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A fully-spectral 3D time-domain model for second-order simulation of
wavetank experiments. Part B: Validation, calibration versus experiments

and sample applications

Félicien Bonnefoy∗, David Le Touzé, Pierre Ferrant

Laboratoire de Mécanique des Fluides, Ecole Centrale de Nantes, 1 rue de la Noë, BP 92101, 44321 NANTES Cedex 3, France 

A 3D second-order numerical wavetank (NWT) model, SWEET, is presented. In the first part (A) of t he paper [Bonnefoy F, Le Touzé D, 
Ferrant P. A fully-spectral 3d time-domain model for second-order simultion of wavetank experiments. Part A: Formulation, implementation 
and numerical properties. Appl Ocean Res 2005 [submitted for publication]. doi:10.1016/j.apor.2006.05.004], the fully-spectral formulation we 
employ has been detailed, and the numerical properties of the model analyzed. In the present part (B), careful validation by comparison to 
analytical and experimental results is first reported. Thanks to the efficiency of  the proposed spectral method, the shortest wavelengths in  the 
wavetank can be accounted for with moderate computational times. The consequent possibilities are illustrated here for the following 2D and 3D 
complex wave-pattern simulations, with experimental comparisons: wave-packet and geometric focusing cases, directional wavefields, long-time 
evolutions of irregular waves. The numerical model features all the physical characteristics of a wavetank (snake wavemaker, experimentally-
calibrated absorbing zone, etc.). Its usefulness to help preparing and analyzing experiments is shown in relation to some key practical requirements: 
e.g. quality and evolution of the usable test zone and usability of enhanced wavemaker motions.

Keywords: 3D NWT; Second order; Spectral methods; FFTs; Directional wavemaker; Usable test zone; Experimental-aid tool; Focusing; 3D realistic wavefields
0. Introduction

In the first part (A) of the present paper [1], a methodology
and the corresponding numerical algorithm have been described
to simulate, in the time domain at second order, the whole
wave generation and propagation process in a wavetank. This
three-dimensional NWT, named SWEET is based on a fully-
spectral method first presented in [2] and significantly enhanced
since then. The proposed spectral resolution has been detailed
in Part A [1], and the expected accuracy, quick-convergence
and run-time properties of the model have been illustrated. The
exhibited efficiency of this approach, with the problem solved
by means of FFTs only, led to the conclusion that simulations
of 3D realistic wave patterns at moderate cost were possible,
including the shortest wavelengths present in the wavetank.
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Furthermore, the development of wavemaker motions similar
to the experimental ones have extended the applicability of
the model to complex sea-states; this will be illustrated in the
present part (B) of the paper.

In this part, a careful validation by comparison to a dedicated
semi-analytical theory developed by Bonnefoy et al. [3] is
first presented (see Section 1). This second-order analytical
solution provides the stationary evolution of the wavefield in a
semi-infinite three-dimensional wavetank; it includes the actual
wavemaker motion. Further validation of the model is made
against various experimental results, in each case showing
very good agreement. These comparisons are thoroughly
analyzed to understand up to what extent, in terms of time
evolution and nonlinearities, the model is able to reproduce
a real basin. The 2D and 3D complex wave-pattern cases
investigated as examples in this Part B include: wave-packet
and geometric focusing events; the generation of a focused
directional irregular wavefield; and long-time evolutions of
irregular waves (see Sections 3.2 and 3.4). The variety of the



model possibilities is also illustrated through an example of a
pre-design study (see Section 3.3).

In order to develop a tool facilitating the preparation and
analysis of experimental tests, all the characteristics of the
physical wavetank have been included in the model (see [1]). In
particular, a sustained effort has been made since [2] to improve
the wave generation process; only regular oblique waves could
be generated at the time of the latter article. Here, the arbitrary
shape and motion of the 3D wavemaker is reproduced, and
numerical and experimental wavemaker motions are created in
identical ways, using a shared input process (see Section 2.1).
Furthermore, the numerical absorption has been designed and
calibrated through comparison with dedicated experiments in
the basin, to provide absorbing features similar to the ones of
the real wavetank beach (see Section 2.2).

In order to perform useful experiments one has to know
the area in the basin where the measured wavefield will be
close enough to the prescribed field, i.e. the usable test zone.
Indeed, due to side-wall reflections, nonlinear generation and
propagation processes, and partial reflection on the absorbing
beach, the wave pattern realised in the basin differs significantly
from that prescribed, at least over parts of its surface. The
knowledge of the usable test-zone extent, quality and time
evolution is therefore vital, but it is difficult to evaluate and
optimize it heuristically. As shown by theoretical linear studies,
the chosen wavemaker motion plays a dominant role and
can be optimized to enlarge and shift the test zone. After
the simple ‘snake principle’ of Biésel [4], Dalrymple [5]
proposed an enhanced motion taking advantage of side-wall
reflections (from which more elaborate methods have then
been derived, see e.g. Boudet and Pérois [6]). However, all
these solutions are based on first-order frequency domain
theory. The present model, including both unsteady aspects and
second order effects, offers much wider possibilities of analysis,
showing the limits of these linear techniques (see Section 3.1
and [2]). Finally, among other examples of the aid to wavetank
experiments provided by our model SWEET, it permits one to
optimize the time ramp applied to the real wavemaker motion
at the start (see Section 2.1).

1. Validation with analytical solutions

For moderate-steepness wavefields, second-order analytical
solutions can be derived in some particular situations, and used
to verify time-domain numerical methods. In this way, the core
of the present spectral model (the basin without wavemaker)
has been successfully compared to a 2D second-order analytical
solution by Cointe et al. [7], in the case of the free evolution of
an initial constant-slope free surface. Very close agreement has
been found regarding both the modal amplitudes and the free
surface elevations, and the expected decrease rate of the modal
amplitudes has been recovered (see [8]). Furthermore, the
accuracy levels reached and the computational costs exhibited
have been acknowledged to be largely favorable with respect to
a Boundary-Element Method solution [9] of the same problem.

The present NWT has then been compared to a second-
order frequency-domain analytical solution of the directional
2

wavemaker problem, which readily provides the steady state
for a regular wavefield. In two dimensions, numerous analytical
works are available (see e.g. Hudspeth and Sulisz [10], and
Schäffer and Steenberg [11] for a review), and the comparisons
we achieved with [10] turned out to be very satisfactory [8].
In three dimensions, Schäffer and Steenberg [11] have dealt
with multidirectional waves, but in a basin without sidewalls
and only with the snake principle as the wavemaker control law.
Li and Williams [12] have treated the case of regular waves in
a basin with perfectly reflective sidewalls and with the snake
principle. The work presented in Bonnefoy et al. [3] is an
extension of the latter to more complex control laws such as
the Dalrymple method [5], and this is used here as reference
with which to compare the output of our NWT. This analytical
solution is briefly described in Appendix A. The comparison
is made possible by the presence of the absorbing layer in
the NWT, equivalent to the radiation condition used in the
analytical solution.

The basin geometry taken as the example in the following
is that of the ECN wavetank (unless otherwise mentioned): a
length of 50 m, a width of 30 m and a depth h of 5 m. Fig. 1
shows the comparison at first (top) and second (bottom) orders,
for the generation of a regular wave of frequency 0.56 Hz and
direction 20◦ from the main direction, using the Dalrymple
control law with a 20 m target distance (see Section 3.1 and
Appendix B). In the simulation, 256×64 modes are used on the
free surface, and 64×64 on the wavemaker. One time-step takes
approximately 2 s CPU on a 3 GHz-Xeon single-processor PC,
so that the computation of the 90 s real-time shown in Fig. 1 is
completed in 2 h 30 min. In the left part of the figure, one sees
the free surface elevations obtained numerically at t = 50T .
The wavemaker is located at the top left boundary, and the
beach in the bottom right part; the wave propagates from top
to bottom. In order to correctly compare our numerical model
to the frequency-domain solution, the output of the model is
taken at a steady state, when both the wave front and the free-
wave front have reached the absorbing zone. In the right part
are plotted the errors relative to the maximum elevation in the
basin, at each order (the errors in the absorbing zone, after
x/h = 8, are irrelevant since the analytical solution does not
take into account any absorption). We can observe that the error
at first order is low and relatively homogeneous. Disregarding
the absorption zone, the mean relative error over the basin free
surface is 0.3%. The present NWT is therefore accurate on
the whole domain of calculation, and in particular, it correctly
reproduces the presence of both the sidewalls (reflections) and
the wavemaker (evanescent modes).

At second order, the required wavelength is much shorter
and would ideally require a finer resolution than used at first
order. However, our model uses the same resolution at both
orders, so we obtain higher error levels at second order, as
shown in the bottom right part of Fig. 1. The mean error over the
wavetank surface is nonetheless 1.7% only. At a more detailed
level, one can observe some spurious second-order free waves
in the tank, especially along the wall at y/h = 0. Their small
wavelength is approximately λ/4 and corresponds to the 80th
mode of the spectral expansion. The ratio of the corresponding



Fig. 1. Left: simulated elevations at t = 50T . Right: errors relative to a frequency-domain solution (top: first order; bottom: second order).
mode over the total number of modes used is thus only 0.3 in
the x-direction, whereas it was 0.08 at first order. The difference
in the measured mean errors between first and second orders is
therefore consistent.

2. Experimental calibration of the NWT

2.1. Wavemaker

With the aim of reproducing as closely as possible the
generation abilities of the physical basin, great care has
been taken to model the generation process within our NWT
model SWEET. In particular, as detailed in Part A [1], the
snake wavemaker geometry is fully reproduced in our model,
with the only additional assumption of its continuity along
the y-direction. Other geometries such as a piston are also
implemented.

One of the issues for the model validation and usability
is to be able to easily compare the numerical results with
experimental data collected in the real tank. The easiest
way to do so is to drive the two wavemakers in the same
way. Keys to this procedure are the experiment description
language, Wave, and its associated compiler, Ocean. This
language was developed by Edinburgh Designs, the wavemaker
builder, solely for the purpose of wavetank research and
experimentation, and is thus optimized for wave generation.
The basic principle is to describe the wavefield in terms
of linear wave components, which are transformed into
wavemaker position components by the appropriate linear
transfer function. The Wave language includes a set of
predefined spectra (Pierson–Moskowitz, JONSWAP, etc.),
3

directional spreading (cosn(θ − θo) or cos2n(θ − θo)/2)
and several built-in functions with specific purposes such as
focusing. It also allows reading an external data file containing
the characteristics of the desired wave components. Two control
laws were selected for the case of oblique regular waves:
the snake principle [4] which was the only control originally
provided in Ocean, and the Dalrymple method [5] which we
have implemented, and which is now used in a routine way (see
also 3.1 and Appendix B). After describing and compiling an
experiment using Wave and Ocean, one output is a wavemaker-
position file which is used to control, in real-time, the individual
physical flaps by position feedback; another is a data file
in which are stored the directional frequency components.
The latter is used as input for the numerical wavemaker
control. In SWEET, the wavemaker position X (y, z, t) is
therefore evaluated at each required time using exactly the
same procedure as in Ocean (i.e. linear transfer function, snake
principle or Dalrymple method, and sum over the components).

As mentioned in [1], the efficiency of the time ramp
superimposed on the wavemaker motion at the start is
important, to avoid spurious transient loads on the wavemaker
itself, and transient waves propagating across the basin during
the tests. In the ECN physical wavetank, this ramp was
originally prescribed as linear and of duration 3 s. With a
view to testing its efficiency we have studied in our model
SWEET the effect of the two parameters: shape and duration
of the ramp. The result for two-dimensional regular waves
is plotted in Fig. 2, which shows the time history of the
elevation at a probe located a few wavelengths away from
the wavemaker. One can note that the dominant parameter



Fig. 2. Influence on the wave front of the duration and smoothness of the ramp superimposed to the wavemaker motion at start. Smooth ramp shape over Tr :
(3u2

− 8u + 6)u2 with u = t/Tr .
affecting the generated wave-train shape is the duration of
the ramp. A longer ramp indeed reduces the amplitude of
the first waves in the front, and in particular of the highest
ones; this can be interesting to avoid unwanted breaking of the
front when generating a non-breaking wave pattern. Moreover,
using a smooth shape for the ramp (leading to a C1 motion
between t = 0− and t = T +

r ) helps attenuating the first
waves to reach the probe, whose wavelengths and velocities are
much greater than those of the prescribed regular wave. These
unwanted long modes being therefore less excited, they need
less absorption by the physical beach and the corresponding
numerical absorbing zone. This is eventually compatible with
the low performance of the two absorbing zones for long
wavelengthes (see Molin [13] and Bonnefoy [14]). Thanks to
this numerical investigation using SWEET, more efficient ramp
formulations are now implemented in the ECN wavetank.

2.2. Absorbing layer

The numerical model includes a damping zone to absorb
the waves at the end of the basin (see [1]). The damping term
ν(Ex) in the equation pa = ρ ν(Ex) E∇φ.En (on z = η) has
to be chosen carefully, for the numerical absorbing zone to
match the properties of the beach of the ECN wavetank. For
this basin geometry, the damping term is non-zero only near
the wall opposite to the wavemaker as shown in Part A [1],
Figure 5; but it can generally be more complicated (see Fig. 9).
Its mathematical expression is chosen here as a third-order
polynomial: ν(Ex) = 0 if x < xo and αu2(3 − 2u) elsewhere
with u = (x − xo)/Lb and Lb = Lx − xo. This expression
gives satisfactory smoothness properties at the boundaries of
the damping zone, and the damping term simply depends on
two parameters, the zone length Lb and its strength α.

The physical beach has been studied through a series of
dedicated experiments, and the reflection coefficient was found
in the range of 5%–10% in amplitude for most of the tested
frequencies. The reflection of the numerical absorbing zone has
then been investigated by generating successively several 2D
linear waves, covering the range of useful wavelengths. After
a Fourier analysis at the wavemaker frequency, the method of
Mansard and Funke [15] with three probes gives us the incident
ainc and reflected aref amplitudes, that we use to calculate a
reflection coefficient in amplitude given by Cr = aref/ainc.

Two preliminary studies are then needed and consist
respectively in varying one of the two design parameters while
4

Fig. 3. Reflection coefficient with Lb = h and α = 0.4.

the second is fixed, at a given wavelength λ (taken equal to
the depth here). Using a damping length Lb equal to two
wavelengths and varying the strength, we observed that the
reflection coefficient is almost constant once the strength is
above a given threshold αc (αc = 0.2 for the particular
wavelength and damping length tested). Below this threshold,
reflection coefficients rapidly increase; low values of α are thus
inadequate to accurately control the reflection. Using a strength
above the threshold, and this time varying Lb, we observed the
expected smooth decrease of the reflection coefficient as the
length increased, giving us the opportunity to correctly tune the
behaviour of the numerical damping zone. A 5% coefficient in
amplitude is for example obtained for Lb = h with α = 0.4.
Eventually, once the two parameters have been chosen (Lb = h
and α = 0.4), we are able to estimate the evolution of the
reflection coefficient for the range of frequencies used in the
basin, as shown in Fig. 3. One can notice that within the
mid frequency range, the values of the reflection coefficient
are in good agreement with the experimental ones, between 5
and 10%. For the highest frequencies however, the waves are
much better absorbed in the NWT than in the experiments. For
these high frequencies, the relative length of the damping zone
compared to the wavelength increases. Whereas in the physical
basin, the absorption, which mostly happens by breaking, is
almost unaffected by this variation, in the model however the
performance of the damping zone is closely linked to the
damping length/wavelength ratio, and increases with it. For
the low frequency range, one can observe the relatively high



reflection coefficient in the numerical model.1 This behaviour
confirms the observation of Molin [13] that the long modes are
hardly damped in regular-wave experiments.

3. Sample applications

The model having been validated and tuned to match
the experimental generation and absorption properties, its
capabilities can be investigated and quantified, as well as
its usefulness to assist wavetank experiments. In the present
section, the possibilities offered by the model are illustrated
on typical example cases including some comparisons with
experimental results.

3.1. Usable test zone investigation: An example aid to
experiments

As a tool assisting experiments, the model has been used
to analyze a priori the wavefield quality in the basin for a
given wavemaker motion. The knowledge of the extent and
time evolution of this usable zone is a major issue when
conducting experiments in the wavetank, and the wavemaker
control law is known to have a decisive influence on it. A
classical study in the literature (see Boudet and Pérois [6]) is
the determination of the usable test zone for regular oblique
waves. However, this kind of study is based on both linear
and steady-state assumptions. Our model is therefore suitable
to assess up to what extent the conclusions of these linear
theories remain valid when nonlinear and unsteady effects are
accounted for (see [2]). Nonetheless, the presented model has
been considerably enhanced since [2], as it has been mentioned
in Part A [1]: (a) the efficient improved resolution [1] now
employed (fully FFT-based) permits correctly describing the
shortest wavelengths in the tank; (b) substantial efforts have
been made to make the numerical model match with the
physical basin characteristics (see Section 2); (c) the model
convergence and accuracy properties have been verified and
quantified (see Part A [1] and Section 1). Long-time evolutions
of complex 3D wavefields can thus now be calculated at
moderate CPU costs and the validity of the results confirmed by
experimental comparisons (see following sections), while this
kind of simulation was beyond practical applicability at the time
of the study made in [2]. Nonetheless, the conclusions of the
latter detailed study have been globally confirmed when it has
been redone with the new model presented here. This updated
study, realized with about 10 times as many modes as in [2], is
therefore only partly and briefly reported here.

In this study, both the snake principle and the Dalrymple
method have been applied to the wavefield described in
Section 1 ( f = 0.56 Hz, θ = 20◦), with Xd/h = 4 for
the latter technique (see Appendix B). Fig. 4 shows a 3D
view of the linear wavefield for the snake principle at time
t = 19T when the wave front reaches the wall opposite to the

1 The matching between the absorbing layer and the experimental beach can
be refined by applying different damping functions ν to separate wavenumber
ranges.
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Fig. 4. Regular oblique waves generated with the snake principle.

wavemaker: the wavefield is therefore totally free of reflection
at the beach. This Fig. 4 is to be compared with the top left view
in Fig. 1 obtained with the Dalrymple method. Fig. 5 plots the
corresponding wave amplitude at the wave frequency, evaluated
over one period by Fourier analysis and normalized by the
target amplitude. The snake principle (left hand figure) gives a
poor-quality usable test zone, limited to a triangle (in white) in
front of the wavemaker. Besides, a strong transverse stationary
wave due to reflections appears close to the sidewall y/h = 6,
whereas close to the opposite sidewall y/h = 0 the diffraction
is dominant, resulting in low wave amplitude. The amplitude
map for the Dalrymple method (right hand figure) shows a
much larger usable zone, with its characteristic diamond shape
(in white) around the position x = Xd . The gain allowed by
this method over the snake principle is therefore obvious at first
order, in accordance with the frequency-domain linear-theory
predictions of Dalrymple [5].

In Fig. 6 is plotted the second-order double-frequency
amplitude when using the Dalrymple method. Normalization is
made by the deep-water second-order Stokes amplitude ka2/2.
The bound waves at second order being closely related to
the first-order ones and the latter being almost unidirectional
and of constant amplitude in the diamond-shape first-order
usable test zone, a similar diamond pattern with constant
amplitude is expected at second order. In Fig. 6 however, the
observed waves are more like an interference pattern over the
whole surface of the basin, and reveals that the second-order
wavefield contains superimposed spurious waves. Therefore,
the elaborated Dalrymple method leads to a very poor quality at
second order. These parasitic waves, known as free waves2 and
due to the second-order nonlinearities of the generation process,
are also clearly visible in Fig. 1, in particular close to the
sidewall y/h = 0. Their amplitude, direction and wavelength
differ from the bound waves, hence leading to the interference
pattern observed earlier.

It is worth noting that, since our model is formulated in
the time domain we can follow the evolution of the wavefield.

2 An analytical prediction of the spurious free waves for oblique waves in
a wave basin with reflective sidewalls and elaborated wavemaker motions can
be found in Bonnefoy et al. [3]. A future paper will show how this prediction
can be applied in both the NWT and in experiments to construct a wavemaker
motion that cancels the generation of the spurious waves.



Fig. 5. Usable test zone at first order after 19 periods (left: snake principle, right: Dalrymple method).
Fig. 6. Usable test zone at second order after 38 periods, using the Dalrymple
method.

Multiple reflections on the beach and on the sidewalls can of
course be expected to alter the wave quality. Fig. 7 shows
an amplitude map of the free surface after 57 periods of
wave generation (during which the wave front crosses three
basin lengths). One can notice the drop in quality after several
reflections: compared to the right part of Fig. 5 the transverse
stationary pattern is more pronounced in the lower-left and
upper-right corners, where the reflections on sidewalls required
by the Dalrymple method occur. Consequently, the usable zone
is of smaller extent in the main direction of the basin.

3.2. Accurate reproduction of moderate-steepness events

The adopted second-order description of the wavefield
is accurate for modelling waves of moderate steepness in
the basin. A verification of our model SWEET in that
sense has been carried out the case of 2D focused wave
packets, by comparison with experimental results. Following
the methodology adopted by Baldock et al. [16] (see
Appendix C), one can investigate some nonlinear properties
of the experimental wave packet which can then be compared
to the numerical results. In particular, for wave groups of
moderate steepness, the odd elevation ηodd extracted from
the experimental signals is expected to correspond to the
linear wavefield. The even elevation ηeven is assumed to be
an estimation of the second-order field. Comparisons can thus
6

Fig. 7. Usable test zone at first order after 57 periods, using the Dalrymple
method.

be drawn between the NWT and the adequately separated
nonlinear experimental components.

The wave groups studied here are characterized by a wave
height of 0.3 m for a 7.7 m peak wavelength (i.e. 3.9%
steepness). This steepness is chosen to be high enough to
obtain an accurate measurement of the low-amplitude second-
order elevation, but not too high to avoid sensible higher-order
effects. In the top part of Fig. 8, one can observe that the
odd elevation and the linear numerical result superimpose well.
In the bottom part, the even elevation and the second-order
result also show a good overall agreement. Some discrepancies
can be noticed however, which are attributed to higher-order
nonlinear effects. One effect of the third-order nonlinearities
is indeed the modification of the phase velocity, as shown in
Bonnefoy [14]. In the odd elevation, the phases of the different
wave components are thus modified at the focusing point, and
the superimposition of these time-shifted components leads to
a wave packet elevation different from the linear one. This
third-order phase velocity modification is also present in the
even elevation, as shown in Appendix C, since this elevation
represents the bound waves at second order.



Fig. 8. Comparison between experimental and numerically-predicted elevations.
Fig. 9. Sketch of the absorbing layers used in the towing tank for the pre-design
study (top view).

3.3. Predesign tool

The formulations we have adopted for both the generation
process and the damping zone allow one to easily account for
complex wavemaker and beach geometries. The present model
has thus been used as an aid to the design of new configurations
of a wave basin. The pre-design study we conducted consisted
in investigating the addition of a lateral wavemaker in an
existing towing tank. The tank’s owners were willing to install a
wavemaker in the middle of a sidewall, occupying about a fifth
of it, and which would face an absorbing beach on the opposite
sidewall. They provided required specifications regarding the
wavemaker geometry, beach performance and wave test cases,
which were all included in the NWT. Fig. 9 shows a top view
of the numerical domain we adopted. As the area of interest is
limited to the portion of the towing tank surrounding the lateral
wavemaker, we used a reduced-length basin ended by two
‘powerful’ numerical absorbing zones to avoid any reflection.
The performance of the prescribed absorbing layer opposite to
the wavemaker however, was set to fit the specifications. Fig. 10
illustrates some of the linear simulations that have been carried
out with regular waves. The requested results we produced dealt
with the time evolution of the wave amplitude on the basin
surface, and the monitoring of the linear excitation of the basin
natural modes (which can be achieved directly in our spectral
method, through the study of the modal-amplitude evolution).
The latter monitoring gives a hint of the spurious modes excited
7

Fig. 10. Wave generation with a partial lateral wavemaker in a towing tank.

by transients, as well as of the remaining wavefield once the
wavemaker is stopped and the generated waves are absorbed by
the beach.

3.4. Complex wave fields

The first example simulation of complex wavefield deals
with a geometric focusing case, i.e. regular waves converging
toward the middle of the basin. The wavemaker motion is built
by superimposing N = 11 wave components of the same



Fig. 11. Geometric focusing: first (left) and second (right) order elevations.
wavelength 5 m, the same amplitude a and directions equally
spread between −45◦ and +45◦ around the main axis. Initial
phases are adjusted so that the individual waves become in
phase at the middle of the basin. The linear steepness at the
focusing point is defined as ε = 2A/λ, where A = Na is
the total amplitude at the focusing point, and this is set to
ε = 2%. The Dalrymple method is used for each component,
with Xd/h = 5. The left part of Fig. 11 shows the first-order
elevation at t = 22T , and the right part the corresponding
second-order elevation. The wavemaker is located at the top-
left side of the basin. Although not reproduced here, the same
simulation but with the snake principle shows lower crests
and a focusing packet which is more spread in the transverse
direction. Fig. 12 gives the elevation η/A at first-plus-second
orders, measured at a wave probe located at the focusing point.
The elevations obtained with both the snake principle and the
Dalrymple method are plotted, as well as three horizontal lines
representing the average amplitudes for, from top to bottom:
the Dalrymple-method simulation, the linear analytical result
(η/A = 1), and the snake-principle simulation. The snake
principle is seen to be inadequate for such a wavefield; the
Dalrymple method exhibits conversely the correct behaviour. A
slight discrepancy can however be seen between the Dalrymple-
method probe and the linear theory. In the former, the second-
order component (shown in the right part of Fig. 11) is included
but it is not high enough to explain the differences; and as
discussed in Section 1, the 128 × 64 (free surface) and 64 × 64
(wavemaker) meshes used here guarantee a good accuracy
at both orders. This difference can be attributed mainly to
the Dalrymple method which provides a slightly imperfect
reproduction of the oblique components for the very high angles
used here. Further, in the second-order elevation, one can note
that the short-wavelength free-wave pattern presents an almost
constant amplitude in the transverse direction. This amplitude
is about one fifth of the second-order bound amplitude at
the focusing point, and is thus not negligible. This free-wave
contamination of the wavefield would also be evident in the
corresponding experiment (conducted to study the focusing on
a structure for example), and should either be suppressed by an
ad-hoc technique or at least taken into account through the data
analysis.

Another interesting kind of simulation is the generation of
a directional irregular wavefield. The wavefield simulated here
is created from a Bretschneider spectrum with zero-crossing
period TZ = 1.4 s and significant wave height Hs = 2 cm. The
8

Fig. 12. Geometric focusing: probe located at the focusing point.

directional spreading used is cos2n
[(θ − θo)/2] with n = 10;

320 wave components are employed. The phases are adjusted
so that all the components focus at the location (x = 20 m,
y = 15 m) at t = 80 s. Following the conclusions drawn
for the geometric focusing, the Dalrymple method is used
to control the wavemaker. The mesh used in the simulation
includes 256 × 128 nodes on the free surface and 128 × 32
nodes on the wavemaker. The whole simulation from which
Fig. 13 is extracted covered 600 s real-time, for which 28 800
time-steps were necessary, corresponding to about 17 h CPU-
time on a 3 GHz-Xeon single-processor PC. Fig. 13 shows two
views of the free surface at t = 80 s when the wave packet is
fully focused, on the left at first order and on the right at second
order. It can be seen that the second-order component is much
greater inside the focused wave packet than everywhere else in
the random directional wave field, as expected since the bound
waves are related to the square of the linear ones.

To further illustrate the behaviour of the numerical model
with irregular waves, a comparison has been performed in
the case of another long-time generation, this time of 2D
irregular waves. Fig. 14 shows the wave-elevation history of a
high-amplitude wave group within the 2D irregular wavefield,
after 755 s real-time of generation (about 540 waves) for two
steepnesses εc (defined here as the ratio of the significant
wave height over the peak wavelength of the Bretschneider
spectrum). The probe is located 20 m away from the wavemaker
in a 50 m-long basin of depth 5 m. The comparison at the lower
steepness εc = 1.5% shows a good agreement between the
simulated wavefield and the experimental data, for the high-



Fig. 13. Directional waves: first (left) and second (right) order elevations.

Fig. 14. 2D irregular-wave elevation history: comparison of experimental data (—) and second-order simulation (-·-). Top: εc = 1.5%, bottom: εc = 3%.
amplitude wave packet between t = 760 and 765 s as well
as for the low-amplitude one in the range 765 < t < 770 s.
This emphasizes the ability of the model to simulate long-
time evolutions in the wavetank, which confirms the quality
of the wave generation process as well as the performance of
the absorbing zone. The higher steepness studied εc = 3%
illustrates, however, the limits of the model which fails to
correctly reproduce the high-wave packets in this case. At
this steepness, a model involving higher-order nonlinearities
is required. This is why we have initiated the development
of a fully-nonlinear version of our NWT model. This new
model called HOST has already shown already encouraging
first results (see e.g. [14]) and is presently under further
development.

4. Conclusion

In this two-part paper, an efficient three-dimensional
NWT model, named SWEET, has been presented, and its
possibilities illustrated and discussed. In the first part (A) [1],
the details of the fully-spectral methodology employed have
9

been presented, modeling the time-domain formulation of the
problem at second order. The originality of the proposed
spectral scheme has been shown, allowing one to fully resolve
the wavetank problem; classicaly, these spectral methods are
limited to periodic unbounded domains. The resulting FFT-
based algorithm has also been described in details. The
numerical properties of the solver have then been verified. The
latter exhibits the quick convergence and accuracy expected
which, added to the fast resolution achieved by means of FFTs
only, permit fine meshes at moderate costs (the overall cost
is about O(N log2 N ) where N is the total number of nodes
used). The consequence of this efficiency is the possibility of
accurately reproducing the wavefield evolution in the wavetank,
including the finest free-surface structures.

The latter capability has been verified in the present part
(B) of the paper, by careful validations. First, the model has
been successfully compared to a recent 3D steady-state semi-
analytical solution [3] which accounts for both the wavemaker
and sidewalls; exhibiting less than 2% error at second order
with a not-so-fine mesh. In order to be able to further compare
with experimental results for various cases, special efforts have



been dedicated to include in the model as many as possible of
the features of the real basin. In particular, the arbitrary shape
and motion of the real wavemaker have been accounted for
(see [1]), and numerical and experimental wavemaker motions
are identically constructed on the basis of a shared input process
(see Section 2.1). In addition, dedicated experiments have been
undertaken to adequately calibrate the numerical absorbing
zone (see Section 2.2).

Thanks to the inclusion of all these features, our NWT is
suitable for assisting the realization and analysis of wavetank
experiments. This is illustrated by means of the numerical
investigation of the usable test zone, knowledge of which is
crucial to experiments. In particular, it has been shown how
this usable test zone, enhanced at first order by derived linear-
theory optimized wavemaker motions, is strongly degraded
by free waves at second order; and further, how its extent
reduces with time also at first order, due to partial reflection by
the experimentally-calibrated numerical beach (see Section 3.1
and [2]). Among other examples of the aid to wavetank
experiments provided by SWEET is the capability of optimizing
the time ramp applied to the real wavemaker motion at the start
(see Section 2.1).

The possibilities offered by the model have been further
illustrated with the simulations of two- and three-dimensional
complex wave patterns in the tank. The various cases
shown have been carefully analyzed to determine both the
model ability to reproduce real wavetank evolutions, and
its limits in terms of nonlinearities and evolution durations.
In particular, a very close agreement with experiments has
been found for the cases of focused wave packets and
long-time evolution of moderate-steepness irregular waves,
showing the reliability of the numerical wave generation
and propagation process as well as the performance of
the absorbing zone (see Section 3.2). Three-dimensional
geometric focusing and directional wavefield cases have also
been investigated, demonstrating how the model can simulate
long-time evolutions of realistic wavefields, with practical
computational times of the order of 17 single-CPU hours for
600 s real-time simulated, with 32 000 nodes on the free surface
and 4000 on the wavemaker (see Section 3.4). The variety of
the model possibilities has also been illustrated through the
example of the pre-design study of a partial lateral wavemaker
for an existing towing tank (see Section 3.3).

The value of the present model SWEET has thus been
demonstrated. Nonetheless, this model is presently formulated
at second-order, which limits its application to moderate
steepnesses. For steeper waves, such as in the higher irregular
wavefield shown in the last example of application (Fig. 14),
a model involving higher-order nonlinearities is required. In
particular, the modification of the wave dispersion at third
order has a decisive influence on the propagation of (non-
breaking) realistic steep sea-patterns (see e.g. [14]). The natural
development of the present model might therefore have been
to extend it up to third order, which presents no theoretical
difficulty. Nonetheless, due to the increased complexity of the
expressions and the consequent numerical costs involved, we
preferred to develop a fully-nonlinear spectral NWT model.
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This model, called HOST (standing for Higher-Order Spectral
wave Tank), has already shown encouraging first results (see
e.g. [17]), although the latter were obtained with a linear wave
generation process only. Indeed, in [17] the linear part of
the additional potential used in SWEET was included in the
model to generate the waves, and it thus benefited from all
of the features described here. Currently, ongoing work on
this model includes nonlinear generation and an improved de-
aliasing procedure for high steep waves. These new features
will be reported in a complementary paper in the near future.

Finally, it should be mentioned that this kind of model
will provide a useful tool in the framework of the
wave-body interaction models based on the Spectral-Wave
Explicit Navier–Stokes Equations (SWENSE), which are being
developed in the authors’ laboratory. The latter are powerful
models that combine the accuracy of an arbitrary complex
wavefield generated by a dedicated spectral potential-flow
method, and the efficiency of a Navier–Stokes model solving
only for the diffracted part of the field, efficiently limiting
the viscous-flow computational domain to the vicinity of the
body [18,19].

Appendix A. Directional wavemaker theory

We consider the generation of a regular wave of wavenumber
k, complex amplitude a and direction θ in a basin semi-infinite
in its main direction x , with perfectly reflective sidewalls
located at y = 0 and y = L y , and of constant depth h. The first-
order elevation is the real part of the following implicit double
summation

η(1)(Ex, t) = amne−ikmn x cos(µn y)eiωt

where ω is the angular frequency linked to k by the dispersion
relation ω2

= gk tanh kh. The coefficients µn are the transverse
natural wavenumbers of the basin, µn = nπ/L y . The
longitudinal wavenumbers kmn are defined by k2

mn = α2
m −

µ2
n , where the vertical wavenumbers αm are the solutions of

ω2
= gαm F−(αm, h),3 with αo = k and αm ∈ iR− for

m ≥ 1. The modal amplitudes amn are obtained by considering
the wavemaker condition, and depend on the control law of
the wavemaker. The following Appendix B expresses these
coefficients for the Dalrymple method.

At second order, the elevation is the superimposition of the
bound- and free-wave elevations. The former consists of the
sum and difference terms

η
(2)
b (Ex, t) = a±

mnpqe−i(kmn±kpq )x cos[(µn ± µq)y]e2iωt

where the modal amplitudes a±
mnpq are obtained by reporting

the first-order expressions in the free-surface boundary
conditions. And the free-wave elevation is given by

η
(2)
f (Ex, t) = bmne−iγmn x cos(µn y)e2iωt

3 The function F± is defined by

F±(α, z) = (eαz
± e−αz)/(eα

+ e−α).



where γ 2
mn = β2

m − µ2
n , and βm is solution of 4ω2

=

gβm F−(βm, h). The modal amplitudes bmn are obtained
through the boundary condition on the wavemaker. The
expressions for a±

mnpq and bmn are lengthy and thus not

reproduced here; the reader can refer to [3] for more details.

Appendix B. Dalrymple method

The Dalrymple method [5] is an enhanced control law for the
snake wavemaker in the case of the generation of a regular wave
of complex amplitude a, wavenumber k and direction θ . This
method takes advantage of the reflective sidewalls to enlarge
the usable zone. The wavemaker motion at the mean water level
is given by

X1(y, t) = Re T F
N1∑

n=0

aon cos(θn) cos(µn y)eiωt

with ω the angular frequency of the wave. T F stands for
the 2D transfer function of the wavemaker, i.e. T F = s/a
with s the complex stroke amplitude at the mean water level.
The quantities aon , θn and µn are related to the 3D analytical
solution of the wave generation problem. If we consider only
the progressive modes, the linear free surface elevation can be
written:

η1(Ex) =

N1∑
n=0

aon cos(µn y)e−kon x

where N1 is the integer part of kL y/π , aon the complex modal
amplitude, and kon the complex longitudinal wavenumbers.
Then, θn is the direction of propagation associated with the
nth mode, θn = arcsin(µn/k). Dalrymple assumes that this
elevation fits a required ideal linear wave at a given distance
x = Xd from the wavemaker, so the complex amplitudes are

aon = aIne(kon−k cos θ)Xd

where

In =

∫ L y
0 e−ik sin θy cos(µn y)dy∫ L y

0 cos2(µn y)dy

=


δon if θ = 0

1 if θ 6= 0 and µn = |k sin θ |

2ik sin θ

(k sin θ)2 − µ2
n

e−ik sin θ L y (−1)n
− 1

L y(1 + δon)
else

in which δon is the Kronecker symbol.

Appendix C. Separation of non linear components

Two focused wavefields are generated in the basin. The
‘crest focused’ group is first obtained with a given set of
wave components to build the wavemaker motion. The second
wavefield, ‘trough focused’, is the inverse of the former,
obtained by using the same set of components but with
amplitudes of opposite sign. The wave elevations at the
focusing point are recorded in both cases, respectively giving
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η and η∗. Then the odd and even elevations are built by
combinations: ηodd = (η − η∗)/2 and ηeven = (η + η∗)/2.

The theoretical linear elevation can be written as the real part
of

η(1)
=

∑
n

anei(ωn t−kn x).

Using these linear components, the odd and even elevations are
given at third order by

ηodd =

∑
n

a′
nei(ωn t−k′

n x)
+

∑
m,n,p

ama±
n a±

p F
±, ±

mnp

× ei[(ωm±ωn±ωp)t−(k′
m±k′

n±k′
p)x] (C.1)

ηeven =

∑
m,n

ama±
n G±

mnei[(ωm±ωn)t−(k′
m±k′

n)x] (C.2)

where a′
n = an(1+ An) and k′

n = kn(1+Kn) are the amplitudes
and wavenumbers correct to the third order, and G±

mn and F
±, ±

mnp
some appropriate coefficients which are independent of the
linear amplitudes an . The second order coefficients Gmn can
be found e.g. in Dalzell [20]. The superscript ± denotes the
sum and difference terms. The amplitudes a±

n are respectively
equal to an for the sum term (+), and to its conjugate for the
difference term (−). Concerning the even elevation, one can
notice that third-order nonlinearities are included in the term
k′

m ± k′
n in (C.2), and thus modify the phase velocity of the sum

and difference terms.
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[4] Biésel F. Wave machines. In: Proc. 1st conf. on ships and waves. 1954.
[5] Dalrymple RA. Directional wavemaker theory with sidewall reflection. J

Hydraul Res 1989;27(1):23–4.
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Centrale de Nantes; 2003.

[9] Stassen Y. Simulation numérique d’un canal à houle bidimensionnel au
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