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vibrations induced by flow, the nonlinear interaction effects can be as important as
the effects of steady flow loads. Some of these observed nonlinear phenomena are the
results of the dynamical interaction between the flow and the structures and should
be distinguished from the response of structures to the random effects of the flow
turbulence. The commonest interaction phenomenon is the vortex shedding, caused
by the organized wake vortex systems forming around the body; the other important
one, is the galloping, where a bluff body experiences a classical dynamical instability,
leading to oscillations of increasing amplitude in a direction normal to the flow (see
e.g. [1,2]). Interaction between the two forms of oscillations, is also possible, under
certain conditions, e.g. Corless and Parkinson [3].

Recently, many passive and active devices have been proposed aiming to
reduce flow-induced oscillations [4–7]. Among them, the tuned mass damper
(TMD) has received particular attention. The concept of damping a structural
system by adding a small mass to it dates back to the beginning of the century. Many
authors have proposed different methods to design the spring-viscous connection of
the added mass to the system for reaching a suitable tuning to the frequency of an
assigned mode, see e.g. [8,9]. The effects of the others modes of the system have
recently been investigated either in forced oscillations, [10], than in self-excited
oscillations [11].

Previous studies are mainly devoted to prevent galloping by increasing the critical
value at which the phenomenon is triggered. However, in order to investigate the
system performance when the wind velocity exceeds this value, an analysis of the
post-critical behavior is needed. The present paper deals with analyses of the TMD
effects on the galloping of a SDOF aeroelastic oscillator. The multiple scale method
is used to investigate the post-critical scenario, where both simple and double Hopf
bifurcations are likely to occur. The results are useful to evaluate the effectiveness of
TMDs even in the postcritical range.

2. Equations of motion

The equations governing the cross-wind oscillations of an elastically supported
bluff body connected with a small added mass and subject to a steady flow are
derived (Fig. 1). Both the bluff body primary system (PS) and the added mass
(TMD) are assumed to posses a SDOF and to be linear; moreover the aerodynamic
forces acting on the TMD are assumed to be negligible in comparison with those
acting on the PS. Therefore, the only source of nonlinearities arise from these latter.
The equations of motion are

ms�q1 þ 2msosxs _q1 þ 2mtotxtð _q1 � _q2Þ þmso2
s q1 þmto2

t ðq1 � q2Þ ¼ fa;

mt�q2 þ 2mtotxtð _q2 � _q1Þ þmto2
t ðq2 � q1Þ ¼ 0; ð1Þ

where q1 and q2 are the absolute cross-wind displacements of the PS and of the
TMD, respectively, ms;mt; xs; xt are masses and damping coefficients and os and ot
are the undamped frequencies of the two isolated bodies. The aerodynamic force fa is
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the component in the q1-direction of the lift and drag forces; in the quasi-static
regime it assumes the following expression [12]:

fa ¼ � 1

2
rU2

relDðcL cos aþ cD sin aÞ; U2
rel ¼ _q21 þU2; tan a ¼ _q1=U; ð2Þ

where U is the uniform wind velocity, r the air density, D a typical dimension of the
body, cL and cD are the aerodynamic coefficients, functions of the shape and of the
angle of attack a. The nonlinear force can be expressed in polynomial form by
expanding Eq. (2) in Taylor series of _q1=U, [1,2], i.e. fa ¼

P1
k¼1 Akð _q1=UÞk, where Ak

are aerodynamic force coefficients. Here, it is assumed that the cross-section of the
body is symmetric with respect to the flow direction, so that even terms in the
expansion vanish; moreover, powers of _q1 higher than 3 are neglected. By
introducing the following non-dimensional variables

~q1 ¼
q1
D
; ~q2 ¼

q2
D
; g ¼ ot

os
; m ¼ mt

ms
; d ¼ 1

2

raD
2

ms
; ~U ¼ U

osD
; ~t ¼ tos ð3Þ

and omitting the tilde for sake of simplicity, Eq. (1), reads

�q1 þ 2x _q1 þ 2mgxtð _q1 � _q2Þ þ q1 þ mg2ðq1 � q2Þ ¼ d
A3

U
_q31;

�q2 þ 2gxtð _q2 � _q1Þ þ g2ðq2 � q1Þ ¼ 0; ð4Þ

where 2x ¼ 2xs � dA1U is the apparent damping coefficient, which includes the
linear part of the aerodynamic force. Eqs. (3) and (4) show that, for fixed
characteristics of the PS, the system behavior depends on four parameters, the
mass ratio m, the frequency ratio g, the damping xt and the wind velocity U or,
equivalently, the apparent damping x.

Fig. 1. Aeroelastic oscillator with tuned mass damper.
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3. Critical analysis

Design methods for tuned mass damper, preventing self-excited oscillations, have
been presented by various authors [9,13,14]. The analyses are generally devoted to
describe the regions of stability of the trivial equilibrium position ðq1; q2Þ ¼ ð0; 0Þ of
Eq. (4) in the (x; xt; g; m)-parameter space, where x is the bifurcation parameter and
xt; g; m characterize the TMD. The aim is to determine the values of the parameters
that produces a desired or maximum flow-velocity U at which galloping starts. In the
works of Rowbottom [13] and Fujino [9] suitable sections of the stability regions are
presented, focusing the attention on the first critical conditions. Some of these results
are summarized and enriched in the following, where a second critical surface
completing the scenario is also described.

The stability analysis of the trivial solution is performed by analyzing the spectral
properties of the linearized equation,

�qþ C _qþ Kq ¼ 0; ð5Þ

where

q ¼
q1

q2

( )
; C ¼

2xþ 2mgxt �2mgxt
�2gxt 2gxt

" #
; K ¼

1þ mg2 �mg2

�g2 g2

" #
: ð6Þ

The eigenvalues li of Eq. (5) are evaluated as solutions of the characteristic equation
det ½l2Eþ lCþ K� ¼ 0 (see Appendix A); the associated right and left eigenvectors u
and v, necessary to the post-critical analysis, are respectively solutions of the
following algebraic problems

½l2Eþ lCþ K�u ¼ 0; ½l2Eþ lCþ K�H v ¼ 0; ð7Þ

where H denotes transpose conjugate.
For technical values of the parameters the eigenvalues are found to be

complex conjugate in pairs. The stability boundaries in the parameter space are
determined by requiring one or both the pairs of eigenvalues have zero real part.
By imposing these conditions on the solutions of the characteristic equation
some relations among the parameters is obtained. From a geometrical point of
view, they describe manifolds Fk in a four-dimensional space having
codimension k ðk ¼ 1; 2; 3), equal to the number of equalities imposed on the real
and imaginary parts of li. Analytical expressions of these boundary surfaces are
given in Appendix A. The critical manifolds are represented in Fig. 2 for fixed value
of m in the (x; xt; g)-space. In Fig. 2a, a 3D representation of the critical manifolds, is
given; in particular the existence of a peculiar point, P* 	 ðx* ; x*

t ; g* Þ at which the
critical wind velocity is maximized (optimum TMD), is highlighted. In Fig. 2b–d
three sections parallel to the reference planes, passing through the point P* , are
depicted. In particular, Fig. 2b represents a section of the region at fixed x ¼ x*

(bold line) at which curves for different level of x have been added. Similarly, Fig. 2c
and d present the section at g ¼ g* and xt ¼ x*

t , with addition of some contour lines
respectively.
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By posing l1;2 ¼ 2z1 
 io1 and l3;4 ¼ 2z2 
 io2, on these critical manifolds the
following conditions occurs:

F1
a: z1 ¼ 0; z01 > 0; z250; F1

b: z1 > 0; z2 ¼ 0; z02 > 0;

F1
c : z1 ¼ 0; z0150; z2 > 0; F2: z1 ¼ z2 ¼ 0;o1 6¼ o2; z

0
1 > 0; z02 > 0;

F3: z1 ¼ z2 ¼ 0; o1 ¼ o2; z01 > 0; z02 > 0: ð8Þ
where z0i ¼ �@zi=@x are the velocities of the real part of the eigenvalues.

On the manifolds F1 ¼ fF1
a [F1

b [F1
cg, a forward increment of the wind

velocity produce the crossing of one eigenvalue of the imaginary axis, thus leading to
a simple Hopf bifurcation. In particular, on F1

a ðF1
b) the first (the second)

eigenvalue crosses the imaginary axis with positive velocity, while on F1
c a re-entry

of one of the two eigenvalues occurs. On the manifolds F2 and F3 the simultaneous
crossing of the imaginary axis of two pairs of eigenvalues occurs having different
frequencies (non-resonant double-Hopf bifurcation) or the same frequency (1 : 1
resonant double Hopf bifurcation), respectively.

By summarizing, simple- and double-Hopf bifurcations are likely to occur. For
high level of damping xt in the TMD or non-perfect tuning g 6¼ g* , a simple Hopf
occurs on the surface F1

a. Differently, for low level of damping and nearly perfect

Fig. 2. Critical manifolds in the (x; xt; g) space for m 0:005: (a) 3D view, (b) section at x x* , (c) section

at g g* , (d) section at xt x*
t .
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tuning a non-resonant double Hopf bifurcations manifests itself along the line F2.
The description of the post-critical scenario around these critical conditions is the
object of the following sections. The analysis of the 1:1 resonant Hopf bifurcation
occurring at point P* is instead left for future investigation.

4. Postcritical analysis

The Multiple Scale Method is applied to analyze the post-critical behavior of the
system around F1

a and F2, according to the procedure illustrated in [16]. A generic
point P0 	 ðx0; g0; xt0Þ 2 F1

a or 2 F2 is fixed and a perturbation of one or two
parameters is performed, for codimension 1 or 2 bifurcations, respectively. Namely
x ¼ x0 � e2x2; g ¼ g0 þ e2g2 is posed, where e is a perturbation parameter, x2 has the
meaning of distinguished parameter (positive for overcritical wind velocities) and g2
of splitting parameter. Moreover, the Lagrangian coordinates are expanded in series
of e as

qðt; eÞ ¼ eq1 þ e3q3 þOðe5Þ ð9Þ
and several temporal scales tk ¼ ekt ðk ¼ 0; 2; . . .Þ are introduced, so that d=dt ¼
d0 þ e2d2 þ � � �, with dk :¼ @=@tk. By substituting the previous equations in the
Eqs. (4) the following perturbation equations up to e3 are drawn:

ðd2
0Eþ d0C0 þ K0Þq1 ¼ 0; ð10Þ

ðd2
0Eþ d0C0 þ K0Þq3 ¼ �d0C2q1 � K2q1 þ fðq1Þ � ðd2

1 þ 2d0d2Þq1; ð11Þ
where the matrices C0 and K0 are the damping and stiffness matrices defined by
Eqs. ð62Þ and ð63Þ evaluated at the bifurcation point P0 and the higher order-terms are

C2 ¼
�2x2 þ 2mg2xt �2mg2xt

�2g2xt 2g2xt

" #
; K2 ¼

2mg0g2 �2mg0g2
�2g0g2 2g0g2

" #
;

fðq1Þ ¼
d
A3

U
_q311

0

2
4

3
5: ð12Þ

It should be noted that, in Eq. ð123Þ, the actual value U of the wind velocity has
been considered, instead of the bifurcation value U0, [2]. Although this procedure
is inconsistent, numerical results have shown that it improves the accuracy of the
solution for U � U0 (see later Section 5). In the following, the simple and the non-
resonant double Hopf bifurcations are analyzed.

4.1. Simple Hopf bifurcation

In this case P0 2 F1
a, and a single critical mode u 2 C of frequency o exists;

therefore the generating solution of Eq. (10) reads

q1 ¼ Aðt1; t3; . . .Þueiot0 þ c:c: ð13Þ
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where A is the complex amplitude and c.c. stands for complex conjugate terms. By
substituting Eqs. (13) in (11) it holds:

ðd2
0Eþ d0C0 þ K0Þq3 ¼ b1eiot0 þ n:s:t:þ c:c: ð14Þ

with b1 defined in Appendix B, depending on the x2 bifurcation parameter
(see Appendix B). By enforcing the solvability conditions vH1 b1 ¼ 0, the
following ordinary differential equation in the complex amplitude Aðt1; t3; . . .Þ is
found:

d2A ¼ C11Ax2 þ C13A
2; ð15Þ

where the coefficients Cij are defined in the Appendix B. Expressing the amplitudes in
the polar form A ¼ 1

2 aðt2Þeijðt2Þ and separating the real and imaginary parts of
Eqs. (15), two differential equations of the first order follow

_a ¼ �R11x2aþ R13a
3; _j ¼ �I11x2 þ I13a2; ð16Þ

where Rij ¼ ReðCij) and Iij ¼ ImðCijÞ.
Eqs. (16) admit the trivial solution a0 ¼ 0 and the non-trivial steady-state

solution

a20 ¼
R11

R13
x2; j ¼ �I11 þ I13

R11

R13


 �
x2

� 

t2 þ j0; ð17Þ

respectively. Eqs. (17) describe the amplitude and the frequency correction of
periodic galloping response of the system. By normalizing the critical mode as
u ¼ ½1; reia�T, at the leading order the motion is described by

q1ðtÞ ¼ a0 cosðOtþ j0Þ; q2ðtÞ ¼ ra0 cosðOtþ j0 þ aÞ; ð18Þ
where O ¼ oþ ðI11 � I13R11=R13Þx2 is the nonlinear frequency.

The stability of both the trivial and non-trivial solution is governed by the
variational equation

d _a ¼ ð�R11x2 þ 3R13a
2
0Þda: ð19Þ

Since, by hypothesis, the trivial solution is stable for x250, it is R1150; therefore the
bifurcation described by Eq. (17) is overcritical (stable) if R1350 and undercritical
(unstable) if R13 > 0.

4.2. Non-resonant double-Hopf bifurcation

In this case P0 2 F2 and two critical modes u1 and u2 2 C, of frequencies o1 and
o2, exist. Since o1 6¼ o2, the bifurcation is non-resonant. The generating solution of
Eq. (10) is

q1 ¼ A1ðt0; t2; . . .Þu1eio1t0 þ A2ðt0; t2; . . .Þu2eio2t0 þ c:c: ð20Þ

With Eq. (20), Eq. (21) reads

ðd2
0Eþ d0C0 þ K0Þq3 ¼ b1eio1t0 þ b2eio2t0 þ n:s:t:þ c:c:; ð21Þ
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where b1 and b2, defined in Appendix B, contain both the g2 and x2 parameters. By
enforcing the solvability conditions, namely vH1 b1 ¼ 0 and vH2 b2 ¼ 0, a set of ordinary
differential equations in the complex amplitudes Ai follows:

d2A1 ¼ C11A1x2 þ C12A1g2 þ C13A
2
1A1 þ C14A1A2A2;

d2A2 ¼ C21A2x2 þ C22A2g2 þ C23A
2
2A2 þ C24A2A1A1 ð22Þ

where the coefficients are defined in Appendix B. Expressing the amplitudes in
polar form, A1 ¼ 1

2 a1ðt2Þeij1ðt2Þ and A2 ¼ 1
2 a2ðt2Þeij2ðt2Þ and separating the real and

imaginary parts, Eqs. (22) brings to four differential equations of the first order:

_a1 ¼ ðR11x2 þ R12g2Þa1 þ R13a
3
1 þ R14a1a

2
2;

_a2 ¼ ðR21x2 þ R22g2Þa2 þ R23a
3
2 þ R24a

2
1a2; ð23Þ

_j1 ¼ ðI11x2 þ I12g2Þ þ I13a21 þ I14a22;
_j2 ¼ ðI21x2 þ I22g2Þ þ I23a22 þ I24a21; ð24Þ

where the coefficients Cij have been separated in the real and imaginary parts.
Eq. (23) are uncoupled from Eq. (24) and govern the evolution of the amplitudes of
the two critical modes.

The Eq. (23) admit the trivial solution a1 ¼ a2 ¼ 0. However, non-trivial steady-
state solutions are possible causing mono-modal or bi-modal galloping. Mono-
modal galloping occurs when one of the two modal amplitudes vanishes. Thus, if
a2 ¼ 0, Eq. ð232Þ is identically satisfied, while Eqs. ð232Þ and ð241Þ lead to

a210 ¼ � 1

R13
ðR11x2 þ R12g2Þ;

j1 ¼ I11 � I13
R11

R13


 �
x2 þ I12 � I13

R12

R13


 �
g2

�� 

t2 þ j10; ð25Þ

respectively. Similarly, if a1 ¼ 0, Eq. ð231Þ is identically satisfied, while Eqs. ð232Þ
and ð242Þ yield

a220 ¼ � 1

R23
ðR21x2 þ R22g2Þ;

j2 ¼ I21 � I23
R21

R23


 �
x2 þ I22 � I23

R21

R13


 �
g2

�� 

t2 þ j10 ð26Þ

Since a1 and a2 are real, Eqs. (25) and (26) hold only in half-planes of the (x2; g2)-
plane, delimited by the straight lines s1 :¼ R11x2 þ R12g2 ¼ 0 and s2 :¼
R21x2 þ R22g2 ¼ 0, respectively. Finally if both a1 and a2 are different from zero, a
bi-modal (quasi-periodic) steady-state solution exists:

a21Q ¼ ðR14R21 � R11R23Þx2 þ ðR14R22 � R12R23Þg2
R23R13 � R24R14

a22Q ¼ ðR24R11 � R21R13Þx2 þ ðR24R12 � R22R13Þg2
R23R13 � R24R14

ð27Þ
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The domain of definition of Eqs. (27) is a sector of the (x2; g2)-plane delimited by
the straight lines r1 :¼ ðR14R21 � R11R23Þx2 þ ðR14R22 � R12R23Þg2 ¼ 0 and r2 :¼
ðR24R11� R21R13Þx2 þ ðR24R12 � R22R13Þg2 ¼ 0.

The stability of the steady-state solutions of Eqs. (23) is governed by the following
variational equation:

d _a1
d _a2

( )
¼

ðR11x2 þ R12g2 þ 3R13a
2
10 þ R14a

2
20Þ 2R14a10a20

2R24a10a20 ðR21x2 þ R22g2 þ 3R23a
2
20 þ R24a

2
10Þ

" #
da1
da2

( )
;

ð28Þ

where the Jacobian J is evaluated at ai0. Some general information can be drawn for
trivial and monomodal solutions, for which J assumes diagonal forms. In particular,
for the trivial solutions ða10 ¼ 0, a20 ¼ 0Þ, is JT ¼ diag½s1; s2�; the trivial solution is
therefore stable in a sector of the (x2; g2)-plane delimited by the straight lines s1 and
s2. Then, for monomodal galloping ða10 6¼ 0, a20 ¼ 0; a10 ¼ 0, a20 6¼ 0Þ, the Jacobian
reads J1 ¼ diag½�2s1;�r2=R13� and J2 ¼ diag½�r1=R13;�2s2�, respectively. Hence,
one eigenvalue keeps its sign constant in the region of existence of the solution while
the other eigenvalue changes sign on one of the straight lines ri delimiting the region
of existence of the bi-modal solutions. Therefore, the stability of monomodal
solution changes when the bimodal solution borns.

5. Numerical results

Numerical investigations have been carried out to analyze the system post-critical
behavior, using both the illustrated analytical solutions and direct time-integration
of the equations of motion. First, the post-critical behavior subsequent to a simple
Hopf bifurcation is analyzed, in both the over- and under-critical cases. By keeping
the mass ratio m fixed, a point P0 	 ðg; xt; xÞ (with index 0 omitted) is chosen on the
critical manifold F1

a shown in Fig. 2; then the wind velocity U is increased beyond its
critical value. By using Eq. ð171Þ, the amplitude a0 of the limit cycle is drawn as a
function of U. In Fig. 3a some results concerning different (g; xt)-pairs are illustrated
for an aeroelastic oscillator with over-critical behavior of parameters m ¼ 0:005,
xs ¼ 8:8E � 4, d ¼ 4:7E � 4, A1 ¼ 4:87, A3 ¼ � 421 and compared with the path of
the uncontrolled (unc-labeled curve) system. The curve a is referred to an initial
point P0 	 ðg ¼ g* ; xt ¼ 0:03570; x ¼ �0:03495Þ very close to the point P* 	 ðg* ¼
0:99751; x*

t ¼ 0:03553; x* ¼ �0:03573Þ (see Fig. 2), while curves b and c refer to
points P0 2 F1

a far from P* , obtained by modifying with respect to the previous
values only xt or g, respectively. It is seen that, controlled oscillators close to the
optimum values of the parameters undergo galloping at high wind velocity and
experience comparatively small oscillation amplitudes. Therefore, although the
optimum values have been determined to maximize only the bifurcation value, the
TMD control system furnish a good performance also in the nonlinear range. Curves
b and c illustrate the sensitivity of the nonlinear paths. It results that the system is
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weakly sensitive to changes of the damping xt since, by increasing it to about 50%,
the critical velocity reduces to 40% and the oscillation amplitude increases to 36% at
U ¼ 40. In contrast, the system behavior is highly sensitive to changes of the
frequency ratio g since, by modifying it of about 
5% the critical velocity reduce of
73% and the oscillation amplitude increases of 90% at U ¼ 40.

The analytical results have been also compared with direct numerical integration
of the equation of motion (dots in Fig. 3a), and a very good agreement has been
found. On the other hand, as shown by the curve b0, the analytical solution entails a
large error if U0 instead of U is used in Eq. ð123Þ (and consequently in the coefficient
C13); for this reason the inconsistent solution has been used here.

In Fig. 3 the ratio r (see Eq. (18)) between the amplitudes of the oscillation of the
TMD and the PS is also reported for the three oscillators considered. It turns out
that the TMD oscillates at larger amplitudes near point P* , i.e. it absorbs a larger
amount of the total energy put in the system by the nonconservative forces, that
explaining the better performance of the optimum TMD.

Fig. 3b describes the system behavior in the under-critical case, obtained by
changing the sign of the aerodynamic coefficient A3, for the same three systems of
Fig. 3a. Remarkable differences between the consistent solution (curve b0) and the
inconsistent one (curve b) have been found. Comparisons with direct integration of
the equation of motion again show a good agreement. The amplitude of the unstable
limit cycle has been numerically evaluated through backwards integration. However,
an accurate treatment of the choice of the initial conditions was necessary in order to
approach the unstable cycle. Indeed, numerical results have revealed the existence of
a second unstable limit cycle of smaller amplitude associated with the second,
noncritical, mode. Such a behavior cannot be described by a simple Hopf analysis
since it is due to the effects of the second pair of eigenvalues close the critical
condition.

The postcritical behavior of the system around a double Hopf bifurcation is now
studied by using the analytical results of Section 4.2. In Fig. 4 the post-critical

Fig. 3. PS galloping amplitude oscillations versus wind velocity subsequent to a simple Hopf bifurcation:

(a) over critical behavior; (b) under critical behavior.

V. Gattulli et al. / Journal of the Franklin Institute 338 (2001) 187 201196



scenario is illustrated in the (g2; x2)-plane for three different critical points P0 2 F2.
The two pairs of straight lines (s1; s2), delimiting the regions of the existence of
mono-modal solutions, and the lines (r1; r2) describing the boundaries of the regions
in which bi-modal solutions take place, are depicted. In each sector of the plane a
sketch of the relevant phase-portrait is shown. In the lower sector the trivial solution
is stable; in the two adjacent sectors, stable mono-modal, periodic, galloping occurs
in one of the two modes; then, the two mono-modal solution coexist, one of them
being stable and the other unstable; finally, in the upper sector, the bi-modal quasi-
periodic solution appears together with the two mono-modal solution. Stability
analysis shows that the quasi-periodic solution is unstable, while the periodic ones
are both stable. Therefore, initial conditions decide in which of the two modes the
system oscillates at regime. When the point P0 is changed, and approaches P* , the
scenario modifies according to the sequence a; b; c in Fig. 4; thus, the region of the bi-
modal galloping shrinks together with the region of stable trivial solution.

When the wind velocity U increases from zero, a straight path parallel to the x2-
axis is described on the (g2; x2)-plane. A sample path has been chosen in Fig. 4b,
crossing the lines s1, s2 and r1 at the points Pi (i ¼ 1; . . . ; 3). The relevant amplitudes
of the limit cycles vs. the wind velocity, as evaluated by Eqs. (25)–(27), are drawn in
Fig. 5a. For increasing U, a stable monomodal galloping of amplitude a10 starts at
P1; then, an unstable mono-modal galloping of amplitude a20 is triggered at P2; this
gains stability at P3, where an unstable quasi-periodic solutions (a1Q; a2Q) bifurcates
from it. By comparing the stable a10 and a20 curves with the unc-labeled curve of
Fig. 3a, relevant to the uncontrolled case, it is concluded that even in the cases in
which the TMD entails the occurence of a double-Hopf bifurcations, it reduces the
amplitudes of the limit cycle. The TMD has therefore a beneficial effect.

Fig. 4. Bifurcation diagram in the (x2; g2) plane for m 0:005: (a) xt 0:01; (b) xt 0:02; (c) xt 0:033.
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In order to evaluate the accuracy of the analytical predictions, some stable limit
cycles described by the first approximation, Eq. (20), have been compared with direct
integrations of motion. Fig. 5b–e shows the trajectories at the regime on the
configuration (q1; q2)-plane, orderly for the four Qi points marked in Fig. 4c. In each
figure, NR curves (non-resonant solution) refer to analytical results, EX curves to
exact numerical solution, while QR (quasi-resonant solution) will be commented
later. At the Q1-point a very good approximation is found; however, it gets worse
when the wind velocity is increased (Q2-point), due to the fact that higher-order
harmonics, present in the numerical solution and absent in the analytical solution,
become significant. In this two cases, due to the choice of the initial conditions, the
system oscillates in two different modes. A slightly less good accordance is found at
Q3 and Q4, i.e. for non-perfect tuning g 6¼ g* ; the approximation is however
satisfactory.

6. Concluding remarks

The effects of a tuned mass damper on the behavior of a SDOF bluff body exposed
to a steady flow and undergoing galloping oscillations, have been analyzed both on
the critical and post-critical range. The study of the critical boundaries in the
parameter space has evidenced the existence of different manifolds on which single

Fig. 5. PS galloping oscillations subsequent to a double Hopf bifurcation: (a) amplitudes of limit cycle vs.

wind velocity (NR solution); (b) (d) projection of the limit cycles on the configuration plane (NR and QR

analytical solutions; EX direct integration).
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and double-Hopf bifurcations occur. The post-critical behavior of the system,
subsequent to a simple-Hopf and a non-resonant double-Hopf have been analyzed
through a perturbation method. It has been concluded that the TMD has a benificial
effect also on the post-critical behavior, since it generally reduces the amplitude of
the galloping oscillations. The conclusions obtained here, however, should be
corroborated by a wider analysis, able to clarify some points emerged during the
present study, according to the following discussion.

Numerical results obtained by direct integration of the equations of motion have
shown that, even in the simple-Hopf bifurcation, the passive pair of the eigenvalues
may play an important role in the description of the system behavior, as evident in
the under-critical case. A deeper analysis should take into account the effects of the
(small) distance of the passive eigenvalues from the immaginary axis. Similar
problems exist in the analysis of the double-Hopf bifurcation occurring on F2. In
Section 4.2 it was analyzed by considering distinct critical eigenvalues (non-resonant
solution, NR). Indeed, due to the closeness of the eigenvalues (that increasingly
approach each other until they coalesce at point P* 	 F3), it is expected that some
interaction between the frequencies may occur even on F2. It would be desiderable,
to evaluate the extension of the region of resonance around F3; however, such
analysis is out of the scope of this paper and has been left for future investigation. At
present the problem has been tentatively attacked along the lines illustrated in [17]. A
so-called quasi-resonant solution (QR) has been built up taking the same generating
solution, Eq. (20) of the NR case, but assuming now o2 ¼ o1 þ es, where s is a third
parameter, in addition to x2 and g2, describing the codimension-3 bifurcation. The
QR solution is based on the hypothesis that the eigenvectors u1 and u2 can be
assumed distinct when their frequencies o1 and o2 are still very close each other;
however, it breaks down when P0 	 P* , where u1 	 u2 and the Jacobian becomes
defective (nillpotent). The procedure leads to three coupled differential equations
similar to that of [17], governing the evolution of a1, a2 and a phase combination.
The most remarkable difference with the NR solution is that, in some region of
the parameter space, the QR solution admits a bi-modal stable periodic motion. The
QR solution has been used for comparison with the NR-solution and the EX-
solution in Fig. 5b–e. In Fig. 5b and c it is seen that the NR and QR are almost
coincident, while in Fig. 5d and e the QR furnishes a better approximation. This
behavior is explained by the emergence of the stable bi-modal solution. It permits to
capture the modification of the critical mode, displayed by the rotation of the ellipses
in Fig. 5d and e that cannot be described by the NR solution. It is concluded that a
more refined analysis would require to study the neighbourhood of P* as a
perturbation of a 1:1 resonant (defective) Hopf bifurcation. Work is in progress on
this matter.
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Appendix A

The characteristic equation of the differential equation (5) has the following
expression:

l4 þ 2ðxþ gxt þ mgxtÞl3 þ ðg2 þ 1þ 4gxxt þ mg2Þl2 þ 2gðxt þ gxÞlþ g2 ¼ 0:

ð29Þ

By posing l1;2 ¼ 2z1 
 io1 and l3;4 ¼ 2z2 
 io2 and requiring z1 ¼ 0, an F1

codimension-1 manifold is found. By requiring z1 ¼ z2 ¼ 0 alone or together with
o1 ¼ o2, an F2 codimension-2 and an F3 codimension-3 manifolds follow,
respectively. They are defined as

F1	
gx4 þ ½1þ ð7þ 3mÞg2�xtx3 þ ½mg3 þ ð7þ 10mþ 3m2Þg3x2t þ x2t ð7þ 3mÞg�x2

þ½1� 2g2 þ ð7þ 10mþ 3m2Þg2x2tþð1þ 3mþ 3m2 þ m3Þg4x2tþðm2 þ 2mþ 1Þg4�xtx
þð1þ 3mþ 3m2 þ m3Þg3x4t þ mgx2

t ¼ 0;

8>><
>>:

F2 	
x ¼ �xt 1þ m

p
;

g ¼ 1= 1þ m
p

;

(
F3 	

x ¼ � 1
2 2� 2 1=ð1þ mÞ

pq
1þ m

p
;

xt ¼ 1
2 2� 2 1=ð1þ mÞ

pq
;

g ¼ 1=ð1þ mÞ
p

:

8>>><
>>>:

ð30Þ

Appendix B

The vectors appearing in Eqs. (21) are

b1 ¼ �io1A1C2u1 � A1K2u1 þ 3io3
1A

2
1A1f1 þ 6io1o2

2A1A2A2f2 � 2io1u1d2A1;

b2 ¼ �io2A2C2u2 � A2K2u2 þ 3io3
2A

2
2A2f3 þ 6io2o2

1A2A1A1f4 � 2io2u2d2A2;

ð31Þ

where

f1 ¼
dA3

U
u211u11

0

8<
:

9=
;; f2 ¼

dA3

U
u11u21u21

0

8<
:

9=
;;

f3 ¼
dA3

U
u221u21

0

8<
:

9=
;; f4 ¼

dA3

U
u21u11u11

0

8<
:

9=
;: ð32Þ

The vector b1 in Eq. (14) is given by Eq. (31) in which A2 ¼ 0 is posed. The
expressions of the coefficients in Eqs. (15) and (22) are

C11 ¼ v11u11; C12 ¼ ðxt � ig0=o1Þ½v12ðu11 � u12Þ þ mv11ðu12 � u11Þ�;
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C13 ¼
3

8

dA3

U
o2

1�v11u
2
11�u11; C14 ¼

3

4

dA3

U
o2

2�v11u11u21�u21;

C21 ¼ �v21u21; C22 ¼ ðxt � ig0=o2Þ½�v22ðu21 � u22Þ þ m�v21ðu22 � u21Þ�;

C23 ¼
3

8

dA3

U
o2

2�v21u
2
21�u21; C24 ¼

3

4

dA3

U
o2

1�v21u21u11�u11: ð33Þ

In Eqs. (32) and (33), uk ¼ fuk1; uk2gT and vk ¼ fvk1; vk2gT (k ¼ 1; 2) are the right
and the left eigenvectors defined by Eq. (7), an overbar denotes the complex
conjugate and ðÞH the transpose conjugate.
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