
HAL Id: hal-00799026
https://hal.science/hal-00799026v1

Submitted on 11 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving the Data Quality of Drug Databases using
Conditional Dependencies and Ontologies

Olivier Curé

To cite this version:
Olivier Curé. Improving the Data Quality of Drug Databases using Conditional Dependencies and
Ontologies. Journal of Data and Information Quality, 2012, 4 (1), pp.20. �10.1145/2378016.2378019�.
�hal-00799026�

https://hal.science/hal-00799026v1
https://hal.archives-ouvertes.fr

Improving the Data Quality of Drug Databases

using Conditional Dependencies and Ontologies

Olivier Curé

Université Paris-Est, LIGM - UMR CNRS 8049, France

Many healthcare systems and services exploit drug related information stored in databases. The

poor data quality of these databases, e.g. inaccuracy of drug contraindications, can lead to
catastrophic consequences on the health condition of patients. Hence it is important to ensure
their quality in terms of data completeness and soundness.
In the database domain, standard Functional Dependencies (FDs) and INclusion Dependencies
(INDs), have been proposed to prevent the insertion of incorrect data. But they are generally
not expressive enough to represent a domain specific set of constraints. To this end, conditional
dependencies, i.e. standard dependencies extended with tableau patterns containing constant
values, have been introduced and several methods have been proposed for their discovery and
representation. The quality of drug databases can be considerably improved by their usage.

Moreover, pharmacology information is inherently hierarchical and many standards propose graph
structures to represent them, e.g. the Anatomical Therapeutic Chemical classification (ATC) or

OpenGalen’s terminology. In this paper, we emphasize that the technologies of the Semantic Web
are adapted to represent these hierarchical structures, i.e. in RDFS and OWL. We also present a
solution for representing conditional dependencies using a query language defined for these graph
oriented structures, namely SPARQL. The benefits of this approach are interoperability with
applications and ontologies of the Semantic Web as well as a reasoning-based query execution
solution to clean underlying databases.

Categories and Subject Descriptors: H.2.8 [Database Management]: Database Applications-
Data mining

General Terms: Algorithms, Experimentation, Performance

Additional Key Words and Phrases: Data quality, Description logics, conditional dependencies

1. INTRODUCTION

The quality of information stored in databases has a significant impact on the
efficiency of organizations and businesses managing and exploiting them [Batini
and Scannapieco 2006]. This is particularly relevant in the medical domain where
inaccurate or false information can have dramatic effects on the health of patients.
In this paper, we consider a self-medication application [Curé 2004] that we have
designed with domain experts and which is being proposed to clients of several
major French insurance companies.

At the core of this application is a set of a relational databases containing infor-
mation on symptoms of the self-medication domain as well as drugs available on
the French market. The drug database contains all the information present in the
Summary of Product Characteristics (SPC) and proposes additional information
such as a rating based on an efficiency/tolerance ratio [Giroud and Hagege 2001],
price, opinion from domain experts, social security system reimbursement rate, etc.
Our databases also integrate as much information as possible on international stan-
dards like the Anatomical Therapeutic Chemical classification (ATC) and the tenth

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY, Pages 1–0??.

2 ·

edition of the International Statistical Classification of Diseases and Related Health
Problems (ICD 10), etc. This integration supports the representation of most of
the explicit information required to perform the needed inferences.

This application’s main functionality consists in proposing a list of over-the-
counter (OTC) drugs based on a patient’s anamnesis. Note that this form of di-
agnostic does not always end up with a drug proposition. In fact, if the symptom
described and/or the patient profile are not adapted to self-medication then the end-
user is advised to consult a healthcare professional. A patient profile stores general
information on the gender, age and health condition (e.g. pregnancy, breast feed-
ing) as well as known diseases, allergies and current drug treatments, all encoded
using standard terminologies. This application targets the general public, i.e. end-
users assumed to have no medical knowledge. Hence we can not expect end-users
to detect false information, as it could be the case for an application designed for
health professionals. Consequently, the soundness and completeness of the stored
information is of a high priority as inaccurate information may be proposed to the
patient and jeopardize their levels of health.

The characteristics of our drug database imposes to use an automatic or semi-
automatic data quality tool. They correspond to the storage of a SPC and ad-
ditional information for ten thousand drug products and a high update rate, i.e.
modifications of existing drugs, insertions of new products and removal of old ones.
These operations are generally performed on a weekly basis. Although the data
quality market already proposes some effective tools, they generally involve inten-
sive interactions with domain experts and are based on a limited set of constraints
found in relational databases. Recently, new forms of data dependencies have been
investigated and their relevance in data exchange/integration as well as data qual-
ity have been emphasized. Some of them are based on extensions of the notion
of data dependency which has been thoroughly investigated and exploited in the
domain of relational databases [Abiteboul et al. 1995], e.g. Functional and INclu-
sion Dependencies (henceforth denoted FDs and INDs). For instance, [Fan 2008]
highlights an attempt to improve data quality using conditional dependencies. In
principle, these dependencies hold only for the tuples that satisfy some conditions.
So far, two forms have been investigated: Conditional Functional Dependencies
(CFDs) [Bohannon et al. 2007] and Conditional INclusion Dependencies (CINDs)
[Bravo et al. 2007]. They correspond to conditional counterparts of respectively
FDs and INDs. Moreover, they are supposed to capture more of the inconsistencies
of real-life data and can help to implement efficient data cleansing tools.

This paper concentrates on the data quality issues of our drug database. Central
to our solution is the ATC classification which divides drug molecules into different
groups according to the organ or system on which they act and/or their therapeutic
and chemical characteristics. In the next example, we consider a simplified version
our database and the peculiar aspect of cleansing the molecule contraindication
information by integrating CFDs and CINDs. Note that in our application, this
approach is also used for other drug related information such as side-effects, disease
contraindications, etc.

Example 1.1: Consider the following drug database schema:

drug (CIP, DRUGNAME, DRUGRATE, DRUGTYPE)

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

· 3

atc (ATCCODE, ATCNAME)

atcDrug (CIP, ATCCODE)

drugContra (CIP, ATCCODE)
where the drug relation contains a (French) product identifier (CIP), a product
name (DRUGNAME), the reimbursement rate (DRUGRATE) and the type of the
product (DRUGTYPE) corresponding to allopathy, homeopathy, etc. The atc re-
lation stores all ATC codes (ATCCODE) and their names (ATCNAME). Another
relation, atcDrug, relates drug products to their ATC codes. Finally, the relation
drugContra stores the ATC codes a drug is contraindicated to. Some of the FDs
and INDs that hold for this database include:
fd1 : drug (CIP → DRUGNAME)
ind1: drugContra(ATCCODE) ⊆ atc(ATCCODE)
ind2: atcDrug(CIP) ⊆ drug(CIP)
Table I presents a portion of our drug database instance. Starting from this small

extract, we observe that standard FDs and INDs are not sufficient to represent the
set of constraints associated to the pharmacology domain. For example, we would
like to state that drug reimbursement at a 65% rate must be of the type ’allopathy’
and that only allopathic drugs are present in the atcDrug relation. Moreover, we
would like to represent the fact that all drug products contraindicated to Iproni-
azid must be either composed of the molecules Zolmitriptan or Dextromethorphan.
These constraints require a notion of condition, a feature not supported by tradi-
tional FDs and INDs. But their conditional counterparts, resp. CFDs and CINDs,
have been introduced to support these constraints:
cfd2: drug (DRUGRATE=65 → DRUGTYPE=’allopathy’)
cind3: atcDrug(CIP) ⊆ drug(CIP, TY=’allopathy’)
cind4: drugContra(CIP, ATCCODE=’N06AF05’) ⊆

atcDrug(CIP,ATCCODE=’N02CC03’ || ’R05DA09’)
The database instance of Table I does not satisfy these 3 conditional depen-

dencies. For instance, cfd2 is violated by tuple t6 since the Cephyl drug is a
homeopathic drug but is reimbursed at the 65% rate. Moreover cind3 is violated
by tuple t12 because as a homeopathic drug, Cephyl should not have an entry in
the atcDrug relation. The treatment of cind4 is more involved since it implies a
form of disjunction. That is a drug contraindicated with Iproniazid must be either
composed of the Dextromethorphan or the Zolmitriptan molecules. This is not the
case for tuple t16 since the drug identified by (CIP) value 3786018 is composed of
Phloroglucinol. Interestingly, a similar form of disjunction has recently been intro-
duced in the context of CFDs, yielding the notion of eCFDs [Bravo et al. 2008].
Besides, we would also like to detect that the Tuxium 30mg drug (t4), which con-
tains the Dextromethorphan molecule (t10), is not contraindicated to the Iproniazid
molecule.

Most of the investigations conducted on conditional dependencies have focused
on their syntax, semantics and properties on precise problems, e.g. consistency, im-
plication and existence of finite axiomatization. The understanding of these issues
now offers an ideal environment for the design of efficient data cleansing techniques
and tools. In order to address these issues, a first step consists of discovering condi-
tional dependencies. This effort is necessarily automated since manual discoveries
necessitate an intensive involvement of domain experts and are error-prone due to

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

4 ·

Table I. Records from the drug database

Tuple CIP DRUGNAME DRUGRATE DRUGTYPE

t1 3533665 Zomigoro2.5mg 65 Allopathy

t2 3282358 Capsyl15mg 0 Allopathy

t3 3544309 Zomig2.5mg 65 Allopathy

t4 3311692 Tuxium30mg 35 Allopathy

t5 3786018 PhloroglucinolArrow 35 Allopathy

t6 3187559 Cephyl 65 Homeotherapy

(a) drug relation

Tuple CIP ATCCODE

t7 3533665 N02CC03
t8 3282358 R05DA09
t9 3544309 N02CC03

t10 3311692 R05DA09
t11 3786018 A03AX12

t12 3187559 N02BA01

(b) atcDrug relation

Tuple CIP ATCCODE

t13 3533665 N06AF05
t14 3282358 N06AF05

t15 3544309 N06AF05
t16 3786018 N06AF05

(c) drugContra relation

Tuple ATCCODE ATCNAME

t17 R05DA09 Dextromethorphan

t18 N06AF05 Iproniazid

t19 N02CC03 Zolmitriptan

t20 A03AX12 Phloroglucinol

t21 N02BA01 Acetylsalicilcacid

(d) atc relation

large volumes of information. Automated methods based on the analysis of sample
database instances have already been published for CFDs in [Chiang and Miller
2008], [Golab et al. 2008] and [Fan et al. 2009] but are missing for CINDs. In this
paper, we present an algorithm for the discovery of CINDs. Hence both CFDs and
CINDs can be discovered from a given dataset, leading to the next issue: find-
ing representations for efficient detection of their violations. So far, all proposed
solutions opted for an SQL query formalism. In this work, we consider another
representation which is more adapted to the graph-based hierarchical structures
that one can find in standards such as the ATC classification, ICD 10 or Open-
Galen. We generalize this notion of a hierarchical structure as an ontology and
argue that this is ideal for the kind of inferences that we would like to perform on
our self-medication application. Moreover, we will show that the representation of
discovered CFDs and CINDs will be more compact using a query language adapted
to an ontology structure.
Contributions
The first contribution of this work is to propose a sound and complete algorithm

for the discovery of CINDs from a relational database instance.
A second contribution consists in detecting conditional dependencies violations

in a relational database from a set of queries expressed at the ontology level, using
the DBOM (DataBase Ontology Mapping) tool [Curé and Bensaid 2008]. This

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

· 5

approach enables to detect the potential violations of conditional dependencies by
executing SPARQL queries, a W3C recommendation for querying RDF (Resource
Description Framework) data.
Finally, we present an evaluation on different datasets. In the first hand, our

CIND discovery solution is evaluated on synthetic databases. Then our data quality
solution is tested on our drug database and we emphasize that an important amount
of information anomalies are automatically detected and semi-automatically re-
paired , i.e. requiring interactions with domain experts.
The paper is organized as follows. Section 2 provides some related work in

the domain of conditional dependencies and discovery of inclusion dependencies.
Section 3 presents the basic notions related to conditional dependencies, the ATC
classification and ontologies. In Section 4, we provide an algorithm to discover
CINDs. In Section 5, we propose SPARQL-based solutions to detect CFDs and
CINDs violations. An experimental study is provided in Section 6. Section 7
considers some implications for researchers and practitioners who aim to apply the
data quality solution proposed in this paper. We conclude and present perspectives
in Section 8.

2. RELATED WORK

To the best of our knowledge, this paper is a first approach to tackle data quality
using ontologies and database constraints in the healthcare domain. Hence, in this
section we present related work on the issues of discovering data dependencies and
detect potential violations. As stated previously in this paper, most of the work
published on these issues concern CFDs.
Three papers have recently been published on discovering CFDs. In [Golab et al.

2008], the authors investigate the computational complexity, i.e. NP-complete, of
the automatic generation of optimal tableaux for a fixed traditional FD, i.e. gener-
ating CFDs. Then they provide efficient heuristics to discover approximation from
a sample database. [Chiang and Miller 2008] discovers traditional FDs and patterns
in CFDs. The discovery algorithm uses a level wise approach which may not scale
well with large database instances. Particularly interesting in this paper are the
investigation of three pertinent measures for discovered CFDs. These measures cor-
respond to conviction, χ2 and support which is also exploited in this work. Finally
[Fan et al. 2009] proposes several algorithms to discover CFDs. These algorithms
distinguish between constant CFDs, i.e. patterns filled with constant values, and
general CFDs, i.e. variables and constant are allowed. Concerning general CFDs,
two methods are presented: a level wise and a depth first search approach. In
contrast to [Fan et al. 2009], our approach discovers data dependencies when the
embedded traditional dependencies are given.
The work of [Goethals et al. 2008] mines association rules of the form Q1 ⇒ Q2

where Q1 and Q2 are simple conjunctive queries and Q2 is contained in Q1. The
CINDs investigated in this paper can be considered as association rules with a
confidence of 100%. Thus the technique proposed in [Goethals et al. 2008] is able
to discover CINDs. Moreover an investigation is needed on the types of CINDs that
can be generated with this algorithm.
[Bohannon et al. 2007] is the only investigation on detecting violations of con-

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

6 ·

ditional data dependencies. This approach is limited to CFDs and proposes tech-
niques based on the execution of two SQL queries. A first query finds single-tuple
violations, i.e. inconsistent tuples based on dissimilarities between constants in the
tuples of a database instance and Tp patterns. The second query finds multi-tuple
violations, i.e. several tuples in the database instance match the LHS (Left Hand
Side) of attributes of a pattern of Tp but concerning the RHS (Right Hand Side)
attributes of the CFDs, the instance tuples do not match. This two step process is
due to the possibility for a set of CFDs to be inconsistent. Comparatively, one of
our solutions also generates SQL queries to detect violations of CINDs. The main
difference with the approach of [Bohannon et al. 2007] lies in the fact that we only
need one query to find violations. This is due to the property that a set of CINDs
is always consistent. In this same paper, the authors propose an efficient solution
to detect violation of multiple CFDs. This technique is based on a merge of the
CFDs and a query generation.

3. PRELIMINARIES

3.1 Conditional dependencies

In this section, we present the syntax and semantics of CFDs and CINDs which are
respectively extensions of FDs and INDs with patterns.
A CFD ψ defined on a database relation R is a pair R(X → Y, Tp) where X and

Y are attribute sets in R, X → Y is a standard FD [Abiteboul et al. 1995] and Tp
is a pattern tableau containing all attributes in X and Y . For each attribute A in
(X ∪Y), the value of the attribute A of the tuple tp in Tp, denoted tp[A] is either a
value from the domain of A or a variable denoted by ’ ’. A tuple t matches a tuple
tp in Tp if for each attribute A in Tp, for some constant ’a’, t[A] = tp[A] =’a’ or
tp[A] =’ ’.

An instance D of R satisfies the CFD ψ, denoted D |= ψ, if for every pair of
tuples t1 and t2 in D, for each pattern tuple tp in Tp and for every attribute A in
X, if t1[A] = t2[A] and both t1 and t2 match tp[A], then t1[B] = t2[B] and t1, t2
both match tp[B] for each attribute B in Y .
A CIND φ defined over a pair of relations R1 and R2 is a pair (R1(X;Xp) ⊆

R2(Y ;Yp), Tp) where X,Xp and Y, Yp are attribute sets of R1 and R2 respectively,
R1(X) ⊆ R2(Y) is a standard IND [Abiteboul et al. 1995] and Tp is a pattern
tableau of φ with attribute sets Xp and Yp such that each pattern tuple tp and each
attribute B in Xp (or Yp), tp[B] is a constant in the domain of B.

An instance (D1, D2) of (R1, R2) satisfies the CIND φ, denoted (D1, D2) |= φ, iff
for each tuple tp in Tp and for each t1 in D1, if t1[Xp] = tp[Xp], then there must
exist t2 in D2 such that t1[X] = t2[Y] and t2[Yp] = tp[Yp].
Example 3.1: The constraints cfd2, cind3 and cind4 of our running example

are respectively represented by the following conditional dependencies:
ψ2 = drug(DRUGRATE → DRUGTYPE, T2) with T2 = {(65,’allopathy’)}
φ3 =(atcDrug[CIP] ⊆ drug[CIP;DRUGTYPE], T3) with T3={(’ ’,’ ’,’allopathy’)}
φ4 =(drugContra[CIP;ATCCODE] ⊆ atcDrug[CIP;ATCCODE], T4) with T4 =
{(’ ’,’N06AF05’,’ ’,{’N02CC03’,’R05DA09’})}

We say that a database instance I satisfies a set Ψ of CFDs and Φ of CINDs, if

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

· 7

I |= φ for all φ of Φ and I |= ψ for all ψ of Ψ.

3.2 ATC classification

The ATC system (http://www.whocc.no/atcddd/) is an international classification
of drugs and is part of WHO’s initiatives to achieve universal access to needed
drugs and rational use of drugs. In this classification, drugs are organized in
groups at five different levels. The first level of the code is based on a letter
for the anatomical group and defines 14 groups. The second level corresponds to
a pharmacological/therapeutic subgroup. The third and fourth levels are chemi-
cal/pharmacological/therapeutic subgroups. Finally, the fifth level corresponds to
chemical substances and supports the classification of drugs according to Recom-
mended International Non-proprietary Names (rINN).
We now provide an extract from the ATC hierarchy for some cough suppressants:

R: Respiratory system

R05: Cough and cold preparations

R05D: Cough suppressants, excluding combinations with expectorants

R05DA: Opium alkaloids and derivatives

...

R05DA08 Pholcodin

R05DA09 Dextromethorphan

...

R05DA20 Combinations

The R05DA20 code identifies compound chemical products combining opium alka-
loids with other substances. The Hexapneumine syrup is generally classified with
this code but we find that this approach is inaccurate since it does not quantify and
qualify the contained molecules. We argue for another approach where this drug is
classified by the conjunction of its compounds, i.e. pholcodin, chlorphenamin and
biclotymol which respectively correspond to R05DA08, R06AB04 and R02AA20.
Thus we obtain a more accurate classification which is exploited in the different
inferences performed in our system and the representation of the conditional de-
pendencies toward improving the overall data quality of the databases.

3.3 Ontology

In information technology, an ontology provides a shareable and reusable piece of
knowledge about a specific domain. In such a context, an ontology is a set of
concepts and their relationships, that are specified more or less formally in order to
create an agreed-upon vocabulary. The ATC hierarchy typically corresponds to this
definition of an ontology. In our solution, we have selected Description Logics (DL)
[Baader et al. 2003] as a mean to represent ontologies. This family of knowledge
representation formalisms allows to represent and reason over domain knowledge
in a formally and well-understood way. Central DL notions are concepts (unary
predicates), relationships, also called roles or properties (binary predicates) and
individuals. A standard DL knowledge base is usually defined as K = 〈T ,A〉 where
T (or TBox) and A (or ABox) consist respectively of a set of concept descriptions
(resp. concept and role assertions).
One of the goals of an ontology is to support the integration and sharing of

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

8 ·

data across different applications and organizations. A first step toward reaching
this goal is to establish a closer cooperation with a robust technology to deal with
large volumes of data, e.g. relational DBMS. We have designed the DBOM tool
especially for this task: it integrates data stored in relational database instances
into a knowledge base compliant with Semantic Web standards (RDF Schema or the
Web Ontology Language (OWL)). In this context, DBOM proposes a solution to
the impedance mismatch problem by proposing a mapping language that allows to
specify how to transform data retrieved from tuples of the databases into objects of
the target knowledge base. DBOM also handles inconsistencies that may be caused
by the execution of uncertain mappings. With such a system, the generation of an
OWL ontology corresponding to our drug databases requires the definition, through
a graphical user interface, of few mapping assertions.

Example 3.2: Considering the database of Example 1.1, we can define an
ontology where the classification of ATC is represented as a hierarchy of con-
cepts, e.g. the R05DA09 concept is a subconcept of the R05DA concept, denoted
R05DA09 ⊑ R05DA. Similarly for this classification branch, the following concept
assertions are created: R05DA ⊑ R05A, R05D ⊑ R05, R05 ⊑ R and R ⊑ ATC.
Each sub concept of the ATC concept has two data type properties: atcCode and
atcName which respectively relate an ATC concept to its code and a label. A
single Drug concept is created and the following data type properties are attached
to it: drugCip, drugName, drugRate and drugType. Each drug in the database
instance becomes an individual in the knowledge base with a type corresponding to
Drug. Finally, the drugContra and atcDrug relations are transformed into object
properties, respectively contraIndicated and contains, which relate a Drug to ATC
individuals.

Finally, a query solution is needed to retrieve information from our ontologies.
For this purpose, the W3C has published a graph-matching query language called
SPARQL (Sparql Protocol And RDF Query Language). RDF (Resource Descrip-
tion Framework) is a directed, labeled graph data format which is composed of
triples, i.e. subject, predicate and object. The ontology generated with DBOM
follows this format. In this context, a SPARQL query consists of a pattern which
is matched against an RDF graph and the values obtained from this matching are
processed to give the answer. Such a query has three parts: (i) pattern matching
which includes several interesting features, e.g. filtering, (ii) solution modifiers, e.g.
distinct, order, limit and (iii) the output of the query.

We have now presented all the machinery needed for our data quality approach.
The general principle is the following: data from our databases are integrated in
the knowledge, via DBOM mapping assertions, and data dependencies are auto-
matically represented with SPARQL queries. The execution of these queries will
highlight inconsistent individuals of the knowledge base. These individuals can be
easily transposed to database tuples, using the DBOM mapping assertions. Note
that in the context of our self-medication application, the knowledge base also
serves at runtime to perform various inferences.

We now need to discover CFDs and CINDs that hold over a database instance.
Since such solutions have already been presented and validated for CFDs, the next
section focuses on the first solution to discover CINDs.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

· 9

4. CINDS DISCOVERY

Given an instance database D of R1, a CIND discovery algorithm searches for
CINDs that hold on D. Obviously, for a CIND φ, we are expecting the size of the
pattern tableau Tp to be inferior to the number of tuples of D. This relationship
implies that redundant, trivial and pseudo-trivial [Mitchell 1983] CINDs are re-
moved from the final set of discovered CINDs. Hence, our method aims to discover
a canonical cover of a set of CINDs. That is a minimal set of CINDs, containing
non trivial and non redundant dependencies, from which all CINDs on D can be
derived via implication analysis. We recall that a sound and complete inference
system for CINDs has been detailed in [Bravo et al. 2007].
Moreover, when mining the database instance, we only consider patterns that are

supported by a minimum amount of tuples, i.e. the number of tuples motivating a
pattern needs to be greater or equal to a threshold denoted by the support.
Definition: The support of a query Q executed over an instance D is the number

of distinct tuples in the answer of Q on D. A query is said to be frequent in D if
its support exceeds a given minimal support threshold.
The task of setting the support threshold is the responsibility of the end-user.

Obviously, the higher the support, the less CIND patterns are discovered.
The algorithm we present to discover CINDs start from a set of approximated

INDs, that is IND “almost” holding on some relations R1 and R2, and which are
computed using the method proposed in [Marchi and Petit 2003]. The inputs of
this algorithms is a database instance and a set of INDs. Several data structures
are exploited in this algorithm. To summarize, a list of INDs (indList) stores all
the information related to an IND of the following form: R1[X] ⊆ R2[Y], similarly
cindList stores a list of CINDs of the form: (R1[X;Xp] ⊆ R2[Y ;Yp], Tp). Associated
to these structures are methods developed to retrieve and insert data, e.g. retrieving
the list of attributes in φ or inserting a new entry in a pattern tableau.

Example 4.1: In this example, we consider: (1) the binary IND ind5: R[r1, r2] ⊆
S[s1, s2], (2) a support threshold of 2 and (3) the following database extract:

r1 r2 r3 r4
1 1 a x1
1 2 a x2
1 3 a x3
2 1 x4 d
2 2 x5 d
2 3 x6 d
2 4 x7 d

(a) relation R

s1 s2 s3 s4 s5
1 1 b c y1
1 2 b c y2
1 3 b c y3
2 1 y4 e y6
2 2 y7 e y8
2 3 y9 f y10
2 4 y11 e y12

(b) relation S

Our algorithm, discoverCIND is presented in Algorithm 1. In principle, it creates
a empty CIND structure (line 1) and for each IND in a list of INDs, it searches for
attribute candidates from both the LHS and RHS of the current IND (lines 2-8).
Line 9 makes sure that we are not searching patterns between pairwise attributes
of X and Y , e.g. between Xi and Y i for 1 ≤ i ≤ |X|. Then an SQL query is
generated (line 11) and the update function is invoked (line 12). Finally, line 18
passes the CIND structure to the minimalCover function.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

10 ·

Algorithm 1 discoverCIND

Input: db a Database Connexion, indList a list of INDs
Output: cindList a list of CINDs

1: cindList← ∅
2: for all ind ∈ indList do
3: lhsCandList← retrieve(ind,R1, X)
4: if lhsCandList.size > 0 then
5: for all lhsCand ∈ lhsCandList do
6: rhsCandList← retrieve(ind,R2, Y)
7: if rhsCandList.size > 0 then
8: for all rhsCand ∈ rhsCandList do
9: if ¬(containedIn(lhsCand, rhsCand, ind) then

10: qry ← genQuery(lhsCand, rhsCand, ind)
11: update(cinds, qry)
12: end if
13: end for
14: end if
15: end for
16: end if
17: end for
18: return minimalCover(cindList)

The goal of the retrieve function is to return a set of candidate attributes from a
given relation. These candidate attributes are later mined to search patterns. This
function is being called for both the LHS and RHS relations of a IND. Intuitively,
the function stores all attributes of a relation in a list and returns it.
Example 4.2: In the context of Example 4.1, retrieve returns for ind5 : lhsCandidate

= {r1,r2,r3,r4}, rhsCandidate={s1,s2,s3,s4,s5}
The genQuery function generates an SQL query of the following form:
select distinct r1.lhsCan, r2.rhsCan from R1 r1 R2 r2
where r1.X

1 = r2.X
1 and .. and r1.X

n = r2.X
n

group by r1.lhsCan, r2.rhsCan having count(*) ≥ support;
Essentially, this query searches for groups of value pairs on elements in lhsCan-

didate and rhsCandidate that match on the values of X and Y . Additionally, the
number of tuples from each group needs to be superior or equal to the support
parameter.
Example 4.3: For our running example, the first query generated with genQuery

is presented below and its answer set corresponds to the tuple (a, b):
select distinct R.r3,S.s3 from R, S
where S.s1 = R.r1 AND S.s2 = R.r2
group by S.s3,R.r3 having count(*) ≥ 2;
The update function takes as input the query generated by the genQuery method,

executes it and if the answer set is not empty, stores the resulting pairs in a CIND
structure. Hence, at this step of execution, this structure stores all the pairs of
patterns discovered for a given IND.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

· 11

Example 4.4: Mining the sample database yields the following CINDs pattern
tableau (in tabular form for readability reasons):

r1 r2 r3 r4 s1 s2 s3 s4 s5
a {b}
a {c}

d {e}
d {f}

The last step required for the generation of CIND is to regroup these pattern
pairs such that the final set of CINDs is minimal. These operations are performed
by the minimalCover function presented in Algorithm 2. The method exist checks
if the lhs value (respectively rhs) are present in a pattern of cindList′. The method
add adds a new entry in cindList′ with the lhs value (resp. of rhs) at the proper
place (attributes stored in lhs and rhs).
The organize function is invoked if for a given attribute and relation couple,

the value in lhs or rhs is already stored somewhere in cindList′, we denote this a
match. This algorithm marks tuples until a co-occurence situation is discovered or
all tuples have been analyzed. The merge function searches for a way to store the
information contained in the lhs and rhs variables into cindList′. Once a match
is discovered, the algorithm analyzes the counterpart of IND, e.g. rhs is matched
on lhs. The operations performed are different whether the match is found on the
lhs or rhs. For the LHS, the algorithm searches if the current pattern of cindList′

contains a value at the rhs.Attribute position. If this is not the case then the value
of rhs is added to the list of values for this attribute in cindList′, i.e. case of
disjunction, otherwise the co-occurence method is called. This function generates a
query to discover if values of cindList′ on the RHS co-occur with the rhs value at
rhs.attribute. The generated SQL query in the case of LHS match has the following
form (a similar query is generated for RHS matches):

Algorithm 2 minimalCover

Input: cindList list of CINDs
Output: cindList′ list of CINDs

1: cindList′ ← ∅
2: for all cind ∈ cindList do
3: lhs← retrieve attribute and value on LHS
4: rhs← retrieve attribute and value on RHS
5: if ¬exist(lhs, rhs) then
6: add(lhs, rhs, cindList′)
7: else
8: organize(lhs, rhs, cindList′)
9: end if

10: end for
11: return cindList

select 1 from R1 r1 R2 r2

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

12 ·

where r1.X
1 = r2.Y

1 and .. and r2.Y
1 = tp.Y

1 and
for all entries in the current LHS pattern of cindList′ with a constant value, generate
a conjunction of attribute = value

group by for all entries in the current pattern of RHS cindList′ with a constant
value, generate a conjunction of attributes
having count(*)≥ support and for all entries in the current RHS pattern of

cindList′ with a constant value, generate a conjunction of attribute = value pairs;

Example 4.5: We illustrate an SQL query generated by the organize function
in the context of our running example:
select 1 from R,S where r1=s1 and r2=s2 and r3=’a’
group by s3,s4 having count(*)≥ 3 and s3=’b’ and s4=’e’ ;

If the execution of this query returns a non empty answer, then the patterns are
merged by the merge function. For matches on the RHS, the operations performed
are similar but a main difference is the absence of disjunctions. This is due to the
syntax restriction of the embedded IND of a CIND.
Example 4.6: This example presents 2 remarkable situations: creation of a dis-

junct and merging of patterns. The minimal CINDs generated by function organize
corresponds to: φ5: (R[r1, r2; r3, r4] ⊆ S[s1, s2; s3; s4],T3), with T3 (in tabular form
for readability reasons):

r1 r2 r3 r4 s1 s2 s3 s4
a {b} {c}

d {e,f}

In the next section, we emphasize that the expressiveness extension of CINDs (due
to the introduction of disjunction in the RHS) and the possibility to merge tableaux
is quite useful in detecting violations.

5. DETECTING CFD AND CIND VIOLATIONS

The CFDs and CINDs discovered using respectively the algorithms of [Fan et al.
2009] and our method can now be integrated into our data quality solution. A first
step toward cleansing erroneous and inconsistent data is to identify responsible tu-
ples. The main objectives of our solution are accuracy, i.e. precise identification of
the dirty tuples, execution of a minimal set of queries to detect inconsistencies, and
efficient runtime performances. Remember that we are now dealing with a knowl-
edge base rather than a relational database. Hence, the queries we will generate
from the discovered conditional dependencies are serialized in SPARQL. The main
motivation toward representing conditional dependencies through queries is their
declarative properties, e.g. easier to share and maintain, compared to a procedural
approach, i.e. hard coded in a programming language. The execution of these
queries on the knowledge base returns a set of individuals that are at the source of
dirty data.
The setting is the same for all query generation: a knowledge base K and sets Σ

of conditional dependencies where Σ = Φ ∪ Ψ, with Ψ and Φ sets of respectively
CFDs and CINDs. Intuitively, we want to identify all inconsistent ontology concepts
which are violating Σ. To do so, we consider the concept and individual generation

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

· 13

approach used in DBOM which consists in concatenating the name of the concept
and the value of the primary key of the tuple. For instance, for the Tuxium drug
whose cip is 3311692, a Drug 3311692 node is created in the knowledge base graph.
We are using this representation to identify object causing an inconsistency with
respect to our conditional dependencies. Note that DBOM supports compound
primary keys, i.e. primary keys composed of several attributes, and our tuple
identification system takes benefit of it.
The mapping between database and ontology entities is exploited by our query

generation solution. We consider a mapping function M relating elements from the
relational database to elements of the ontology. For instance, for a relation R, the
corresponding ontology concept is M(R) and similarly for both types of properties.
Thus, in the context of our self-medication application, a GUI displays inconsistent
concepts with the associated database relation and primary key value(s). Moreover,
an explanation is provided for each inconsistency.
For the sake of simplifying the SPARQL queries generated by our methods, we

consider that pattern tableaux are singletons, i.e. they contain a single tuple. Note
that the methods we will present also apply when several tuples are present in
the tableaux. Moreover, we consider that the elements of a pattern tableau can
be accessed like an associative array. For instance, consider the following CFD:
R({x1, x2} → {y1, y2}, {(

′a′,′ b′,′ c′,′ d′)}), then Tp[x2] returns the value ’b’.
Concerning CFDs and CINDs, we tackle the following issues: the efficient de-

tection of CFD and CIND violations and the less frequently addressed issue, at
least using conditional data dependencies, of missing values. We propose SPARQL
query generations for both of these approaches. The SPARQL queries that our
system generates returns a single identifier in the SELECT clause and can contain
the following in the WHERE clause: (i) triples with variables (staring with a ’?’
symbol, predicate and concept names, either starting with a ’rdf:’ namespace or
a ’:’ symbol to indicate that it tackles the current ontology; (ii) FILTER opera-
tions which enable to test the equivalence of a variable with a data value and (iii)
OPTIONAL with FILTER and bound patterns to support a negation as failure
approach. This approach does not force all the query pattern to hold. Finally,
different triple patterns are generated whether a database relation is mapped to
a concept, e.g. drug to Drug, or to an object property, e.g. actDrug to contains.
Typically, a mapping to a concept will generate a triple of the form: ?x rdf : type
M(R), while a mapping to an object property will generate: ?x :M(R) ?y.

5.1 CFD-based detection of inconsistent data

Remember that a CFD ψ, defined on a relation R, is a pair R(X → Y, Tp) where
X and Y are non empty sets of attributes. Using the database/ontology mapping,
we can translate this CFD into the following SPARQL query:

(1) SELECT ?x WHERE { ?x rdf:type M(R).

(2) ?x :M(Xi) ?xi. FILTER (?xi = Tp[xi]).

(3) ?x :M(Yi) ?yi. FILTER (?yi != Tp[yi]). }

where line 1 displays the identity of the inconsistent knowledge base individual.
Lines 2 and 3 correspond to triple patterns which are matched to our knowledge

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

14 ·

base graph. The system generates lines 2 for each xi in X that has a non-empty
Tp[xi]. Similarly, for each yi in Y that has a non empty Tp[yi], lines 3 are generated.
Example 5.1: For ψ2 (drug(DRUGRATE → DRUGTYPE, T2) with T2 =

{(65,’allopathy’)}), the following SPARQL query is generated:

SELECT ?drug WHERE { ?drug rdf:type :Drug.

?drug :drugRate ?rate. FILTER (?rate=65).

?drug :drugType ?type. FILTER (?type != "allopathy").}

Intuitively, this query searches for all individuals that are of type Drug, whose rate
is equal to 65% and whose drug type is not equal to ’allopathy’. The execution
of this query on the knowledge base generated from Table I’s dataset will return
the object Drug 3187559 since this drug is reimbursed at a 65% rate but is a
homeopathic drug.

5.2 CIND-based detection of inconsistent data

We distinguish two kinds of queries generated for the CIND detection issue: one
for the non-disjunctive case and another handling disjunctions in Yp. Both of these
queries involve the use of OPTIONAL together with FILTER and bound patterns.
We now propose examples of generated queries on our running example.
Example 5.2: Disjunction-free queries

The SPARQL query for cind3 (atcDrug(CIP) ⊆ drug(CIP, TY=’allopathy’)) is:

SELECT ?drug WHERE { ?drug :contains ?atc.

OPTIONAL { ?drug :drugType ?type. FILTER (?type = "allopathy").}

FILTER(!bound(?type)).}

In essence, this query searches for all drug individuals that are related to at least
one ATC code and which have a drug type different to allopathy or no drug type
expressed. This query returns the individual identifier corresponding to the Cephyl
drug since it is a homeopathic drug but is present in the atcDrug relation.
Example 5.3: Queries with disjunctions

For cind4 (drugContra(CIP, ATCCODE=’N06AF05’)⊆atcDrug(CIP,ATCCODE=
’N02CC03’ || ’R05DA09’), the generated SPARQL query is:

SELECT ?drug WHERE { ?drug rdf:type :Drug.

?drug :contraIndicated ?atc. ?atc :atcCode "N06AF05".

OPTIONAL {?drug :contains ?atc2. ?atc2 :atcCode ?code.

FILTER (?code = "R05DA09" || ?code="N02CC03").}

FILTER(! bound(?atc2)).}

The pattern of the query is similar to the one in Example 5.2 except that it
introduces a disjunction symbol (i.e. ’||’) and an additional triple in the OP-
TIONAL clause. This query returns the Drug 3786018 individual of the knowledge
base. This is due to the drug product Phloroglucinol which does not contain Dex-
tromethorphan nor Zolmitriptan. So it should not be contraindicated to Iproniazid.

5.3 Detection of missing data

The queries we have generated so far enable the detection of CIND violations. As
stated in Section 1, we also want to consider the completeness of relation instances

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

· 15

involved in embedded INDs. We illustrate the search for missing values through
our running example.
Example 5.4: Let us consider Table I’s dataset, the SPARQL queries we have

generated so far do not detect the incompleteness of the information related to the
Tuxium 30mg drug (t4). In fact this product is composed of the Dextromethorphan
molecule (t10) but is not contraindicated to Iproniazid, i.e. a tuple (3311692,
N06AF05) is missing from the drugContra relation.

We have designed a solution based on the generation of SPARQL queries to detect
missing values. Again this query generation exploits both the embedded IND and
the pattern tableau of a CIND. The main difference lies in the direction of the
embedded IND of a CIND.
Until now, the SPARQL queries we have generated exploit the traditional direc-

tion of an IND. Our detection of missing data solution generates queries based on
the inverse of the embedded IND of a CIND. Investigations on exploiting inverse
of rules have already been conducted. For instance, [Levy et al. 1995] presents an
algorithm to answering queries using views based on the inversion of rules.

The embedded INDs of our CINDs are restricted syntactically and this supports
a simple inversion plan. The inversion is performed in two steps: (1) inversion of the
embedded IND and (2) inversion of the pattern tableau Tp. The first step requires
to switch relations and attributes between the RHS and the LHS. The second step
is also a simple inversion to the relations, attributes and tuples of Tp from the RHS
to LHS and vice versa. A special attention is given on the attributes of Yp which
are containing disjunctions: each disjunct generates a new pattern tuple and all
other constants and variables of the original tuple are copied. We illustrate this
approach on the pharmaceutical example.

Example 5.5: The inverse of φ4 yields the following embedded IND and tableau:
φ−4 : atcDrug[CIP ;ATCCODE] ⊆ drugContra[CIP ;ATCCODE] and T−

4 =
{(’ ’,’N02CC03’,’ ’,’N06AF05’), (’ ’,’R05DA09’,’ ’,’N06AF05’)}

This inverted CINDs can now be used by the SPARQL query generation presented
earlier.
Example 5.6: The query generated for T−

4 ’s tuple of φ−4 is:

SELECT ?drug WHERE { ?drug rdf:type :Drug.

?drug :contains ?atc. ?atc :atcCode ?code.

FILTER (?code = "N02CC03"). OPTIONAL { ?drug :contraIndicated ?atc2.

?atc2 :atcCode "N06AF05". }

FILTER(!bound(?atc2)). }

The execution of this query on the knowledge base returns the individual identified
by Drug 3311692. Together with the context of this query, i.e. embedded IND and
database instance, this identifier provides valuable information for data repairing.
Intuitively, something is wrong with the contraindication of this product.

5.4 Violation detection optimization

The number of queries that our methods generate can be very large and this im-
pacts maintenance operations and detection performance. A first simple solution
to minimize the amount of queries is to analyze the pattern tableau of a given

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

16 ·

conditional dependencies. For example, the T−

4 tableau has 2 tuples with the same
pattern : (′ ′, X,′ ′,′N06AF05′) where X is an ATC code. Hence, instead of gen-
erated 2 different SPARQL queries (one of which is displayed in Example 5.6), we
can generate a single one which uses a disjunction:

SELECT ?drug WHERE { ?drug rdf:type :Drug.

?drug :contains ?atc. ?atc :atcCode ?code.

FILTER (?code = "R05DA09" || ?code="N02CC03").

OPTIONAL { ?drug :contraIndicated ?atc2.

?atc2 :atcCode "N06AF05". } FILTER(! bound(?atc2)).}

We now propose two more involved approaches to reduce the amount of queries:
merging pattern tableaux whenever conditional dependencies are comparable and
exploiting the structure of an ontology to optimize a set of SPARQL queries. Note
that both of these approaches can be used together on a given set of conditional
dependencies.
Tableau merging
Because a tableau merging has already been proposed in [Bravo et al. 2007],

in this section, we focus on a novel tableau merging solution for CINDs. The
merge of a pattern tableau is based on the notion of comparability of conditional
data dependencies. That is the tableaux of the CINDs are extended with a set of
attributes from the relations involved in the CINDs. We consider the 2 following
CINDs:
φ5: (R1[x1;x2] ⊆ R2[y1,y2], T5) and φ6 : (R1[x3;x4] ⊆ R2[y3,y4], T6).

The CIND supporting the merged tableau correspond to φm: (R1[X;Xp] ⊆
R2[Y ;Yp], Tm) where X = x1 ∪ x3, Xp = x2 ∪ x4, Y = y1 ∪ y3 and Yp = y2 ∪ y4.
We then copy all the tuples of T5 and T6 in Tm and for each attribute A in Tm that
is not filled with either a constant or a variable, we introduce: (i) a special symbol
@, which denotes a do not care value, if A ∈ X ∪Y , (ii) a standard variable symbol
() if A ∈ Xp ∪ Yp. Let us consider the following T5 and T6 tableaux:

T5 x1 x2 y1 y2
2 {4}

T6 x3 x4 y3 y4
12 {14,15}

We can now compute the merged tableau Tm:

Tm x1 x2 x3 x4 y1 y2 y3 y4
2 @ {4} @

@ 12 @ {14,15}

We now need to clarify the notion of CIND satisfaction in the presence of @.
This is done by distinguishing for a tuple t the subset of attributes of X that
have no @ symbols. This subset is denoted by Xfree

t (respectively Y free
t for Y).

Then, an instance (I1, I2) of (R1, R2) satisfies the CIND φ, denoted (I1, I2) |=
φ, iff for each tuple tp in the pattern tableau Tp and for each tuple t1 in the

relation I1, if t1[X
free
t ;Xp] ≍ tp[X

free
t ;Xp] then there must exist t2 in I2 such that

t1[X
free
t] = t2[Y

free
t] ≍ tp[Y

free
t] and moreover t2[Yp] ≍ tp[Yp]. Note that doing so,

we treat disjunctive and non disjunctive patterns together.
This method enables to detect violations of a set of CINDs, i.e. it identifies tuples

of R1 that do not have a counter part in R2. But this solution does not enable to

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

· 17

explain violations since many patterns are bundled in a given SPARQL query. The
solution consisting of multiple SPARQL queries, i.e. one for each CIND, enables
to explain violations and thus may be used to guide the end-user in cleaning the
database. It is up to the creator of a data quality tool to select one of these 2
approaches, that is whether she wants to provide an explanation solution or not.

Ontology-based structure optimization
This optimization method exploits the ontology structure, i.e. mainly concept

and property hierarchies, to minimize the number of generated queries. For in-
stance, consider the Ketoprofen molecule, whose ATC code is M01AE03. In a
first step, our discovery system was able to state contraindications with Vitamin
K antagonists (B01AA), Heparin group (B01AB), Platelet aggregation inhibitors
excluding heparin (B01AC), Enzymes (B01AD) and Direct thrombin inhibitors
(B01AE). Analyzing the ontology structure, our system is able to discover that
this set of ATC codes exactly covers the B01A ATC code (Antithrombotic agents).
Hence, instead of generating a SPARQL query for each of these 5 codes or generat-
ing a single SPARQL with a disjunction of those 5 ATC codes, it is more efficient
to create a single SPARQL query with the B01A ATC code. This means that we
are delegating some of the ATC identification tasks to an ontology reasoner, e.g.
the Pellet reasoners which is tailored to the OWL language.

5.5 Detection methodology

Based on the conditional dependencies discovered and the approaches proposed
in this section, it is possible to develop tools that enforces the consistency of the
knowledge base.
Essentially, these tools proceed in two steps: (1) detect CFD and CIND violations

via the execution of a set of queries generated with the method of Sections 5.1 and
5.2. These tools can easily provide explanations about the context of the detection
and identify the node of the graph responsible for the inconsistency. (2) detect
missing values via the generation of SPARQL queries using the inverse of CIND
approach (Section 5.3). Again, contextual information is able to guide end-users
toward easy repairing of the knowledge base and thus the database.

6. EXPERIMENTAL EVALUATION

Since the data quality improvement of our approach depends on the accuracy and
efficiency of the discovery of CFDs and CINDs, it is necessary to run an experi-
mental study on these aspects. Such studies have already been conducted on CFDs
so we concentrate on the CIND case. Our tests are exploiting several databases
(real and synthetic). The synthetic databases are generated using real data from
our drug database. Finally, we emphasize on the data quality improvements on our
drug database.

6.1 Experimental settings

Real datasets: The drug database contains all drugs sold on the French market,
i.e. 10000 drug products. Moreover, it contains 25 relations and 110 attributes.
In this experiment, we are particularly interested on the relationship between the
contraindication and the composition of drug products. The representation of this
relationship with CINDs is preponderant in the development of medical application.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

18 ·

Moreover, this set of experiments reports on the analysis conducted with healthcare
professionals on the validity of the obtained results. The graphical representation of
the pattern tableaux of CINDs were particularly ease to interpret for these domain
experts.
Synthetic datasets: For the purpose of this experimentation, we have designed

a generator of synthetic databases consisting of an implementation of the Chase al-
gorithm [Abiteboul et al. 1995] that satisfies a set of INDs. The synthetic databases
are generated from real data coming from the medical domain. The database con-
tains two relations which are related by an IND. The database instances we have
generated vary in terms of the number of tuples and the number of attributes. Gen-
erating synthetic databases with increasing number of attributes, we experimented
on increasing the arities of |X|, |Xp|, |Yp|. The results we present in this section also
consider the arities of Xnp and Ynp with Xnp = R− (X ∪Xp) and Ynp = R(Y ∪Yp).
As we are generating the synthetic databases and thus program the appearance of
patterns distributed on attributes of R1 and R2, we found particularly interesting
to deliberately introduce attributes which are not containing any patterns. The
generated synthetic databases all contained at least binary INDs.
The algorithms have been implemented in Java and tested on an Intel Centrino

Duo Processor (2.6GHz) with 4GB of memory running the Linux operating system.
The relational database management system we have used is PostgreSQL 8.3. All
performance measurements reported represent averages of five trials.

6.2 Experimental results

We have designed synthetic databases according to the following parameters: num-
ber of tuples ranging from 100K to 1000K, number of attributes between 12 and 28
and a minimal support value ranging from 5 to 100. We analyze results in terms
of scalability w.r.t. the Tuple and the Attribute parameters. In fact, they rep-
resent the amount of time spent by both algorithms to compute a set of CINDs.
Other experiments concentrate on the Support parameter by studying the number
of CINDs discovered and the time required for our discovery approach when the
support threshold increases.
Scalability w.r.t. Tuple: We study the scalability of our algorithm with

respect to the number of tuples in both relations. The relations of all the synthetic
databases in this experiment contain 6 attributes for the relation on the LHS of the
IND and 7 attributes for the RHS. The minimal support value is set to 5 and the
number of tuples are ranging from 100K to 1000K. The results presented on Figure
1(a) shows that the algorithm scale linearly for the metrics considered.
Scalability w.r.t. Attribute: We now study the effect of increasing the num-

ber of attributes in both relations involved in the embedded IND. The database we
have selected corresponds to a synthetic one with two relations and a binary IND
between them. The support value is set to 5 and each relation contains 200K tuples.
We vary the number of total number attributes from 12 to 28 and decompose it
such that both relations have the same number of attributes. Figure 1(b) shows
that the algorithm scale linearly for the metrics considered
Number of CINDs discovered w.r.t. Support: Figures 1(c) and 1(d) dis-

plays the results of varying the support from 5 to 100 on respectively the synthetic
database of 200K and the drug database. As expected, the lower the support, the

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

· 19

Fig. 1. Scalability and accuracy for CINDs discovery

more CINDs are discovered. This is explained by the domain of the database and
the semantics of the attribute supporting the embedded INDs.
Analysis of the discovered CINDs: The analysis of the relevancy of the dis-

covered CINDs of the drug database has been conducted with the team of health-
care professionals working on our self-medication application. We presented them
the pattern tableaux found on the contraindication experimentation. These do-
main experts, with no peculiar expertise in database technology, appreciated the
visualization possibilities offered by the tableaux and in particular on the repre-
sentation of disjunctions. This feature is particularly important on this use case
since molecules are generally contraindicated with many other molecules and many
diseases.
The discovered CINDs are evaluated in terms of soundness and completeness.

Concerning soundness, all contraindication patterns discovered are sound, that is
no false contraindication has been proposed by the system. Again, the generation of
such a repository of pharmaceutical information is quite important since it is absent
from the standards generally provided. In terms of completeness, some real-life
contraindications are missing from the set discovered. After an investigation of the
drug database, it showed that the responsibility originates from the sample database
and not the discovery method. This raises the issue of the quality (soundness and

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

20 ·

completeness) of the database supporting the discovery. The measures proposed in
[Chiang and Miller 2008] provides a preliminary approach toward addressing this
issue.
This data quality tool is now used in a real world setting which serves a medical

informatics application. In this application, an important number of drug informa-
tion have been processed toward conditional dependencies discover, e.g. side-effects,
drug and disease contraindications and cautions. The CFDs and CINDs discovered
are stored in a repository and their discovery are processed on a monthly basis.
The drug database stores almost all products of the French market (around 10,000
entries) and concern more than 2,000 molecules. Intuitively, the data quality aspect
of the application works as follows. Drug product updates are stored as SQL queries
in a text document. These queries enable to remove, insert or modify a set of tu-
ples of the database. Regularly, this text document is sent to the database. During
this processing, our data quality solution executes the stored SPARQL queries to
detect inconsistencies and missing values. Each CFD of CIND violation is cured
with the help of a health professional who corrects the dirty data directly either at
the knowledge or database levels. (due to a synchronization solution provided by
the DBOM system [Curé and Squelbut 2005]). After several months of using this
data quality approach, we consider that we have improved the overall quality of our
database by 15%. This has been calculated by a ratio of the total number of data
items modified on the total number of data items stored in our database. Moreover,
the more accurate becomes our database, the more relevant the generated set of
CFDs and CINDs.

7. IMPLICATIONS TO RESEARCH AND PRACTICE

We consider that applying the different contributions presented in this paper can
have a significant impact on the work of researchers and practitioners involved in
data quality enhancement. The availability of CFD and CIND discovery algorithms
opens up a new field for research and practice in data cleansing.
For practitioners, these algorithms can be easily implemented on any program-

ming language and executed over their database instances. Then the discovered
conditional dependencies can be integrated as SQL or SPARQL queries in their ap-
plications. Developers with applications involving ontologies are encouraged to se-
lect a SPARQL approach since functionalities like violation explanations can easily
be programmed using OWL reasoners, e.g. Pellet, and OWL APIs, e.g. OWLAPI
and Jena.
Concerning researchers, we consider that many studies need to be conducted

on the cooperation between practical CFDs and CINDs. The upcoming SPARQL
1.1 recommendation will also open research tracks due to its support for an up-
date language for RDF graphs, enrichment with aggregates, subqueries, projected
expressions, negation and use with entailment regimes.
First of all, the techniques presented in this paper are domain independent. That

is, researchers and practitioners do not need to be involved in medical projects or
drug databases to apply our contributions. We consider that due to the availability
of ontologies in many scientific domains, the data quality of scientific databases can
be enhanced using our conditional dependency approach. It may also be applied in

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

· 21

sociological and cultural domains where structured terminologies are also emerging
(e.g. FOAF and CRM CIDOC projects).

8. CONCLUSIONS

The data quality of medical databases is predominant to many medical informatics
application. The approach adopted in this paper consists in exploiting a novel form
of database dependencies where constant values are supported in tableau patterns.
Recently, several papers investigated the discovery of conditional dependencies but
these research concentrated on CFD and no proposition was available for CIND.
This paper proposes a first solution to this problem which is quite important since it
is considered that the full potential of data quality tools can be reached within the
framework of conditional dependencies when both CFD and CIND are supported.
Apart from studying this aspect of CIND, we also extended their expressiveness by
introducing disjunctions on the right hand-side of the embedded IND. Following
the path drawn by CFD research, this paper proposes solutions to represent these
dependencies in a declarative way and to minimize their number by merging pattern
tableaux.
Nevertheless, our approach differs from previous work by integrating an ontology

approach to represent domain knowledge and constraints. We believe that this
is particularly relevant with the emergence of open data in various domains, e.g.
geography and medicine. Moreover, many functionalities, such as reasoning and
entailment explanations, are natively supported in some knowledge base contexts
but are very hard or impossible to implement in a relational database context.
Because of this ontology integration, queries representing conditional dependencies
are serialized in SPARQL, a query language adapted to RDF graphs. The main
benefit of using this approach consists in minimizing a set of queries by exploiting
the (subsumption) reasoning facilities of a description logics reasoner.

This data cleaning solution has enhanced the information accuracy of our drug
database in the context of a self-medication application. So far, healthcare profes-
sionals are heavily involved in cleaning the inconsistent database tuples. We believe
that this is the safest way to handle the many exceptions holding in the medical
domain. But we consider that some of these data repairs can be automatized by
studying the context of the inconsistency.

REFERENCES

Abiteboul, S., Hull, R., and Vianu, V. 1995. Foundations of Databases. Addison-Wesley.

Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., and Patel-Schneider, P. F., Eds.

2003. The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge
University Press.

Batini, C. and Scannapieco, M. 2006. Data Quality: Concepts, Methodologies and Techniques

(Data-Centric Systems and Applications). Springer-Verlag New York, Inc., Secaucus, NJ, USA.

Bohannon, P., Fan, W., Geerts, F., Jia, X., and Kementsietsidis, A. 2007. Conditional
functional dependencies for data cleaning. In ICDE. IEEE, 746–755.

Bravo, L., Fan, W., Geerts, F., and Ma, S. 2008. Increasing the expressivity of conditional
functional dependencies without extra complexity. In ICDE. IEEE, 516–525.

Bravo, L., Fan, W., and Ma, S. 2007. Extending dependencies with conditions. In VLDB.
243–254.

Chiang, F. and Miller, R. J. 2008. Discovering data quality rules. PVLDB 1, 1, 1166–1177.

Curé, O. 2004. Ximsa : extended interactive multimedia system for auto-medication. In CBMS.
570–575.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

22 ·

Curé, O. and Bensaid, J.-D. 2008. Integration of relational databases into owl knowledge bases:

demonstration of the dbom system. In ICDE Workshops. 230–233.

Curé, O. and Squelbut, R. 2005. A database trigger strategy to maintain knowledge bases
developed via data migration. In EPIA. 206–217.

Fan, W. 2008. Dependencies revisited for improving data quality. In PODS, M. Lenzerini and

D. Lembo, Eds. ACM, 159–170.

Fan, W.,Geerts, F., Laksmanan, L. V., and Xiong, M. 2009. Discovering conditional functional
dependencies. In ICDE. To appear.

Giroud, J.-P. and Hagege, C. 2001. Le guide de tous les médicaments. Editions du Rocher

Paris, France.

Goethals, B., Page, W. L., and Mannila, H. 2008. Mining association rules of simple conjunc-
tive queries. In SDM. SIAM, 96–107.

Golab, L., Karloff, H. J., Korn, F., Srivastava, D., and Yu, B. 2008. On generating near-

optimal tableaux for conditional functional dependencies. PVLDB 1, 1, 376–390.

Levy, A. Y., Mendelzon, A. O., Sagiv, Y., and Srivastava, D. 1995. Answering queries using
views. In PODS. ACM Press, 95–104.

Marchi, F. D. and Petit, J.-M. 2003. Zigzag: a new algorithm for mining large inclusion
dependencies in database. In ICDM. IEEE Computer Society, 27–34.

Mitchell, J. C. 1983. The implication problem for functional and inclusion dependencies. In-
formation and Control 56, 3, 154–173.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

