the axioms may

be performed automatically or more or less involving an end-

user. An automatic discovery is generally based on a pattern

matching approach, e.g. discovering all axioms matching an

inclusion dependency, but its results is usually less relevant

than a manual one. The manual discovery involves more

work from the end-user but has much more fine-grained

results. Some semi-automatic methods certainly have to be

designed and implemented. In [8], a non-standard set of

integrity constraints is identified from an ontology (e.g.

functional and inclusion dependencies with conditions) and

associated operations to detect violations are described with

optimized algorithms.

Example 7 Consider that the Drug collection of our

running example stores information on the social security

reimbursement rate and the type of a product (i.e. home-

opathy, allopathy, etc.). A logical axiom stating that only

allopathy drugs can be reimbursed with a rate of 65% is

expressed as:

drug (DRUGRATE=65 → DRUGTYPE=’allopathy’) and

corresponds to a conditional functional dependency since

it depends on the constant values ’65’ and ’allopathy’.

Once these axioms are identified, it is generally simple to

translate them into a compliant query language: SPARQL.

The generation of such queries is straightforward and can

be automatized.

Example 8 The query generated from the integrity con-

straints of Example 7 is as follows:

SELECT ?drug WHERE { ?drug rdf:type :Drug.

?drug :drugRate ?rate. FILTER (?rate=65).

?drug :drugType ?type. FILTER

(?type != "allopathy").}

The next step is to execute a set of SPARQL queries when

a tuple is updated. Like in a RDBMS, SPARQL queries

are triggered from tuple updates. A naive approach of this

step is quite inefficient since the set of SPARQL queries

representing integrity constraints may be very large for

certain domain of interest. Hence, it is important to identify

a subset of these queries that are relevant to update tuple.

This operation is performed using the mapping assertions

which relate NoSQL elements to concepts and roles of the

ontology. For instance, in the context of a drug tuple update,

it is not relevant to check integrity constraints related to

patients, allergies and diseases.

Finally, it is important to provide a high performance

method to detect data inconsistencies. After all, NoSQL

stores have been designed and implemented for high

throughput and speed. We argue that a tunable approach

to triggering SPARQL queries is needed. Since developers

using NoSQL stores generally control sensitive aspects of

their applications, e.g. handling consistency level, it may

be preferable to supply them with control of integrity con-

straints checking. The levels we are proposing range from:

• a fine-grained tuple update checking where each time

a tuple is updated, a set of queries is triggered.

• a time dependent level, i.e. the developer programs at

which period of time checking is to be performed.

• an adaptable runtime dependent level where depending

on the workload (IO operations) the system may decide

to perform live or delayed checking.

The first level may slow the system down but ensures that

at all states, the database instance is consistent. On the

opposite, the last two levels may not impact the system per-

formance but allow inconsistencies during a certain period of

time. Something that may not be that annoying in domains

using NoSQL stores, i.e. eventually consistency.

V. DISCUSSION

This paper motivates the fact that OBDA is able to fulfill

some of the most desired features in NoSQL databases.

The features considered in this paper are adding schema

facilities, providing a declarative query language and sup-

porting integrity constraints. For all three of them, we have

presented some proofs of concepts but could not, due to

space limitations, provide more details.

Nevertheless, we have shown that using OBDA provides

functionalities that go beyond the expectation of most

NoSQL developers and users, e.g. reasoning over semantic

schemata. Moreover, adopting an OBDA approach may not

come at an extract cost for end-users. In many cases, they

would not have to design from scratch the ontology of their

application domain. Thanks to available repositories, one

may be able efficiently find, via tools like Watson or Liked

Open Data, and reuse existing ontology and knowledge base.

We consider that much work is needed in the direction of

integrating OBDA with NoSQL stores. In [13], the authors

highlight the duality of RDBMS and NoSQL (which they

call CoSQL) and argue that the NoSQL follows OWA.

We can consider that the flexibility of NoSQL is related

to this open world semantics. Precisely, they oppose the

Closed World Assumption of RDBMS to the Open World

Assumption (OWA) of NoSQL which is at the source of

its flexibility. Moreover, ontologies and Knowledge Bases

(KB) are also evolving in an OWA context, proving their

adequacy with NoSQL stores. For instance, the impact of

having an open world assumption on both the ontology and

the NoSQL system is worth studying. With a more practical

approach, the impact of new constructs in the yet to be

released SPARQL 2 or the integration of SPARQL queries

within the MapReduce data processing paradigm needs to

be investigated. Since some NoSQL stores correspond to

distributed hash tables, it is certainly preponderant to do

research on the distribution and parallel processing of the

features presented in this paper.

REFERENCES

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[2] M. Arenas, L. E. Bertossi, and J. Chomicki. Consistent query
answers in inconsistent databases. In PODS, pages 68–79,
1999.

[3] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and
P. F. Patel-Schneider, editors. The Description Logic Hand-
book: Theory, Implementation, and Applications. Cambridge
University Press, 2003.

[4] D. Calvanese, G. D. Giacomo, D. Lembo, M. Lenzerini,
A. Poggi, M. Rodriguez-Muro, R. Rosati, M. Ruzzi, and D. F.
Savo. The mastro system for ontology-based data access.
Semantic Web, 2(1):43–53, 2011.

[5] D. Calvanese, G. D. Giacomo, D. Lembo, M. Lenzerini, and
R. Rosati. Tractable reasoning and efficient query answering
in description logics: The dl-lite family. J. Autom. Reasoning,
39(3):385–429, 2007.

[6] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. Gruber. Bigtable:
A distributed storage system for structured data (awarded best
paper!). In OSDI, pages 205–218, 2006.

[7] P. P.-S. Chen. The entity-relationship modeltoward a unified
view of data. ACM Trans. Database Syst., 1(1):9–36, Mar.
1976.

[8] O. Curé. Improving the data quality of drug databases using
conditional dependencies and ontologies. ACM Journal of
Data and Information Quality, to appear, 2012.

[9] O. Curé, R. Hecht, C. L. Duc, and M. Lamolle. Data inte-
gration over nosql stores using access path based mappings.
In DEXA (1), pages 481–495, 2011.

[10] A. Kalyanpur, B. Parsia, E. Sirin, and J. A. Hendler. De-
bugging unsatisfiable classes in owl ontologies. J. Web Sem.,
3(4):268–293, 2005.

[11] D. Lembo, M. Lenzerini, R. Rosati, M. Ruzzi, and D. F. Savo.
Inconsistency-tolerant semantics for description logics. In RR,
pages 103–117, 2010.

[12] M. Lenzerini. Data integration: A theoretical perspective. In
PODS, pages 233–246, 2002.

[13] E. Meijer and G. M. Bierman. A co-relational model of data
for large shared data banks. Commun. ACM, 54(4):49–58,
2011.

[14] B. Motik, I. Horrocks, and U. Sattler. Bridging the gap
between owl and relational databases. In WWW, pages 807–
816, 2007.

[15] R. Rosati. On the complexity of dealing with inconsistency
in description logic ontologies. In IJCAI, pages 1057–1062,
2011.

[16] S. Schlobach, Z. Huang, R. Cornet, and F. van Harmelen.
Debugging incoherent terminologies. J. Autom. Reasoning,
39(3):317–349, 2007.

[17] J. Tao, E. Sirin, J. Bao, and D. L. McGuinness. Integrity
constraints in owl. In AAAI, 2010.

[18] W. Vogels. Eventually consistent. Commun. ACM, 52(1):40–
44, 2009.

