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Mode Localization in Dynamics and Buckling of
Linear Imperfect Continuous Structures

ANGELO LUONGO
Department of Structural Engineering, University of L’Aquila, 67040 Monteluco Roio, Italy

Abstract. Localization phenomena in one-dimensional imperfect continuous structures are analyzed, both in
dynamics and buckling. By using simple models, fundamental concepts about localization are introduced and
similarities between dynamics and buckling localization are highlighted. In particular, it is shown that strong lo-
calization of the normal modes is due to turning points in which purely imaginary characteristic exponents assume
a non zero real part; in contrast, if turning points do not occur, only weak localization can exist. The possibility of
a disturbance propagating along the structure is also discussed. A perturbation method is then illustrated, which
generalizes the classical WKB method; this allows the differential problem to be transformed into a sequence of
algebraic problems in which the spatial variable appears as a parameter. Applications of the method are worked
out for beams and strings on elastic soil. All these structures are found to have nearly-defective system matrices,
so their characteristic exponents are highly sensitive to imperfections.
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1. Introduction

The mechanical behavior of high modal density structures can be considerably influenced by
structural imperfections, even in the linear field. In particular, the normal modes of oscillations
or the buckling modes, which in the absence of irregularities extend to the whole system, can
localize in a restricted region of the structure. Thus, if an external disturbance is applied at a
point, its effects cannot propagate very far but are confined to the neighborhood of the source.

Localization has been extensively analyzed for discrete systems. Pioneering studies were
originally pursued in physics, by investigating disordered chains of atoms (see [1, 2] for a
review) and many years later in mechanics, by analyzing chains of pendulums [3]. Extensive
reviews on the subject are given in [4, 5].

In dynamics, attention has been mainly focused on discrete one-dimensional structures,
such as open or closed chains of pendulums [3, 6-10] or bi-pendulums [11]. Periodic con-
tinuous systems such as chains of beams, multi-span beams and taut strings or cables with
lumped masses have been analyzed through finite elements or Galerkin techniques [7, 8, 12—
15] or by exact transfer matrices [16-21]. Axially vibrating beams with or without distributed
elastic constraints have been considered in [22, 23] by following a stochastic or deterministic
approach, respectively. Nonlinear problems have been studied only recently [24, 25]; in par-
ticular the existence of localized nonlinear normal modes has been proved in [26-28]. In [26]
it has been observed that the origin of nonlinear mode localization in lumped-mass periodic
systems is the dependence of the frequencies of substructures on their vibration amplitude;
thus nonlinearities cause mistuning and localization takes place even in perfectly periodic
systems.



In contrast, localization in buckling has received little attention in the linear field [29]
and considerable attention in the postcritical nonlinear analysis, where the phenomenon is
explained to be a consequence of the interaction of a cluster of nearly-simultaneous modes.
Many studies have been devoted to this subject; a review is presented in [30]. However, simi-
larly to the dynamic problem, localization in buckling of perfect nonlinear structures has strict
analogies with localization in buckling of imperfect linear structures, as it was observed in
[31].

The localization phenomenon in linear continuous one-dimensional systems is considered
here, both in dynamics and buckling. The problem is discussed with the following aims:
(1) to improve the understanding of the mechanical phenomenon; (2) to emphasize that strong
localization is closely connected with the occurrence of furning points [32], in absence of
which only weak localization can occur; (3) to show that localization of vibrations and buck-
ling patterns have common aspects; (4) to show that continuous structures undergoing strong
localization are nearly-defective systems.

The paper is organized as follows. In Section 2 basic concepts on localization are intro-
duced by referring to continuous systems, both in dynamics and buckling. In Section 3 a
perturbation method for a general imperfect linear system with high modal density is illus-
trated. Three examples are worked out in Section 4: namely, the free vibrations of a string
and of a beam resting on a Winkler soil, and the buckling pattern of a compressed beam
on elastic soil. In Section 35, it is shown that, since the system matrices of these structures
are nearly-defective (i.e. they have nearly-coincident characteristic exponents with associated
nearly-parallel eigenvectors), their imperfection sensitivity is high. Therefore, small defects
cause large variations in the characteristic exponents, thus possibly exalting the tendency
towards localization.

2. Basis Concepts

Basic concepts about localization in continuous systems, both in dynamics and buckling, are
illustrated and examples are given.

2.1. LOCALIZATION OF VIBRATIONS

Let us consider a continuous one-dimensional structure with spatially constant mechanical
properties (perfect system) vibrating at an undamped natural frequency. Let us assume first
that under suitable boundary conditions the (spatial) modal shape is sinusoidal, i.e. a couple
of characteristic exponents of the differential equation of motion is purely imaginary. If some
spatially-dependent imperfection is introduced in the system, such characteristic exponents
are perturbed from their nominal value, and assume new values that depend on the site. If they
have a non zero real part throughout most of the structure, and if the structure is sufficiently
long, the modal shape localizes. The points at which the characteristic exponents change from
imaginary to real or complex conjugate are called turning points. If more general boundary
conditions are prescribed, even the perfect system has real or complex characteristic exponents
contributing to the eigenfunctions. However, the exponents are independent of the site and
significantly affect the solution only in narrow boundary layers, except perhaps for the first few
modes. When sufficiently large imperfections are introduced, the real parts exponents depend
on the site and, through the mechanism previously illustrated, can enforce localization to occur



somewhere in the dominion. In order to separate the effects of boundary conditions from that
of imperfections, reference will be made to systems having purely sinusoidal eigenfunctions.

The occurrence of turning points represents the simplest mechanism which triggers local-
ization. However, it is not the only way for a normal mode to localize. As an example, the
axially vibrating beam studied in [22] can undergo localization albeit its characteristic expo-
nents are always purely imaginary, independently from the mass and/or stiffness imperfection
shape. For such kind of structures, localization is due to the fact the amplitude of the oscillating
modal shape decays exponentially in the space, as a result of the changes of the mechanical
properties along the structure. Thus, if the imperfections are stepwise variable, the normal
modes are made of pieces of sinusoids with different amplitudes and phases. If the amplitudes
tend to zero far away from a certain section of the structure, then the mode is localized. This
circumstance always occurs in a sufficiently long structure and it is strictly connected with the
random nature of the imperfections (see, e.g., [2], where the Furstemberg theorem concerning
the limit of noncommuting random variables is used to explain the phenomenon).

The two mechanisms of localization illustrated are quite different and should not be con-
fused. Moreover, while the first one (when it can occur) leads very directly to localization, the
second one usually calls for longer structures and/or larger random disorder. For this reason the
two phenomena could be referred to as strong localization and weak localization, thus more
sharply defining a difference already discussed by Pierre [9], although from a different point
of view. According to that paper, weak localization has little interest in engineering structures;
therefore, attention is mainly paid here to strong localization. Hence, the word ‘localization’
will be used as shortening of ‘strong localization’.

To illustrate the main aspects of the phenomenon, reference is made to a specific problem,
already analyzed in [23]. The main findings are resumed here and new results are illustrated.

Consider a string weakly taut by a small force 7', having mass per unit length m, resting
on a Winkler soil of nominally constant stiffness ky = ko. The perfect system has sinusoidal
modes with close frequencies. The problem is to determine the modes and the frequencies of
the imperfect system when small defects affect the stiffness of the springs, i.e. when k; =
k r(x) depends on the abscissa x [23]. The normal modes w(x) of a fixed-fixed string satisfy
the following homogeneous boundary value problem

BPw” + (A — x(x)w =0, xe[—1/2,1/2],
w(—1/2) =0, w(l1/2) =0, (1)

in which 8 = (T/kgl*)!/*> « 1 is the coupling parameter, responsible for the high modal
density of the perfect system, A = mow?/kq is the nondimensional frequency and y (x) =
k r(x)/ ko is the nondimensional stiffness of the imperfect springs.

Equation (1a) can easily be integrated if a single defect consisting in a rectangular stiffness
well centered at the midspan x = O is present. In this case x(x) = 1 —¢for 0 < |x|] < A
and x(x) = 1 for A < |x| < 1/2, where ¢ and 2A are the depth and the width of the
well, respectively. Correspondingly the solution w(x) has two branches, w;(x) = exp(6;x)
and w,(x) = exp(f,x), internal and external to the well, respectively. Two cases must be
distinguished:

(a) When A > 1, both w;(x) and w,(x) are sinusoidal functions, so the associated normal
mode is extended, as for the perfect structure. The a,/a; ratio between the amplitudes of the
two branches is found to be always larger than 1, so that no weak localization occurs. However,
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Figure 1. Normal modes for the string on elastic soil with rectangular stiffness well (a) or peak (b) centered at
midspan; (a) ¢ = 0.1, A = 0.05, - - - 8 = 0.02236, --- B = 0.00707, — B = 0.00316; (b) ¢ = —0.1, A = 0.1,
B =0.00316; (c) s = —0.1, A = 0.1, B = 3.16 x 107%.

if ¢ < 0 (i.e. if a peak of soil stiffness is considered instead of a well), a./a; < 1 and weak
localization can take place.

(b) When 1—¢ < A < 1, w;(x) is sinusoidal while w, (x) is exponential, so that the mode is
localized near the defect; in this case the character of the solution changes at the point x = A,
which is a turning point. As can easily be checked from Equation (1a), the following relation
between the characteristic exponents 6; (purely imaginary) and 6, (real) holds: |6;|? +0L,2 = u,
where 1 = &/B? is the imperfection/coupling ratio. The relation shows that |§;| and 6, range
between zero and ,/u. Thus, since the first modes are associated with smaller values of |0;],
they also have greater values of 9,, therefore lower modes are more strongly localized than
higher modes. Because |6;]| is limited, the number of localized modes is limited as well, and
increases with w. If w is very small no localized modes can occur. Therefore, in a finite length
system, a threshold defect must exist in order to localize a given number of eigenfunctions; on
the other hand, if the length is sufficiently large, any small defect can localize the first modes.
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Figure 2. Time-harmonic response of the second string in Figure 1a when the midspan is driven with frequency
A3 A =0.05¢=0.1, 8 = 0.00707.

Some normal modes for different values of the parameters are plotted in Figure 1. Figure 1a
shows the effects of the occurrence of turning points. It is seen that, for a fixed imperfection,
the number of localized modes increases when 8 decreases. Thus, while the first mode is local-
ized for all 8’s considered, the fourth mode localizes only for the smallest 8. In Figures 1b and
1c some weakly localized mode produced by a peak of stiffness are shown. They occasionally
occur in sequences of nonlocalized modes. To observe localization of more modes it would
be necessary to introduce random diffused imperfections.

Examine now the possibility of a disturbance propagating along the string. To this end,
assume that the midspan x = 0 is harmonically driven by a device with a known frequency
A and unitary amplitude. By accounting for the antisymmetry of the problem, the amplitude
w(x) of the time-harmonic response is determined by integrating Equation (1a) in the interval
[0, 1/2] with the boundary conditions w(0) = 1, w(1/2) = 0. The response is plotted in
Figure 2 for various A; the string is the second of those considered in Figure 1a. It is apparent
that, when A < 1, due to the presence of a turning point at x = A, the response is localized
around the driven point; when A > 1, since no turning points occur, the response is extended to
the whole string. It should be noted that resonance occurs when A is equal to 0.981, 1.003, ...
i.e. when the frequency of the excitation is equal to a natural frequency of an antisymmetric
mode of the double length string (see Figure 1a). Thus, when A is equal to 0.97 or 0.99,
the response is essentially in the first mode, while when A is equal to 1.002 or 1.004 the
second mode prevails. However, since the first mode is localized, the first disturbances cannot
propagate; in contrast, since the second mode is extended, the last disturbances propagate.
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Figure 3. Truss structure elastically restrained; (a) model, (b) equilibrium paths.

2.2. LOCALIZATION OF BUCKLING PATTERNS

It is well known from the theory of elastic stability that simple compressed structures such
as long beams on elastic soil, long plates, thin-walled beams or spheres under hydrostatic
pressure exhibit a large number of nearly coincident buckling modes, i.e. they have dense
spectra. This is due to the fact that a small parameter 8 — typically an aspect ratio — appears
in the eigenvalue equation. As a consequence, if imperfections were taken into account in
the analysis, localization should occur. To prove that, a simple model similar to the previous
one could be considered, consisting in a uniformly compressed beam on imperfect elastic
soil. However, in spite of the formal analogy with the dynamical problem, localization in
buckling does not seem to have been studied in depth. In fact, the imperfections that are usually
accounted for in elastic stability are typically small curvatures or eccentricities of the forces
(the so-called ‘initial imperfections’), instead of small spatial variations of the mechanical
characteristics, as thicknesses or material properties. Since the former imperfections add only
known terms to the boundary value problem relevant to the perfect system, they leave its
spectral properties unaltered and localization cannot occur. In contrast, the latter imperfections
leave the boundary value problem homogeneous and therefore modify the eigensolutions,
eventually allowing localization.

On the other hand, a large amount of literature exists on the subject of nonlinear interaction
among nearly simultaneous buckling modes. In particular, it has been shown that buckling
patterns in the postcritical range can localize in one or more regions, in contrast with the
periodic character of the critical modes [33-37]. A simple model studied by the author in
[31] clarifies the fact the mechanism which produces localization in nonlinear perfect systems
is the same as that which produces localization in linear imperfect systems. In other words,
nonlinearities have the same effects as imperfections.

The example given in [31] concerns a simply supported planar truss-beam, having con-
tinuous top and bottom longerons which are restrained against out-of-plane displacements
by distributed elastic springs (Figure 3a). When the structure is compressed, it can buckle
in an overall (Eulerian) mode or in several out-of-plane local modes whose wavelength is
small compared with the span. The system behaves as a compressed thin-walled beam that in
fact buckles in an overall (Eulerian or flexural-torsional) mode or in a local mode in which
the component plates are bent in many longitudinal waves. It is assumed here that the lower



critical load multiplier p. is associated with the Eulerian mode and the higher critical load p;,
with the local mode (Figure 3b). When the load p is increased, the structure first buckles in
its plane at p = p. (primary bifurcation), then it buckles out-of-plane at p = p,, (secondary
bifurcation); as a result of the interaction it ensues that p;, < p;. The goal of the analysis is to
evaluate the secondary bifurcation load p, along the non trivial bifurcated equilibrium path,
together with the associated modal shape. It is assumed that p; is slightly higher than p., so
the problem can be linearized in the nondimensional amplitude A of the overall mode, which
is taken as being the control parameter.

The problem is governed by the classical equilibrium equation of the compressed beam
resting on Winkler soil. Along the trivial fundamental path the axial force in the two longerons
is constant; along the bifurcated path, due to the bending associated with the primary bifurca-
tion, an additional spatially variable traction or compression exists in the two beams. For the
most compressed beam, the boundary value problem reads

Brw” +28%[(p + Af )W /p) +w =0, xe[0,x],
w0 =w"(0)=0, w) =w'(r)=0. 2)

In Equation (2a) B = m(EI/kol*)'/*, where EI is the out-of-plane flexural stiffness of the
longerons, [ is their length and kj is the stiffness of the springs; since B equals the ratio
between the wavelengths of the local and overall modes it is, by hypothesis, a small parameter.
In addition, in Equation (2a), f(x) = sinx accounts for the additional variable compression
whose maximum value is assumed to be (approximately) proportional to the overall deflection
A.

Along the trivial path A = 0, and p represents the unknown eigenvalue. The problem (2)
admits the solution p = p; and w = sin(nx), with n = B~!. Other eigenvalues slightly higher
than p; correspond to sinusoidal modes with wavenumbers n & k, with k < n, so that the
system has high modal density.

Along the bifurcated path A # 0, p depends on A; since the Eulerian bifurcation is sym-
metric and A is a small quantity, p = p. + O(A?). Equations (2) are therefore an eigenvalue
problem in the displacement A. By posing p. = 1, p; = 1 + &, where ¢ > 0 is a small
parameter, and retaining only first-order quantities, Equations (2) become

Brw” +2B%[(1 — e)w” + A(f()w)1+w =0, x€][0,x],
w0) =w"(0)=0, w@m) =w'(x)=0. 3)

The parameter ¢, measuring the mistuning between the two critical loads p. and p;, rep-
resents a ‘defect’ in the broad sense. In fact, when ¢ = 0, i.e. when the two critical loads
are tuned, Equation (3) admits the solution A = 0 and w = sin(nx): there is therefore no
reduction (the so-called erosion [30]) in the local critical load. In contrast, if ¢ # 0, A can be
shown to be of order ¢ [31], so that p, = 1 + O(¢?) < p;, and erosion takes place.

It should be noted that, unlike the example dealt with before and in the remainder of the
paper, the parameter & does not affect the part of the differential operator depending on x.
Thus, when ¢ = 0, Equation (3a) does not reduce to a constant coefficient equation, if A = 0
is not posed as well. However, by scaling the eigenvalue at the order ¢, i.e. by posing A = €0,
with 0 = O(1), this condition is satisfied. In this form Equation (3) appears as a perturbation
of order ¢ of a singular operator with constant coefficients. The perturbation assumes the
meaning of an imperfection, due to the nonlinearities, of the geometrical stiffness of the beam.



Since the perfect system has high modal density, it can be predicted that this defect produces
localization, as do defects in the true sense of the word.

To evaluate the critical load and the bifurcation mode it is necessary to integrate Equa-
tion (3a); however exact integration is not straightforward, as it was in the previous example.
An asymptotic solution has been found in [31] by using the multiple scale perturbation method
to obtain an amplitude modulating equation. This equation turned out to be exactly of the
same form of Equation (1a), with a sinusoidal coefficient. By applying the WKB method [32],
amplitude modulating solutions qualitatively similar to the ones in Figure 1a were obtained,
still exhibiting turning points, although no more in a priori known positions. The localized
buckling patterns therefore appear like those in Figure 10 below.

To summarize, in this system nonlinearities play the same role as imperfections in linear
problems and, together with the high modal density of the structure, cause localization of the
buckling patterns. As has been explained in Section 1, a similar result was found in [26] for a
discrete dynamical system.

3. A General Perturbation Method for Continuous Systems

The examples analyzed before have shown that, in order to evaluate the normal modes of
an imperfect continuous system and to check the possible occurrence of localization, it is
necessary to integrate a differential equation whose coefficients are weakly dependent on the
abscissa x. Since exact integration is often impossible, it would be desirable to take advantage
of the presence in the equation of a small parameter to obtain asymptotic solutions. However,
it is known that series expansions in terms of the imperfection parameter ¢ are not suited
to the scope [6, 7]. In fact, due to the presence of small divisors, asymptotic expansions
obtained by perturbing a unique eigenfunction of the perfect system are not uniformly valid.
On the other hand, perturbations of a cluster of eigenfunctions of the perfect system lead to
a new eigenvalue problem in the unknown amplitudes [38], thus practically nullifying the
convenience of using a perturbation method. A more suitable method has been used by Pierre
and co-workers [6, 8, 14] in which the structural parameter g, instead of the imperfection
parameter €, has been adopted as the perturbation parameter. This method can be successfully
applied for discrete structures but not for a continuous structure, as will be explained ahead.

A general perturbation method for the analysis of one-dimensional linear continuous struc-
tures with high modal density, affected by small imperfections, is illustrated here. The method
applies to boundary value problems that can be put in the form

d
ﬂaw Lix,e,Mw, xe[0,1],

Bow(0) = wo, By w(l)=wy, 4)

where 8 and ¢ are small parameters, A = O(1) is a control parameter, w is the N-state-vector
containing generalized displacements and stresses, L is the N x N system matrix, By and B
are Boolean (N /2) x N matrices, and wy and w; are prescribed values of the state variables
at the ends of the structure.

The parameter A has the meaning of a time-frequency in dynamics and a load multiplier
(or a nondimensional displacement) in buckling problems. It is the unknown eigenvalue of
the differential problem when the boundary conditions are homogeneous (wy = w; = 0) or
assumes known values when non zero displacements and/or stresses are prescribed as external



disturbances at the ends of the structure. The parameter S is a structural parameter, depending
on the mechanical characteristics of the perfect structure, and is responsible for the high
modal density. The parameter ¢ is the imperfection parameter, measuring the amplitude of
the defects. When ¢ = 0 the structure is perfect and, by hypothesis, has mechanical properties
independent of the abscissa x, so that the matrix L* = L(x, 0, 1) has constant coefficients.
By expanding L around & = 0 it follows

L(x,e,A) = L*(L) +eL.(x, 1) + O(&?). (3)

From now on the dependence on A of all the variables will be taken as understood.
Consider first the perfect system (¢ = 0). Equation (4a) admits solutions of the type

0*
w(x, B) = u”exp (ﬁx) ; (6)
where u* and 6* are generally complex solutions of the N x N algebraic eigenvalue problem

(L* —0%u* =0. )

The eigenvalues 6* are the characteristic exponents of the differential equation (4a). If L*
admits a complete set of eigenvectors u*, the general solution to Equation (4a) can be built as
a linear combination of the solutions (6). If homogeneous boundary conditions are enforced,
a transcendental equation in A* is obtained. By hypothesis let

M=1+0@", h>1 (8)

be the eigenvalues of interest for k& ranging over some interval. When g is small the system
has high modal density, increasing with the exponent h. B is a measure of the spread in
the eigenvalues of the perfect system. From Equation (6), if the associated characteristic
exponents ;" have modulus |6;| = O(1), the eigenfunctions are fast varying; if |6| = O(B),
they are slowly varying.

Consider now the imperfect system and look for an asymptotic solution. Since two small
parameters 8 and ¢ are present in the equation, attention will be focused on the case in which
the imperfections have amplitude greater than, or equal to, the bandwidth of the eigenvalues
Ay, 1.e., from Equation (8), when ¢ > 0(,3").

Series expansions could be performed in terms of either S or ¢, by fixing one parameter
and expanding with respect to the other. However, if 8 is fixed and ¢ — 0, a large number of
nearly-simultaneous modes u; has to be considered to express the generating solution, as has
already been discussed. In contrast, if ¢ is fixed and § — 0, the nearly-degenerate condition
of the generating system is destroyed and a perturbation solution can be pursued in a simpler
way. However, since g affects the highest derivative in Equation (4), a singular perturbation
problem arises and standard method cannot be applied.

A similar question occurs when discrete periodic structures are considered, like chains
of weakly coupled one d.o.f. subsystems. Pierre and co-workers [6, 8, 14] have shown that
asymptotic expansions in terms of the coupling parameter 8 can be successfully employed
to determine the eigenfunctions of the perturbed system and to explain the phenomenon of
localization. Their generating equation has been obtained by posing § = 0 in the governing
equations, i.e. by considering the uncoupled subsystems as a generating mechanical system.
The same operation cannot be performed when continuous systems are dealt with, since kine-
matic compatibility would be violated. The method presented here enables this difficulty to be
overcome.



Since Equation (4a) has variable coefficients, a solution is still sought in the form (6), in
which, however, u and 6 are assumed to depend on x, i.e.

w(x, B,&) =u(x,p, s)exp{%/é(x,ﬂ, g) dx} . )

Moreover, u and 6 are expanded in series of the perturbation parameter 8 around 8 = 0

u(x, B&) = Y Blujx,e),
j=0

0(x.B.e) = Y Bo;(x.e). (10)
=0

By substituting Equations (9) and (10) in Equation (4a) and zeroing the terms with the same
powers of B, the following perturbation equations are drawn

(L —6p)ug =0,
(L — 6p)u; = —uy — O1uo,
(L — 6p)uy = —u'y — Ou; — Gruy,

(11)

where all quantities depend on x and €, in addition to A, and a prime denotes differentiation
with respect to x.

It should be noted that the original differential problem has been transformed in a sequence
of algebraic problems in which the abscissa x appears as a parameter. Equation (11a) is the
generating equation; it is still an eigenvalue problem, like Equation (7), however it furnishes
spatially variable characteristic exponents 6.

It is supposed that the system matrix L has N distinct eigenvalues; let 6, be one of these
eigenvalues, with associated right eigenvector u, and left eigenvector v, (i.e. L7y = Hvo,
where the overbar denotes the complex conjugate and the superscript H the transpose conju-
gate). By substituting u and 6 in Equation (11b) a nonhomogeneous linear equation with sin-
gular coefficient matrix is obtained. The solvability condition requires the right-hand member
to be orthogonal to the left eigenvector vy from which the unknown 6, is drawn

01 = —vgluy/vi uo. (12)

Equation (11b) can then be solved to within an arbitrary constant and the procedure be con-
tinued to higher orders.

After having determined N solutions in this way, the general solution is obtained as a linear
combination. By enforcing homogeneous boundary conditions the eigenvalues A, and the
eigenfunctions wy(x) (k = 1, 2, ...) are evaluated. If nonhomogeneous boundary conditions
are instead prescribed, for any given A different from the eigenvalues X, the response w(x)
is calculated. However, in both cases, the method can furnish solutions that are not uniformly
valid in the whole dominion, due to the occurrence of turning points [32]; the problem will be
illustrated by reference to applications.



4. Illustrative Examples

Vibrations and buckling patterns of three imperfect one-dimensional structures resting on
Winkler soil are analyzed by using the perturbation method developed in Section 3. The
tendency towards localization is studied.

4.1. FREE AND FORCED VIBRATIONS OF A WEAKLY TAUT LONG STRING ON ELASTIC
SoIiL

The string on elastic soil is considered again, with imperfections affecting the foundation
stiffness only. The ends of the string are fixed (free vibrations) or are subjected to time-
harmonic transversal displacements (forced vibrations). Harmonic motions of frequency w
are governed by the following boundary value problem

Tw" — ks (x)w + mow*w = 0,

w0) =wy, w()=ws, (13)
where
kp(x) = ko(l + ef (x)), (14)

in which f(x) accounts for the shape of the imperfections, normalized as max(]| f (x)|) = 1.
By introducing the following nondimensional quantities

- w . X n | T mow?
w=—-—, X =—, 13=_ FEE A= (15)
l l 1\ ko ko

and omitting for simplicity the tilde, Equation (13a) can be recast in the normal form (4a)

w) 0 1 0 O w
o= (G2 0) e (oo o) Tt} @

in which w; is the deflection and w, the transversal component of the internal force in the
deformed configuration. In addition 8 < 1if T < kol?, i.e. if the stress is small and/or the
length is great.

The perfect system (¢ = 0) is first considered. The eigenvalues of the matrix L* are 6* =
+i+/A — 1. By enforcing the boundary conditions w(0) = w(r) = 0, A} = 1 + k*% is
found and, consequently, 6 = +ikf (k = 1,2, ...) (Figure 4a). Thus the system has high
modal density with exponent 7 = 2 (see Equation (8)) and sinusoidal eigenfunctions with
characteristic exponents [6;| = O(f), i.e. slowly varying solutions.

The imperfect system is then studied. Imperfections are assumed to have amplitudes ¢ >
O(B?). The generating Equation (11a) admits the following eigenvalues

Oo(x) = £ve(f(x) — o), (I7
where
A=14¢e0, o=0() (18)

has been posed. The two characteristic exponents 6, are real for any x for which f(x) > o
(i.e. for ks (x)/ko > A) and imaginary for any x for which f(x) < o (i.e. for ks(x)/ko < X).
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Figure 4. Characteristic exponents for the string on elastic soil; (a) perfect system (¢ = 0), (b) imperfect system
(¢ # 0); O exponents at turning points.

The paths of the eigenvalues on the complex plane for x varying are shown in Figure 4b.

When f(x) = o the eigenvalues coalesce at the origin and x is a turning point. It should be

noted that 0 < |6y(x)| < O(e'/?), so, for mode numbers k = O(1), the imperfections produce

corrections of the characteristic exponents 6* of the same order as, or larger than, 6* , since

e > O(B?). The corresponding eigenfunctions are therefore strongly imperfection sensitive.
Right and left eigenvectors of L are

uo = {1 6}, wvo=10 1}7 (19)
and Equation (12) yields

_ _l Op(x) _ i -1/2
01(x) = 3 B0 dx Ing, '~ (x). (20)

By using Equations (17), (19a) and (20) in Equations (9) and (10) the general solution

wx) = ﬁ{cl sin(x) +cycosyr(x)} if f(x) < o,

w(x) = {csexp ¥ (x) +caexp(=y(x))} if f(x) >0 2n

1
V&) —o

is obtained, with
Yo =/w|f<x) o] dr. (22)

In Equations (21) ¢; are arbitrary constants and i = &/8% > O(1) is the imperfection/coupling
ratio. From the boundary conditions a linear system in the constant ¢; with coefficient depen-
dent on o is obtained. The truncated asymptotic solution (21) is known as Liouville-Green or
WKB approximation [32].

It should be noted that the solution (21) is singular at the turning points. Since their position
depends on o, they are unknown in a free vibration problem, but are a priori known in a forced
vibration problem. To eliminate the singularity, polynomial (inner) solutions must be found
around the singularities and successively matched with the (outer) solutions (21) that are valid



far from the singular points. The matching procedure allows the arbitrary constant to be re-
duced to two and renders the boundary value problem well posed. The technique is illustrated
in [32] and an application relative to a problem with a unique turning point has been developed
by the author in [23]. However, for general imperfections, several turning points occur and the
solution has oscillatory branches (Equation (21a)) and exponential branches (Equation (21b))
that alternate. Since the exponential decaying is proportional to p'/? (Equation (22)), if
is sufficiently large the eigenfunctions localize around the stiffness gaps. If @ is not large
enough, no turning points occur and the modal shapes remain oscillating and extended. This
is always true for higher modes, for which o > max(f(x)) < 1, even when the lower modes
are localized.

When many turning points are present, the matching analytic procedure becomes imprac-
ticable and it is necessary to resort to numerical methods. However, even in these cases, the
perturbation method allows the acquisition of qualitative information. In particular it permits
determination of the conditions under which disturbances prescribed at one end of the string
cannot propagate to the other end, remaining localized near the source.

In Figure 5 the lowest modes of the string for different values of the parameters are shown.
They have been obtained numerically by direct application of the Galerkin procedure. A single
halfwave sinusoidal imperfection is considered first (Figures 5a and 5b), for which k((x)/ko
ranges in [0.9, 1]. For the lower value of w (Figure 5a) the first two modes (associated with
eigenvalues A < 1) exhibit two turning points while the third mode (with A > 1) is oscillatory.
For the higher value of u (Figure 5b) all the three modes have exponential branches near the
ends. It is observed that the modes tend to localize around x = /2, i.e. around the point
in which the stiffness of the soil is minimum. Localization would be magnified if u were
further increased. However, by choosing another shape of the imperfections, localization just
manifests itself for the same values of . In Figures 5c and 5d the same string but on an
elastic soil with two gaps of stiffness, each located near one end (cosinusoidal imperfection),
is considered. The stiffness k s (x)/ ko now ranges in [0.9, 1.1]. For the lower p (Figure 5¢), the
first two modes (with A < 1.1) are localized around the two gaps, that vibrate in-phase or out-
of-phase, while the higher modes (with A > 1.1) are extended. For the higher n (Figure 5d),
the first eight modes have turning points, the first four of which, more strongly localized, are
shown. It should be noted in this last case, that symmetric and antisymmetric localized modes
have nearly-coincident frequencies, since the coupling between the two gaps is very small. In
conclusion, the numerical results show that localization strongly depends on the shape f(x)
of the imperfections. It is more pronounced for the second imperfection (Figures Sc and 5d)
compared with the first imperfection (Figures 5a and 5b) because, due to the narrower gaps,
the turning points are closer each other and, due to the greater difference f(x) — o out of the
gaps, the exponential decaying is higher.

In Figure 6, the response of the string to an harmonic transversal excitation of frequency A
of the left support is shown; the parameters are the same as in Figures Sc and 5d, respectively.
It is seen that, when A < 1.1, the response is localized around the left gap, although the
localized modes involve motion of both gaps. This is due to the fact that nearly-simultaneous
localized symmetric and antisymmetric modes give practically equal contribution to the re-
sponse, so that motion disappears in the half of the string opposite to the driven end and
disturbances cannot propagate. When A > 1.1, since the modes with close frequencies are
extended, the disturbances propagate.
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Figure 5. Normal modes for the string on elastic soil; (a, b) sinusoidal imperfections f(x) = —sin(x); (c,
d) cosinusoidal imperfections f(x) = — cos(2x); ¢ = 0.1; (a,¢) B = 0.1, (b, d) B = 103/2.

4.2. FREE VIBRATIONS OF A FLEXIBLE LONG BEAM ON ELASTIC SOIL

A problem similar to the foregoing is studied; here the string is replaced by a simply supported
beam having small flexural stiffness E1. The relevant eigenvalue problem is

EITw" +ki(x)w — mow*w = 0,
w0 =wl) =0, wO)=w'()=0 (23)

that, after having introduced the nondimensional quantities

WoogoTx g T4EL xzm‘)“’z, 24)
I 1\ & ko
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Figure 6. Time-harmonic response of the strings in Figures 5c and 5d when the left support is driven with
frequency A.
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Figure 7. Characteristic exponents for the beam on elastic soil in the dynamic problem; (a) perfect system (¢ = 0),
(b) imperfect system (& % 0); L] exponents at turning points.

reads
w) 0 100 0 000 wy
7 0 010 0 000 wy
Pyw, [~ o oot [Tl o o000 ws 25)
wy A—1000 —f(x) 000 Wy
The characteristic exponents of the perfect system are 67, = =+i(A — 1)!/4 and 05, =

+(x — 1)"/4. From the boundary conditions A} = 1 +k*8*(k = 1,2, ...) is found, i.e. h = 4
in Equation (8); therefore 6f, = +ikp and 65, = +kp (Figure 7a). The associated eigen-
functions are sinusoids, since the real exponents give no contribution; it results |6;| = O(B),
as in the previous example.



The imperfect system is now examined with e > O (8*). The generating equation furnishes
the following characteristic exponents

00,,(x) = Fip(x), 6O,,(x) ==Fex) if f(x) <o,

2 2
6o, (x) = ig(l +De(x), o, (x) = ig(l —Dex) if f(x) > o0, (26)

with

p(x) = Velo — f) 27

and the right and left eigenvectors
uo=1{1 6o 02 63Y", wo=163 63 6, 1)7. (28)

For different values of x, the characteristic exponents 6y(x) are (a) two purely imaginary
and two real or (b) two couples of complex conjugate numbers, with opposite real parts
(Figure 7b). When f(x) = o the four eigenvalues coalesce at the origin and x is a turning
point. Since 0 < |fy(x)| < O(e'/*), the imperfections modify the characteristic exponents of
the perfect system by quantities of the same order as 6* or larger; thus the eigenfunctions are
strongly sensitive to the imperfections.

By following the procedure illustrated above the general solution

1
w(x) = W[Cl exp ¥1(x) + cr exp(—=y1 (x))

4+ c3sinyr (x) + cgcos i (x)] if f(x) < o,

w(x) = m{exp Y2 (x)[cs sin Y (x) + c6 €08 Ya(x)]

+ exp(=v2(x))[c7 sin Y2 (x) + cgcos Yo ()]} if f(x) > o, (29)

is found, where

2
Yi(x) = /v“ plf(x) —oldx, Yo(x) = %1//1 (x) (30)

and i = ¢/B* > O(1) have been posed. The solution is singular at the turning points.

The first three modes of vibration of a beam, numerically obtained by the Galerkin method,
are shown in Figure 8 for the same imperfections considered in Figure 5 for the string. Al-
though the values of w in Figures 8a and 8b are ten times larger than those in Figures 5a
and 5b, the distortion of the modes is less important. This circumstance is explained by the
fact that, by fixing & and u, i.e. by assuming that the values of 82 and B* for the string and
for the beam, respectively, are equal, the first system has higher modal density, due to the
different powers of the number of mode k. The qualitative behavior is similar to that of the
string, except in the neighborhood of the ends, where the modes are strongly exponentially
modulated sinusoids. A zoom of the boundary region is illustrated in Figure 8c when u is
increased. When the cosinusoidal imperfection is considered for the lower u (Figure 8d), the
first two modes localize around the two gaps. The first mode is antisymmetric while the second
is symmetric.
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Figure 8. Normal modes of vibration for the beam on elastic soil; (a, b, ¢) sinusoidal imperfections
f(x) = —sin(x), (d) cosinusoidal imperfections f(x) = —cos(2x); ¢ = 0.1;(a,d) g = 10—3/4, (b) B =0.1,
(c) B =1075/4,

4.3. BUCKLING OF A LONG FLEXIBLE BEAM ON ELASTIC SOIL

The buckling of a long beam with small flexural rigidity E I, simply supported at the ends,
resting on Winkler soil, is considered. The beam is compressed by an axial force A N, applied
at one end and small longitudinal forces ep(x) distributed along the axis, having the character
of defects. The soil, instead, is considered to be perfect, with constant stiffness k¢. The relevant
eigenvalue problem reads

EIw" + (Nx)w") + kow =0,
w0 =wl) =0, w0 =w’(l)=0. 31
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Figure 9. Characteristic exponents for the beam on elastic soil in the buckling problem; (a) perfect system (¢ = 0),
(b) imperfect system (& % 0); L] exponents at turning points.

The axial stress at the abscissa x can be expressed as
N(x) = [A +f (x)]No, (32)

where f (x) accounts for the shape of the imperfections. By assuming N to be the critical load
of the uniformly compressed beam, i.e. Ny = 24/ko E I, and introducing the nondimensional
quantities

. w . X 5 T JEI (33)
W=, X=—), =—]—.
) ) L'V ko

Equation (31a) is rewritten as

w! 01 0 0 00 0 0 w;
wy | _[[ oo 1 0 00 0 0 s

Prw, (Tl oo o 1]Tloo o o ws [ 4
w, ~10 —24 0 00 —2f(x) 0 w,

where the tilde has been omitted and 8 < 1 if EI < kol*.
When the imperfections are absent the beam is uniformly compressed. The eigenvalues of
the matrix L* are

. N R P
9m&r:ﬂ{J 5 iJ 5 ] (35)

When B is small, it follows from the boundary conditions that A; = 1 + 2k2B%(k =
0,1, ...). Consequently, * = +i(1+kB) and the associated eigenfunctions are sinusoids with
wavenumbers n £k, with n = B~ >> 1. The lower critical load A* = 1 is associated with k =
0 for which the characteristic exponents coalesce in twos (Figure 9a); the associated critical
mode has n halfwaves. The higher critical loads have value close to 1 and are associated with
sinusoids having n + k halfwaves, where k <« n. The system has high modal density with
exponent i = 2; the eigenfunctions are fast varying, since |6;| = O(1).




The imperfect system with ¢ > O(B?) is now considered. Equations (11a) admit the
following eigenvalues

1 1 i
Oy 5, (X) = i {\/1 +5elo + f@)] :|:\/58|O‘ + fl| ifo+ f(x) >0,

901,2.3,4(x) = :|:|:i\/l—%8|O’+f(x)|:|:\/%g|o'+f(x)| ifo+ f(x) <0, (36)

associated with the right and left eigenvectors
uo=1{1 6o 63 63}", wvo=1{-6 —16; 63}". (37)

For different values of x the characteristic exponents can be (a) purely imaginary or (b) two
couples of complex conjugate, symmetric with respect the imaginary axis (Figure 9b). When
f(x) = —o the four eigenvalues coalesce in twos and x is a turning point. It should be
noted that 1 — O(e'/?) < |6y(x)] < 1+ O(g'/?), so that the imperfections produce only a
small correction of order £!/? of the characteristic exponents of the perfect system, unlike the
systems studied before.

The solution can be remarkably simplified if terms of order ¢ in Equations (36) are ne-
glected in comparison with terms of order £!/2, i.e. if the following expressions for 6, are
used

901,2,3,4(x) = =i |:1 + Y %8|0 + f(x)|:| +O0(e) ifo+ f(x) >0,
901,2.3,4(x) =+ |:i + \V %8|O' + f(x)|i| +0(e) ifo+ f(x) <O. (38)

After having determined 6;(x) from Equation (12), the following solution for w(x) is
obtained

wx) = m{sin nx[cy sin ¥ (x) + ¢ cos ¥ (x)]
+ cosnx[cysin ¥ (x) + cgcosy(x)]} ifo + f(x) >0,
w(x) = m{smnx[cs exp ¥ (x) + co exp(— ()]
+ cosnx[crexp ¥ (x) + cgexp(—y(x))]} ifo + f(x) <O, 39)
where

1
Y = f\/uilf(X) toldx (40)

and u = ¢/B% > O(1). It should be noted that Equation (39) furnishes sinusoidal functions
with large wavenumber n, slowly modulated with the same law, sinusoidal or exponential,
determined for the string (Equation (21)). The asymptotic solution is singular at the turning
points.
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Figure 10. Critical buckling mode for the beam on elastic soil subjected to additional compression forces; ¢ = 0.1,

F(x) =sin(x); (a) B = 0.1, (b) B = 1073/2,

Figure 10 shows the buckling modes of two compressed beams, obtained numerically. Due
to the increment of compression caused by the disturbance forces, the critical multiplier A,
is smaller than 1; its lower bound is 1—¢, and it corresponds to a constant imperfection shape
f(x) = 1, i.e. to disturbance forces concentrated at the ends. Therefore, from Equation (18),
—1 < 0 < 0andsoo + f(x) is positive in the central region (sinusoidal modulation) and
negative near the supports (exponential modulation). Thus, if u is sufficiently large, the buck-
ling mode localizes around the middle point of the beam, i.e. around the point of maximum
stress.

5. Remarks on the Characteristic Exponents Sensitivity

It is useful to reconsider the generating equation (11a) and comment on the order of magnitude
of the characteristic exponents 6* and 6, of perfect and imperfect systems, respectively.
By using Equation (5), the algebraic eigenvalue problem (11a) reads

(L* 4+ eL, — 6p)up = 0. 41)

This can be considered as an order-¢ perturbation of the eigenvalue problem (7), relative to
the perfect system. Thus, it might be thought convenient to introduce the series expansions

Oy = 0% + €0, + O(?), uy=u"~+ cu, + 0(&?) (42)

and evaluate 6., u,, ... through a standard perturbation method. However, this procedure
would lead to incorrect results. In fact, in all the examples considered in the previous section, it
has been observed that small imperfections of order ¢ modify the eigenvalues 6* of the system
matrix L* by quantities of order greater than ¢. In particular, the characteristic exponents in
the dynamic problems have been modified by terms of order ¢!/ and &'/ (i.e. by corrections
of the same order as the unmodified values 6*; see Figures 4 and 7) and in the buckling
problem by terms of order ¢'/? (while the unmodified values are of order 1; see Figure 9).



In the perturbation theory of the eigenvalues it is known that these fractional powers appear
when the unperturbed matrix is defective (i.e. does not have a complete set of eigenvectors) or
nearly-defective [39—41]. Thus, defective matrices exhibit high sensitivity to imperfections.

It can be checked that the unperturbed matrices L* are in fact nearly-defective, because
they have nearly-parallel eigenvectors. In particular, the matrices are themselves perturbations
of order ¢ of exactly defective matrices Liq. In fact, if Equation (18) is substituted in the
differential Equations (16), (25) or (34) and the term ¢o is properly shifted in the perturbation
matrix ¢L,, the resulting order-one matrix Liq is found to be defective. In the first two prob-
lems, Liq is a Jordan block of order 2 or 4, admitting therefore a unique eigenvector associated
with the multiple zero eigenvalue; in the buckling problem, Liy admits two double eigenvalues
6iq = +i, each associated with a unique eigenvector.

It has been shown by the author in [42] that the most appropriate method to study per-
turbations of nearly-defective matrices L* is to build an exactly defective ideal matrix Lig,
close in some sense to the original matrix L*, and then to perturb directly Liq, by applying the
algorithm developed in [41]. Here the ideal matrix L;q appears in a natural way in the problem.
An example of application of the method is given in the Appendix.

These considerations permit the localization phenomenon to be considered in a differ-
ent perspective. Namely, since nearly defective continuous structures are strongly sensitive
to imperfections, small perturbations cause large variations of the characteristic exponents;
in particular, imaginary exponents can become complex and consequently the associated
periodic modes localize.

6. Conclusions

Localization phenomena in one-dimensional imperfect continuous structures have been an-
alyzed, both in dynamics and buckling. A general perturbation method has been developed
which generalizes the classical WKB method. The method has been applied to analyze the
dynamics of a string and the dynamics and buckling of a beam on elastic soil. All these
structures have been found to have nearly-defective system matrices, so their characteristic
exponents are highly sensitive to imperfections.

The following conclusions are drawn.

1. In engineering structures, the most important mechanism of localization calls for the
occurrence of turning points at which the eigenfunctions change from oscillating to expo-
nential or vice versa.

2. Localization in continuous systems of finite length occurs when the ratio between the
amplitude of the imperfections and the coupling comes to have sufficiently large values.
Only the first modes localize and their number increases when the imperfection/coupling
ratio increases.

3. In the dynamic problem, harmonic disturbances cannot propagate through the structure
if their frequency is close to a localized mode natural frequency; similarly, in the buck-
ling problem, disturbances cannot propagate if the axial load is close to a critical load
associated with a localized buckling pattern.

4. Interaction among nearly-simultaneous buckling modes of perfect structures in the nonlin-
ear field can lead to localized buckling patterns. The phenomenon reveals close analogies
with the localization of linear imperfect systems.



5. Asymptotic solutions can be built up by applying the perturbation method illustrated; this
transforms the differential problem into a sequence of algebraic problems in which the
spatial variable appears as a parameter.

6. Localization of vibrations of a string (or beam) on elastic soil is due to characteristic
exponents changing from purely imaginary to real (from purely imaginary to complex
conjugates, with the real and imaginary parts equal in modulus); localization of the buck-
ling mode of a beam on elastic soil is due to characteristic exponents changing from purely
imaginary to complex conjugates with small real part.

7. Systems with nearly defective matrices are highly sensitive; in fact, small perturbations of
order ¢ produce modifications of the characteristic exponents of order £!/? or larger. This
effect exalts localization.

Appendix: An Example of Solution of a Nearly Defective Eigenvalue Problem

As an example of application of the method outlined in Section 5, the eigenvalue problem
(41), relative to the buckling problem dealt with in Section 4.3, is solved. The ideal defective
matrix Liq4 is introduced and the perturbation matrix L, is redefined as follows

0100 00 0 0
L={go001| “=loo o o @)
~10 =20 00 —2(c+f) 0

in such a way that L = Ly + €L, (see Equation (36)). By introducing the series expansions
[41]

b = O +&'%0. + 0. + O™,

up = i+ &"%u; + uge + 0(e), (44)
the following perturbation equations are obtained

(Lig — Oiguia = 0,

(Lig — Gia)ue = 6Gputiq,

(Lig — 6id)uee = —Leltia + Ostte + Oceltia- (45)
The right and left eigenvectors of Liq associated with 6y = £i are

ua={1 i —1 Fi}7, va={1 i 1 xi)’. (46)
The perturbation equation (45b) admits the following particular solution

u,=6,{0 1 £2i —37 47)

in which 6, is undetermined. By imposing the solvability condition to Equation (45c), two
solutions for 6, are obtained

98=j:,/—% (f +o0). (48)



The series expansions (44) coincide with the exact solution determined in Section 4.3 and then

expanded up to ¢

172_order terms.

References
1. Matsuda, H. and Ishii, K., ‘Localization of normal modes and energy transport in the disordered harmonic
chain’, Supplement of the Progress of Theoretical Physics 45, 1970, 56-86.
2. Ishii, K., ‘Localization of eigenstates and transport phenomena in the one-dimensional disordered system’,
Supplement of the Progress of Theoretical Physics 53, 1973, 77-138.
3. Hodges, C. H., ‘Confinement of vibration by structural irregularity’, Journal of Sound and Vibration 82,
1982, 411-424.
4. Li, D. and Benaroya, H., ‘Dynamics of periodic and near-periodic structures’, Applied Mechanics Review
45(11), 1982, 447-459.
5. Benaroya, H., ‘Localization and effects of irregularities in structures’, Applied Mechanics Review 49, 1996,
57-135.
6. Pierre, C. and Dowell, E. H., ‘Localization of vibrations by structural irregularity’, Journal of Sound and
Vibration 114(3), 1987, 549-564.
7. Bendiksen, O., ‘Mode localization phenomena in large space structures’, AIAA Journal 25(9), 1987, 1241—
1248.
8. Pierre, C., ‘Mode localization and eigenvalue loci veering phenomena in disordered structures’, Journal of
Sound and Vibration 126(3), 1988, 485-502.
9. Pierre, C., ‘Weak and strong vibration localization in disordered structures: A statistical investigation’,
Journal of Sound and Vibration 139(1), 1990, 111-132.
10. Wu, G., ‘Free vibration of cyclic assemblies with a single disordered component’, Journal of Sound and
Vibration 165(3), 1993, 567-570.
11. Ottarsson, G. and Pierre, C., ‘A transfer matrix approach to free vibration localization in mistuned blade
assemblies’, Journal of Sound and Vibration 197(5), 1996, 589-618.
12.  Hodges, C. H. and Woodhouse, J., ‘Vibration isolation from irregularity in a nearly periodic structure: Theory
and measurements’, Journal of Acoustical Society of America 79(9), 1983, 894-905.
13.  Cornwell, P. J. and Bendiksen, O., ‘Localization of vibrations in large space reflectors’, AIAA Journal 27(2),
1989, 219-226.
14. Pierre, C. and Cha, P. D., ‘Strong mode localization in nearly periodic disordered structures’, AIAA Journal
27(2), 1989, 227-241.
15. Al-Jawi, A. A., Ulsoy, A. G., and Pierre, C., ‘Vibration localization in dual-span, axially moving beams’,
Journal of Sound and Vibration 179(2), 1995, 243-266 (part I), 267-287 (part II).
16. Keane, A. J. and Price, W. G., ‘On the vibrations of mono-coupled periodic and near-periodic structures’,
Journal of Sound and Vibration 128(3), 1989, 423-450.
17. Cai, G. Q. and Lin, Y. K., ‘Localization of wave propagation in disordered periodic structures’, AIAA Journal
29, 1990, 450-456.
18. Lin, Y. K. and Cai, G. Q., ‘Disordered periodic structures’, in Computational Stochastic Mechanics, C. A.
Brebbia and P. Spanos (eds.), Elsevier, Amsterdam, 1991, pp. 777-788.
19. Cha, P. D. and Pierre, C., ‘Vibration localization by disorder in assemblies of monocoupled multimode
component systems’, Journal of Applied Mechanics 58, 1991, 1072-1081.
20. Cheng, S. P. and Perkins, N. C., ‘Closed-form vibration analysis of sagged cables/mass suspension’, ASME
Paper 92WA/APM-7, 1992.
21. Bouzit, D. and Pierre, C., ‘Localization of vibration in disordered multi-span beams with damping’, Journal
of Sound and Vibration 187(4), 1995, 625-648.
22. Scott, J. M. E,, ‘The statistics of waves propagating in a one-dimensional random medium’, Proceedings of
Royal Society of London A398, 1985, 341-363.
23. Luongo, A., ‘Mode localization by structural imperfections in one-dimensional continuous systems’, Journal
of Sound and Vibration 155(2), 1992, 249-271.
24. Tjavaras, A. A. and Triantafyllou, M. S., ‘Non-linear response of two disordered pendula’, Journal of Sound

and Vibration 190(1), 1996, 65-76.



25.

26.

217.

28.

29.

30.
31.

32.
33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Zevin, A. A., ‘Localization of periodic oscillations in discrete non-linear systems’, Journal of Sound and
Vibration 193(4), 1996, 847-862.

Vakakis, A., Nayfeh, T., and King, M., ‘A multiple-scales analysis of nonlinear, localized modes in a cyclic
periodic system’, Transactions of the ASME 60, 1993, 388-397.

Emaci, E., Nayfeh, T. A. and Vakakis, A. F. ,'Numerical and experimental study of nonlinear localization
in a flexible structure with vibro-impacts’, Journal of Applied Mathematics and Mechanics (ZAMM) T7(7),
1997, 527-541.

Nayfeh, T. A., Emaci, E. and Vakakis, A. F., ‘Application of nonlinear localization to the optimization of a
vibration isolation system’, AIAA Journal 35(8), 1997, 1378-1386.

Pierre, C., ‘Curve veering and mode localization in a buckling problem’, Journal of Applied Mathematics
and Physics (ZAMP) 40, 1989, 758-761.

Gioncu, V., ‘General theory of coupled instabilities’, Thin Walled Structures 19(2—4), 1994, 81-127.
Luongo, A., ‘On the amplitude modulation and localization phenomena in interactive buckling problems’,
International Journal of Solids and Structures 27(15), 1991, 1943-1954.

Nayfeh, A. H., Perturbation Methods, Wiley, New York, 1973.

Tvegaard, V. and Needleman, A., ‘On the localization of buckling patterns’, Journal of Applied Mechanics
47, 1980, 613-619.

Tvegaard, V. and Needleman, A., ‘On the development of localized buckling patterns’, in Collapse, The
Buckling of Structures in Theory and Practice, J. M. T. Thompson and G. W. Hunt (eds.), Cambridge
University Press, Cambridge, 1983, pp. 1-17.

Potier-Ferry, M., ‘Amplitude modulation, phase modulation and localization of buckling patterns’, in Col-
lapse, The Buckling of Structures in Theory and Practice, J. M. T. Thompson and G. W. Hunt (eds.),
Cambridge University Press, Cambridge, 1983, pp. 149-159.

Luongo, A. and Pignataro, M. ,‘Multiple interaction and localization phenomena in the postbuckling of
compressed thin-walled members’, AIAA Journal 26(11), 1988, 1395-1402.

Hunt, G. W., Bolt, H. M., and Thompson, J. M. T., ‘Structural localization phenomena and the dynamical
phase-space analogy’, Proceedings of Royal Society London A425, 1989, 245-267.

Luongo, A., ‘Perturbation methods for the eigenvalue analysis of imperfect systems with high modal den-
sity’, Parts I and II, Accademia Peloritana dei Pericolanti, Messina (Italy), Vol. LXVIIIL, 401-423, 1991,
424-447 [in Italian].

Wilkinson, J. H., The Algebraic Eigenvalue Problem, Oxtord University Press, London, 1965.

Kato, T., A Short Introduction to Perturbation Theory for Linear Operators, Springer-Verlag, New York,
1982.

Luongo, A., ‘Eigensolutions sensitivity for nonsymmetric matrices with repeated eigenvalues’, AIAA Journal
31(7), 1994, 1321-1328.

Luongo, A., ‘Eigensolutions of perturbed nearly-defective matrices’, Journal of Sound and Vibration 185(3),
1995, 377-395.



