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Identification of MIMO switched state-space models

Laurent Bako1, Van Luong Le2, Fabien Lauer3 and Gérard Bloch2

Abstract— Identifying switched linear models directly from
input-output measurements only is known to be a non-trivial
identification problem. When switched state-space models are
considered in a general setting and both the continuous state
and the discrete mode are unmeasured, the problem proves
to be a much harder realization problem. The present paper
describes a method for identifying discrete-time switched lin-
ear state-space models from input-state-output measurements.
While the discrete mode is unknown, we assume here that
the continuous state is measured along with the input and
output signals. Given a finite collection of such measured
data, we propose a sparsity-inducing optimization approach
for estimating the matrices associated with each submodel.

I. INTRODUCTION

Switched linear dynamical systems can be described with
input-output models or with state-space models. Models
of the first type (which are generally of Switched Auto-
Regressive eXogenous type) express directly the current
output as a function of the past outputs and inputs which are
all measurable. This feature is suitable from an identification
point of view, at least when the system to be identified
is SISO. This is probably the reason why the majority of
existing works focus on this type of models [1], [2], [3],
[4], [5], [6], [7], [8]. Unfortunately, input-output SARX
models are not very appropriate for identifying switched
MIMO systems. For they typically suffer from a structural
identifiability problem; the dimension of the corresponding
regressor is overly high, hence preventing in general the
data matrix to enjoy a full rank property no matter how
exciting the continuous input is. As a consequence, no proper
estimation of parameters can be achieved.

MIMO switched systems can be more conveniently de-
scribed with minimal state-space models which involve ex-
plicitly the internal state of the system. Because the state
of such a model is of minimal dimension, rank deficiency
problems on the data matrices can be avoided provided the
continuous input and switching signals are sufficiently excit-
ing. The identification of switched multivariable systems can
therefore be made more effective when they are described by
minimal state-space models. One more argument in favor of
state-space models is that they are the most widely used
form of dynamic models in control systems engineering.
There are two possible ways to obtain a switched model
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in state-space form from empirical data samples: identify an
input-output model and then convert it through realization
techniques [9], or identify directly a state-space model [10].
The first option is practical but only for SISO/MISO systems
since, as we have already argued, MIMO input-output models
of SARX type are difficult to compute. If one assumes that
the continuous state is not fully measurable, then the second
alternative appears to be a very hard realization problem
(see e.g., [10]); it can reasonably work in practice only
under some restrictive assumptions (e.g. minimum dwell-
time assumption in [11], [12], [13], [14] or known switching
times assumption in [14]).

In this paper, we assume that the continuous state is
measured and propose an identification method for MIMO
switched linear systems. Measurability of the continuous
state is not a strong assumption because there are many real
situations where the state components correspond to physi-
cal, interpretable and measurable variables. Examples of con-
trol systems having in general fully measurable states include
aircraft, DC-motor, inverted pendulum, etc, which can often
be modeled as switched linear/affine systems. Following the
paper [5], we propose here a sparse optimization approach
to the multivariable identification problem. The identification
problem is formulated ideally as the problem of minimizing
the number of nonzero components in a vector of normed
fitting errors. As such however, the solution is not directly
computable at a reasonable cost. We therefore implement a
convex relaxation strategy, which is guaranteed, under certain
conditions, to find exactly the searched parameter matrices
from noise-free data samples. A robust version of the method
is then discussed for the case of highly noisy measurements
and estimation error bounds are derived.

Section II presents the switched state-space model and
describes the identification problem. Section II-A elaborates
on the proposed identification method in an ideal noiseless
framework. Section II-C deals with some robustness issues
and provides bounds on the estimation errors. We conclude
the paper in Section IV.

II. SWITCHED LINEAR STATE-SPACE MODEL
IDENTIFICATION

We consider the discrete-time switched linear system
(SLS) represented by{

x(t+ 1) = Aσ(t)x(t) +Bσ(t)u(t) + w(t), x(0) = x0

y(t) = Cσ(t)x(t) +Dσ(t)u(t) + v(t)
(1)

where t ∈ Z+ is a time index, x(t) ∈ Rn is the continuous
state at time t, x0 is the initial continuous state, u(t) ∈ Rnu



is the continuous input, y(t) ∈ Rny is the continuous output
and σ(t) ∈ S , {1, . . . , s} is the discrete mode (or discrete
state). {w(t)} and {v(t)} refer to unknown but bounded error
sequences.

It is assumed in this paper that the continuous state is
measured as well as the input and the output. But the discrete
state sequence i.e., the switching signal {σ(t)}, is unknown.
Having assumed measurability of the entire continuous state
vector x(t), the second equation of (1) may appear useless.
One can consider in general that Di = 0 for any i ∈ S
and that Ci is just used to select some components of x(t).
For the sake of generality, we will however assume here
that the (C,D)-matrices are unknown and are also subject
to switchings. Note that the method to be presented is still
applicable even if the second equation of (1) was removed. It
is also applicable to any switched static measurement model.
By introducing the notations

Mi =

[
Ai Bi
Ci Di

]
, z(t) =

[
x(t+ 1)
y(t)

]
,

ϕ(t) =

[
x(t)
u(t)

]
, e(t) =

[
w(t)
v(t)

]
,

Eq. (1) can be rewritten as

z(t) = Mσ(t)ϕ(t) + e(t). (2)

This is a switched linear multivariable model. The identi-
fication problem then consists in inferring the s submodels
described by the matrices Mi, i = 1, . . . , s, from a finite set
of measurements {ϕ(t), z(t)}N−1

t=0 .

A. Identification method

The switched identification problem is known to be very
challenging because of the strong coupling between the
discrete state and the parameter matrices which are both un-
known. The existing literature contains a number of methods
which can solve the problem more or less efficiently. But
those techniques are designed essentially for SISO or MISO
type of systems. Application to general MIMO systems such
as (2) would require decomposing the system equations into
n + ny separate switched equations and applying the men-
tioned methods to each of them. An obvious inconvenience
of such a procedure is that there is no guarantee that the
estimated discrete states from the n+ ny separate equations
will coincide. The switched multivariable equation (2) has
instead to be handled jointly.

This paper extends the sparse optimization approach de-
veloped in [5] to multivariable systems. To present clearly
the main idea of the method, let us assume for the time
being that e(t) = 0 for any t. Then by letting M be a
parameter matrix candidate, we can observe the following:
if M = Mi for some i ∈ S, then we have z(t)−Mϕ(t) = 0
whenever σ(t) = i. This means that the vector sequence
{z(t)−Mϕ(t)} contains at least as many zero vectors as
the number of times the subsystem i has been visited by the
system. We will say that such a vector sequence is sparse
to some degree. Taking advantage of this observation, we
formulate the problem of computing one submodel of system

(2) as the problem of finding M to minimize the number of
nonzero vectors in the sequence {z(t)−Mϕ(t)}. This can
be written as an `0 optimization problem in the form

min
M
‖φ(M)‖0 , (3)

where

φ(M)=[‖z(0)−Mϕ(0)‖2 , . . . , ‖z(N−1)−Mϕ(N−1)‖2]
>

and ‖·‖0 refers to the `0-"norm" which counts the number
of nonzero components. Note that φ(M) ∈ RN is a vector
constructed by taking the `2-"norm" of each column of the
error matrix Z −MΦ,

Φ =
[
ϕ(0) . . . ϕ(N − 1)

]
,

Z =
[
z(0) . . . z(N − 1)

]
.

As is well-known, problem (3) is a hard combinatorial
problem for a large N . Exact solution of this type of problem
is, in general, intractable in practice. It is therefore necessary
to turn to an approximate version of (3). A classical way to
proceed is to relax the `0-norm into an `1-norm. In effect,
the `1-norm is the best convex approximant of the `0-norm.
Applying this idea leads to the following convex optimization
problem

min
M
‖Wφ(M)‖1 =

N−1∑
t=0

w(t) ‖z(t)−Mϕ(t)‖2 , (4)

where the components of vector φ(M) have been weighted;
W = diag

(
w(0), . . . , w(N − 1)

)
is a diagonal matrix with

positive entries w(t) ≥ 0 for any t. The objective function
in (4) reads as a sum of `2-norms of the errors. In principle,
any other norm could have been used here. However, they
cannot all serve correctly our goal, which is to force the
entire (not just some of its entries) vector z(t) − Mϕ(t)
to zero wherever possible. For example, a sum of `1-norms
objective function would present the risk of producing (after
optimization) a matrix M such that in some vectors of
the form z(t) −Mϕ(t) (which are actually expected to be
completely zero), only some components are equal to zero.
This is obviously an undesirable situation in our context and
as discussed in [15], [16].

Examine now under what condition solutions to the convex
problem (4) lie in the set {M1, . . . ,Ms} of the submodels’
parameter matrices. For this purpose, we introduce some
more notations.

Notations. For any matrix M of appropriate dimensions,
define

I0(M) = {t : z(t)−Mϕ(t) = 0} .

We also define the matrix norm ‖·‖2,col such that for any
matrix A =

[
a1 · · · am

]
∈ Rn×m,

‖A‖2,col =

m∑
i=1

‖ai‖2 ,

‖ai‖2 being the euclidean norm of the column vector ai.
Lemma 1: If there is a parameter matrix Mi of the



switched system (2) satisfying∑
t/∈I0(Mi)

w(t) ‖Λϕ(t)‖2 <
∑

t∈I0(Mi)

w(t) ‖Λϕ(t)‖2 (5)

for any nonzero Λ in R(n+ny)×(n+nu), then Mi uniquely
solves problem (4).

Proof: The proof follows similar steps as in [17]. Mi

uniquely solves problem (4) if, for any nonzero matrix Λ in
R(n+ny)×(n+nu),
N−1∑
t=0

w(t) ‖z(t)−Mϕ(t)‖2<
N−1∑
t=0

w(t) ‖z(t)−(M+Λ)ϕ(t)‖2

or, equivalently, if∑
t/∈I0(Mi)

w(t)
[
‖z(t)−Mϕ(t)‖2−‖z(t)−(M+Λ)ϕ(t)‖2

]
<

∑
t∈I0(Mi)

w(t) ‖Λϕ(t)‖2 .

From the triangle inequality property of vector 2-norm,
the following identity ‖a‖2 − ‖a+ b‖2 ≤ ‖b‖2 holds
for any two vectors a and b of compatible dimensions.
Applying this, we can observe that the left hand side
member of the above inequality is smaller than or equal
to
∑
t/∈I0(Mi)

w(t) ‖Λϕ(t)‖2 . From this last observation, it
follows that for Mi to be a solution to problem (4), it is
sufficient that (5) holds.
Lemma 1 provides us with a sufficient condition under which
one submodel of the switched system (2) can be recovered by
convex optimization. Condition (5) suggests two noteworthy
facts: (a)– A parameter matrix Mi is all the more recoverable
by (4) as the set I0(Mi) is large, i.e. as the number of data
generated by submodel i is large; (b)– If we could, by some
means, assign large enough weights w(t) > 0 to the samples
indexed by t ∈ I0(Mi), and very small weights w(t) > 0
to those samples indexed by t ∈ {0, . . . , N − 1} \ I0(Mi),
then solving problem (4) would very likely yield Mi. This
last implication of condition (5) will be exploited in Section
II-B.
In its form (5) however, the sufficient condition is difficult
to check in practice. The next theorem gives a stronger but
more checkable sufficient condition of recoverability.

Theorem 1: Assume that the weights w(t) are normalized,
i.e., w(0) + · · ·+ w(N − 1) = 1 and define

ρo =
∑

t∈I0(Mi)

w(t), η = max
t
‖ϕ(t)‖2 ,

and
r(Φ) = max

‖ΛΦ‖2,col=1
‖Λ‖2 . (6)

Then Mi is the unique solution to problem (4) if the
following condition holds,

ρo > 1− 1

2ηr(ΦW )
. (7)

Proof: We know from Lemma 1 that condition (5) is a
sufficient condition for Mi to solve (uniquely) problem (4).

Note that (5) can be recast in the form

2
∑

t/∈I0(Mi)

w(t) ‖Λϕ(t)‖2 <
N−1∑
t=0

w(t) ‖Λϕ(t)‖2 (8)

or, more compactly, in the form

max
‖ΛΦW‖2,col=1

[ ∑
t/∈I0(Mi)

w(t) ‖Λϕ(t)‖2
]
< 1/2.

Denoting η = maxt ‖ϕ(t)‖2 and using the inequality
w(t) ‖Λϕ(t)‖2 ≤ ηw(t) ‖Λ‖2, it can be seen that the
maximum above is bounded from above by η(1−ρo)r(ΦW ).
Therefore Mi is the unique solution to (4) if

η(1− ρo)r(ΦW ) < 1/2,

which is precisely the claim of the theorem.
The number r(Φ) defined in (6) can be interpreted as a
certain measure of the genericity (or the diversity) of the data
matrix Φ. r(Φ) is all the smaller as the data in Φ are more
generic. Because r(Φ) might be a bit difficult to compute
directly in the form (6), we give some gross estimates of it
in the following.

Lemma 2: r(Φ) obeys the following properties :
(i) 1/ ‖Φ‖2,col ≤ r(Φ) ≤

∥∥Φ>(ΦΦ>)−1
∥∥

2
under the

assumption that rank(Φ) = n+ nu.
(ii) r is a decreasing function of the number of data samples

(i.e., the number of columns of matrix Φ).
(iii) r(αΦ) = 1/αr(Φ) for any α ∈ R+.

Proof: The proofs of (ii) and (iii) follow immediately
from the definition of r(·). Therefore we will prove only (i)
in details. Observe first that

‖ΛΦ‖2,col =

N−1∑
t=0

‖Λϕ(t)‖2 ≤ ‖Λ‖2 ‖Φ‖2,col .

By taking the inverse and multiplying by ‖Λ‖2, we can write

1/ ‖Φ‖2,col ≤ ‖Λ‖2 / ‖ΛΦ‖2,col ≤ max
Λ6=0

‖Λ‖2
‖ΛΦ‖2,col

.

But in fact
r(Φ) = max

Λ6=0

‖Λ‖2
‖ΛΦ‖2,col

and the first inequality in (i) follows.
We now prove the second inequality of (i). From the

definition (6), pose ∆ = ΛΦ, which implies that Λ =
∆Φ>(ΦΦ>)−1 since Φ is assumed to have full row rank.
Then by the submultiplicativity property of the matrix 2-
norm,

r(Φ) = max
‖∆‖2,col=1

∥∥∆Φ>(ΦΦ>)−1
∥∥

2

≤
∥∥Φ>(ΦΦ>)−1

∥∥
2

max
‖∆‖2,col=1

‖∆‖2 .

To finalize the proof, it remains now to show that

max
‖∆‖2,col=1

‖∆‖2 = 1.

For this purpose, express ∆ in terms of its columns δi ∈



Rn+ny as ∆ = [δ1 · · · δN ]. Let σ1 ≥ · · · ≥ σn+ny
be

the singular values of ∆>, organized in a descending order.
Then by using the notation ‖·‖F for the Frobenius matrix
norm, it is easy to see that

‖∆‖F =

√
‖δ1‖22 + · · ·+ ‖δN‖22 ≤ ‖δ1‖2 + · · ·+ ‖δN‖2

= ‖∆‖2,col

Hence the inequality ‖∆‖F ≤ ‖∆‖2,col holds true. On the
other hand, we know from basic linear algebra that ‖∆‖2 =

σ1 and ‖∆‖F =
√
σ2

1 + · · ·+ σ2
n+ny

. As a consequence,
‖∆‖2 ≤ ‖∆‖F . Therefore ‖∆‖2 ≤ ‖∆‖2,col by transitivity.
Fixing ‖∆‖2,col = 1 implies ‖∆‖2 ≤ 1. In fact this unit
upper bound on the 2-norm of ∆ is attainable. To see this,
pick for example a matrix ∆ whose columns are all equal
to zero except one column whose 2-norm is set to 1. Such
a matrix realizes ‖∆‖2,col = ‖∆‖2 = 1.

By default the weights are set to w(t) = 1/N , t =
0, . . . , N − 1, in which case W = 1/NIN , with IN
denoting the identity matrix. Then ρo = |I0(Mi)| /N , with
|I0(Mi)| denoting the cardinality of the set I0(Mi), and
r(ΦW ) = Nr(Φ). Plugging these expressions into (7) yields
the following special case of Theorem 1.

Corollary 1: If

|I0(Mi)| > N − 1

2ηr(Φ)
, (9)

then Mi is the unique solution to problem (4).
In words, the corollary says that if there is one submodel
having generated a number of data samples larger than a
certain threshold (depending on the degree of genericity of
the data), then this submodel can be computed efficiently
by solving problem (4). The good news is that this latter
problem is convex and can hence be numerically solved by
many well-documented solvers, see e.g. [18].

B. Implementation aspects

To estimate the parameter matrices, we follow a similar
procedure as in [5]. According to Corollary 1, if there is a
submodel i which has generated a sufficiently large number
of data, the associated parameter matrix Mi can be computed
by solving the convex problem (4) with W = 1/NIN .
If none of the submodels has the absolute majority of the
data (e.g. in the sense of condition (9)), the solution of
problem (4) may not be in {M1, . . . ,Ms}. To deal with these
situations, we can solve a sequence of problems of the type
(4) with different weights computed iteratively [19], [5]. The
iterative scheme can be defined for a fixed number rmax of
iterations as follows. At iteration r = 0, . . . , rmax, compute

M (r) = arg min
M

N−1∑
t=0

w(r)(t) ‖z(t)−Mϕ(t)‖2 ,

with weights defined, for all t, by w(0)(t) = 1/N , and

w(r)(t) =
w

(r)
0 (t)∑N−1

t=0 w
(r)
0 (t)

, if r ≥ 1,

where

w
(r)
0 (t) =

1∥∥z(t)−M (r−1)ϕ(t)
∥∥

2
+ ζ

,

ζ > 0 is a small number and r is the iteration number. Since
we are dealing here with a sequence of convex optimization
problems, they can be numerically implemented using any
convex solver. In particular the CVX software package [18]
solves efficiently this category of problems in a Matlab
environment.

As argued before, the algorithm is expected to converge
to one parameter matrix lying in {M1, . . . ,Ms}. After a
first submodel is identified, we need to identify the other
submodels. For this purpose, we can remove the data samples
pertaining to the already identified submodel and repeat the
iterative algorithm over the remaining set of data. We refer
to [5] for more details on this aspect.

C. Robust formulation in the presence of noise

So far, in the derivation of the method, we have not dealt
explicitly with potential noise in the process or in the
measurements. Still, as will be shown in Section III, the
derived method can stand noise to some extent. However,
when the noise level is high, we might need to resort to a
more robust implementation. For example, the `0 problem
(3) can be reformulated as

min
M∈R(n+ny)×(n+nu),ξ∈RN

+

‖ξ‖0

s.t. ‖z(t)−Mϕ(t)‖2 ≤ ε+ ξ(t), t = 0, . . . , N − 1,
(10)

where the optimization is performed over the set of param-
eters M and a set of positive slack variables ξ, and where
ε ≥ 0 is a fixed error threshold. Then, the `1 relaxation takes
the form

min
M∈R(n+ny)×(n+nu),ξ∈RN

+

‖Wξ‖1

s.t. ‖z(t)−Mϕ(t)‖2 ≤ ε+ ξ(t), t = 0, . . . , N − 1.
(11)

The rationale behind this formulation is that, if M is a pa-
rameter matrix representing one submodel i, then the errors
‖z(t)−Mϕ(t)‖2 should be less than a certain threshold
ε whenever σ(t) = i. Ideally, the threshold must be set
to maxt ‖e(t)‖2. But since this maximum is unknown in
general, it may sometimes be preferable to have to tune
a regularization parameter instead. Therefore, an alternative
formulation is for example

min
M∈R(n+ny)×(n+nu),ξ∈RN

+ ,ε∈R+

‖Wξ‖1 + νε

s.t. ‖z(t)−Mϕ(t)‖2 ≤ ε+ ξ(t), t = 0, . . . , N − 1,

with ν > 0 denoting the regularization parameter which is
intended for controlling the tolerance to noise. Large values
of ν tend to tolerate only a moderate amount of noise (or
discrepancy). Conversely, relatively small values of ν should
be used in case of highly perturbed measurements. Note that
a similar robust implementation has been discussed in the
context of nonlinear switched system identification in [20].
We now analyze the robust estimation scheme.



Lemma 3: Assume W = IN in (11). Denote by M? a
(any) solution to problem (11) and define Iε(Mi) =

{
t :

‖z(t)−Miϕ(t)‖2 ≤ ε
}

. Then∑
t∈Iε(Mi)

‖(M?−Mi)ϕ(t)‖2≤2|Iε(Mi)|ε+
∑

t∈Icε(Mi)

‖(M?−Mi)ϕ(t)‖2,

(12)
where Icε(Mi) is the complement of Iε(Mi) in the set of
indices {0, 1, . . . , N − 1}.

Proof: We start by observing that problem (11) is, when
the variable ξ is removed, equivalent to

min
M

N−1∑
t=0

max
[
0, ‖z(t)−Mϕ(t)‖2 − ε

]
. (13)

It then follows that

N−1∑
t=0

max
(
0, ‖z(t)−M?ϕ(t)‖2 − ε

)
≤

N−1∑
t=0

max
(
0, ‖z(t)−Miϕ(t)‖2 − ε

)
Noting that max

(
0, ‖z(t)−Miϕ(t)‖2 − ε

)
= 0 for any t ∈

Iε(Mi), the previous inequality can be written as∑
t∈Iε(Mi)

max
(
0, ‖z(t)−M?ϕ(t)‖2 − ε

)
≤

∑
t∈Icε(Mi)

max
(
0, ‖z(t)−Miϕ(t)‖2 − ε

)
−

∑
t∈Icε(Mi)

max
(
0, ‖z(t)−M?ϕ(t)‖2 − ε

)
. (14)

We will now find an underestimate of the term on the left-
hand side of (14) and an overestimate for the right-hand side
member. Pose Hi = M? −Mi. For t in Iε(Mi),

‖Hiϕ(t)‖2 = ‖(M?ϕ(t)− z(t)) + (z(t)−Miϕ(t))‖2
≤ ‖z(t)−M?ϕ(t)‖2 + ε

which implies that

‖Hiϕ(t)‖2 − 2ε ≤ max
(
0, ‖z(t)−M?ϕ(t)‖2 − ε

)
. (15)

Therefore,
∑
t∈Iε(Mi)

‖Hiϕ(t)‖2−2 |Iε(Mi)| ε is an under-
estimate. It remains to find the overestimate. To this end,
apply the identity max(0, a) = 1/2 (a+ |a|). Then the right-
hand side part of (14) equals

1/2
∑

t∈Icε(Mi)

[
‖z(t)−Miϕ(t)‖2 − ‖z(t)−M

?ϕ(t)‖2
]
+

1/2
∑

t∈Icε(Mi)

[∣∣∣ ‖z(t)−Miϕ(t)‖2 − ε
∣∣∣

−
∣∣∣ ‖z(t)−M?ϕ(t)‖2 − ε

∣∣∣] . (16)

Recall now that for any real numbers a, b, and for any vectors
c, d, the following holds, |a| − |b| ≤ |a− b| and ‖c‖2 −

‖d‖2 ≤ ‖c− d‖2. Using these identities in (16) yields

(16) ≤
∑

t∈Icε(Mi)

‖Hiϕ(t)‖2 . (17)

Recapitulating,∑
t∈Iε(Mi)

‖Hiϕ(t)‖2 − 2 |Iε(Mi)| ε ≤
∑

t∈Icε(Mi)

‖Hiϕ(t)‖2

which is indeed the sought result.
Theorem 2: Assume W = IN in (11) and let the notations

of Lemma 3 remain in force. Then, for any parameter matrix
Mi satisfying

|Iε(Mi)| > N − σmin

2η
(18)

with σmin being the smallest singular value of Φ> (which is
nonzero if Φ is full row rank), the estimation error is bounded
as follows

‖M? −Mi‖2 ≤
ε

η
[
1−

N − σmin

2η

|Iε(Mi)|

] . (19)

Proof: The theorem is a direct consequence of the
relation (12). In effect, (12) reads as

‖HiΦ‖2,col =

N−1∑
t=0

‖Hiϕ(t)‖2

≤ 2 |Iε(Mi)| ε+ 2
∑

t∈Icε(Mi)

‖Hiϕ(t)‖2 (20)

where Hi = M? −Mi. We have already seen in the proof
of Lemma 2 that ‖HiΦ‖2 ≤ ‖HiΦ‖2,col. On the other hand
it can be easily established that σmin ‖Hi‖2 ≤ ‖HiΦ‖2. By
combining these two remarks with the fact that ‖Hiϕ(t)‖2 ≤
‖Hi‖2 η, we can write

σmin ‖Hi‖2 ≤ 2ε |Iε(Mi)|+ 2η ‖Hi‖2
(
N − |Iε(Mi)|

)
.

Manipulating a little this last inequality leads to (19).
Theorem 2 constitutes an interesting stability result. If for a
given ε there is a parameter matrix Mi that fulfills condition
(18), then the theorem provides an explicit bound (which is
proportional to the design parameter ε) on the estimation
error for Mi. If, on the contrary, ε is such that none of
the submodels satisfies (18), not much can be said about
the bound on the deviation of M? from the true parameter
matrices. Finally, Corollary 1 appears to be a special case of
Theorem 2 when the data are noise-free and ε = 0.

III. NUMERICAL EXPERIMENTS

To evaluate the proposition of the paper, we consider an
example of switched linear system having 2 inputs, 2 outputs
and 3 submodels whose state dimension is equal to 3. The
system has the form (1) and its matrices are given as

A1 =

 0.15 0.40 −0.65
−0.75 0.1 −0.35
0.20 0.70 0.20

 , B1 =

−0.20 0.45
−0.06 0
0.22 0


C1 =

[
0 0.40 0.45
−1 −0.60 0.90

]
, D1 =

[
0 −0.35

−1.70 −0.25

]




A2 =

 0.27 0.24 −0.55
0.24 0.65 0.30
−0.55 0.30 0.27

 , B2 =

−0.55 0
−1.40 1
0.05 −0.72


C2 =

[
0.70 1 −0.27
−0.35 0 −1.10

]
, D2 =

[
2.15 0.25
0 −0.36

]


A3 =

 0.45 0.02 0.42
−0.17 0.53 0.20
0.38 0.26 −0.66

 , B3 =

 0 0.15
0.27 −0.46
0.07 0.54


C3 =

[
0 0.60 0.28
0 0.86 0.45

]
, D3 =

[
0 −0.90
0 0.85

]
We run 100 simulations to generate 100 different sets of
1000 input-state-output data each. For each simulation, the
data are generated with a normally distributed input, u(t) ∼
N (0, I2). The discrete state σ(t) is uniformly distributed
in S = {1, 2, 3} so that all the three modes have approxi-
mately the same number of data samples. The process noise
{w(t)} and measurement noise {v(t)} are both normally
distributed. They are sampled, for each simulation, so as to
achieve a moderate Signal-to-Noise-Ratio (SNR) of 30 dB
of respectively the state and the output. A consequence of
the noise being sampled from a Gaussian distribution is that
the corresponding sequence {e(t)} in (2) is not absolutely
bounded. We apply the non-robust version of the algorithm
as described in Section II-B to the obtained 100 datasets
separately. By repeating the experiment for different levels
of noise, we obtain some average estimation errors for each
parameter matrix as reported in Table I. These results show
that the proposed method has the potential of identifying
correctly a switched linear system of the form (1).

TABLE I
AVERAGE RELATIVE NORMED ERRORS

∥∥Mi − M̂i

∥∥
F
/ ‖Mi‖F OVER 100

INDEPENDENT RUNS.

i 1 2 3

30 dB 0.0081 0.0062 0.0109

25 dB 0.0377 0.0344 0.0357

20 dB 0.0782 0.0610 0.0770

15 dB 0.1614 0.1081 0.1536

IV. CONCLUSION

In this paper we generalized the sparse optimization approach
to the identification of MIMO switched linear state-space
systems where the continuous state is assumed available.
We view the problem of estimating one submodel of the
switched system as the problem of minimizing the number
of nonzero entries in a vector of normed errors. Because this
is an NP-hard problem, we relax this first formulation and
show that the different submodels can be recovered through
convex optimization. Some conditions of exact recovery from
noiseless data are also discussed. For the noisy case, an
alternative robust formulation of the identification problem is
proposed. With respect to this latter formulation, we derived
an explicit bound on the estimation error.
In this work, we have assumed that the continuous state is
fully measurable, which can be restrictive. To broaden the

scope of applicability of the proposed identification method,
it is desirable to be able to drop this assumption. This is
a challenging problem which, hopefully, will be solved in
future research.
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