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HOMOGENIZATION OF UNBOUNDED SINGULAR INTEGRALS

IN W 1,∞

OMAR ANZA HAFSA AND JEAN-PHILIPPE MANDALLENA

Abstract. We study homogenization by Γ-convergence, with respect to the

L1-strong convergence, of periodic multiple integrals in W 1,∞ when the inte-
grand can take infinite values outside of a convex bounded open set of matrices.

1. Introduction

In this paper we are concerned with homogenization by Γ-convergence of multiple
integrals of type

(1.1)

∫
Ω

W
(x
ε
,∇u(x)

)
dx,

where ε > 0 is a (small) parameter, Ω ⊂ Rd is a bounded open set with Lipschitz
boundary, u ∈ W 1,∞(Ω;Rm) and W : Rd × Mm×d → [0,∞] is a Borel measur-
able function which is p-coercive, 1-periodic with respect to its first variable, not
necessarily convex with respect to its second variable and infinite outside a convex
bounded open set C ⊂Mm×d such that 0 ∈ C.
In the scalar case, i.e., min{d,m} = 1, a wide literature exists on homogenization
problems with constraints on the gradient, whose techniques cannot be generalized
to the vector case, i.e., min{d,m} > 1, (see the book [CDA02] and the reference
therein). Thus, constraints on the gradient relating to problems of hyperelasticity
cannot be treated with methods from the scalar framework. It is then of interest to
develop techniques in the vector case for the homogenization of multiple integrals
like (1.1) when the integrand can take infinite values: this is the general purpose
of the present paper. For a recent work in the same spirit, we refer the reader to
[AHLM] (see also [BB00, Syc05, AHM07, AHM08, AH10, Syc10] for the relaxation
case).
In this paper, our main contribution (see Theorem 2.1 and Corollaries 2.2 and 2.4)
is to prove that under certain assumptions, i.e., (2.3), (2.4) and (2.5), which are
related to hyperelasticity but not consistent with the material frame indifference
axiom (see §2.2 for more details), (1.1) Γ-converges, as the parameter ε tends to
zero, to the homogeneous multiple integral∫

Ω

Whom(∇u(x))dx,

Key words and phrases. Homogenization, nonconvex singular integrands, constraints on the
gradient, determinant type constraints, hyperelasticity.
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where u ∈ W 1,∞(Ω;Rm) and Whom : Mm×d → [0,∞] is given by the formula (see
also Remark 2.3)

Whom(ξ) =


ZHW (ξ) := inf

φ∈Aff0(Y ;Rm)

∫
Y

HW (ξ +∇φ(y))dy if ξ ∈ C

lim
t→1
ZHW (tξ) if ξ ∈ ∂C

∞ otherwise

with HW : Mm×d → [0,∞] defined by

HW (ξ) := inf
k≥1

inf
φ∈W 1,∞

0 (kY ;Rm)
−
∫
kY

W (x, ξ +∇φ(x))dx

and Aff0(Y ;Rm) denoting the space of continuous piecewise affine functions φ from
Y :=]0, 1[d to Rm such that φ = 0 on the boundary ∂Y of Y .
The paper is organized as follows. In Section 2 we state the main results of the
paper, i.e., Theorem 2.1 and Corollaries 2.2 and 2.4, and, although our assumptions
are not compatible with the material frame indifference axiom, indicate how these
results could be related to the framework of hyperelasticity (see Proposition 2.5).
Section 3 is devoted to the statements and proofs of auxiliary results needed in the
proof of Theorem 2.1. Finally, Theorem 2.1 is proved in Section 4.

2. Main results

2.1. General results. Let d,m ≥ 1 be two integers, let C ⊂ Mm×d be a convex
bounded open set such that 0 ∈ C and let W : Rd ×Mm×d → [0,∞] be a Borel
measurable function which is 1-periodic with respect to its first variable, i.e.,

(2.1) W (x+ z, ξ) = W (x, ξ) for all x ∈ Rd, all z ∈ Rd and all ξ ∈Mm×d,

and infinite outside of C, i.e.,

(2.2) domW (x, ·) = C for all x ∈ Rd

with domW (x, ·) denoting the effective domain of W (x, ·). We define MW , δW :
[0, 1]→ [0,∞] and ∆W : [0, 1]→]−∞,∞] by:

� MW (t) := sup
x∈Rd

sup
ξ∈tC

W (x, ξ);

� δW (t) := inf
x∈Rd

inf
ξ∈C\tC

W (x, ξ);

� ∆W (t) := sup
x∈Rd

sup
ξ∈C

W (x, tξ)−W (x, ξ)

and we consider the following three assertions:

� W is locally bounded in C, i.e.,

(2.3) MW (t) <∞ for all t ∈ [0, 1[;

� W is singular on the boundary ∂C of C, i.e.,

(2.4) lim
t→1

δW (t) =∞;

� W is radially uniformly upper semicontinuous (ru-usc), i.e.,

(2.5) lim
t→1

∆W (t) ≤ 0.
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Note that, under (2.3) and (2.4), it is easy to see that if domW (x, ·) ⊂ C for all
x ∈ Rd, then domW (x, ·) = C for all x ∈ Rd. Let Ω ⊂ Rd be a bounded open set

with Lipschitz boundary and let Iε, ĤI, ẐHI : W 1,∞(Ω;Rm) → [0,∞] be defined
by:

� Iε(u) :=

∫
Ω

W
(x
ε
,∇u(x)

)
dx;

� ĤI(u) :=

∫
Ω

ĤW (∇u(x))dx;

� ẐHI(u) :=

∫
Ω

ẐHW (∇u(x))dx,

where ε > 0 is a (small) parameter and HW, ĤW,ZHW, ẐHW : Mm×d → [0,∞]
are given by:

� HW (ξ) := inf
k≥1

inf

{
−
∫
kY

W (x, ξ +∇φ(x))dx : φ ∈W 1,∞
0 (kY ;Rm)

}
;

� ĤW (ξ) := lim
t→1
HW (tξ);

� ZHW (ξ) := inf

{∫
Y

HW (ξ +∇φ(y))dy : φ ∈ Aff0(Y ;Rm)

}
;

� ẐHW (ξ) := lim
t→1
ZHW (tξ)

with Y :=]0, 1[d and Aff0(Y ;Rm) :=
{
φ ∈ Aff(Y ;Rm) : φ = 0 on ∂Y

}
where

Aff(Y ;Rm) denotes the space of continuous piecewise affine functions from Y to
Rm. The main result of the paper is the following.

Theorem 2.1. Let W : Rd × Mm×d → [0,∞] be a Borel measurable function
satisfying (2.1), (2.2), (2.3), (2.4) and (2.5) and let u ∈W 1,∞(Ω;Rm).

(i) If {uε}ε ⊂W 1,∞(Ω;Rm) is such that ‖uε − u‖L1(Ω;Rm) → 0, then

lim
ε→0

Iε(uε) ≥ ĤI(u).

(ii) There exists {uε}ε ⊂W 1,∞(Ω;Rm) such that ‖uε − u‖L1(Ω;Rm) → 0 and

lim
ε→0

Iε(uε) ≤ ẐHI(u).

Let Ihom : W 1,∞(Ω;Rm)→ [0,∞] be defined by

Ihom(u) :=

∫
Ω

Whom(∇u(x))dx

with Whom : Mm×d → [0,∞] given by

Whom(ξ) :=


ZHW (ξ) if ξ ∈ C
lim
t→1
ZHW (tξ) if ξ ∈ ∂C

∞ otherwise.

The following homogenization result is a consequence of Theorem 2.1.

Corollary 2.2. Let W : Rd × Mm×d → [0,∞] be a Borel measurable function
satisfying (2.1), (2.2), (2.3), (2.4) and (2.5). Then

Γ(L1)- lim
ε→0

Iε = Ihom.
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Proof. As ẐHI ≤ ĤI, from Theorem 2.1 we deduce that(
Γ(L1)- lim

ε→0
Iε

)
(u) = ẐHI(u) =

∫
Ω

ẐHW (∇u(x))dx

for all u ∈W 1,∞(Ω;Rm), and the result follows from Corollary 3.8. �

Remark 2.3. Under the assumption of Corollary 2.2 we haveWhom = HW withHW
denoting the lower semicontinuous envelope (lsc) of HW . Indeed, as ẐHI ≤ ĤI,

from Theorem 2.1 we see that Γ(L1)- limε→0 Iε = ĤI, and consequently ĤI = Ihom

by Corollary 2.2. Thus Whom = ĤW . On the other, by Remark 3.10, tHW ⊂
int(HW) for all t ∈]0, 1[, where HW denotes the effective domain of HW . As W
satisfies (2.5), from Proposition 3.7 we can assert that HW is ru-usc (see Definition

3.1) and so ĤW = HW by Theorem 3.5(iii).

To be complete, let us give the Dirichlet version of Corollary 2.2. For each ε > 0,
let Jε : W 1,∞

0 (Ω;Rm)→ [0,∞] be defined by

Jε(u) :=

{
Iε(u) if u ∈W 1,∞

0 (Ω;Rm)
∞ otherwise.

Using the Dirichlet version of Theorem 2.1 and arguing as in the proof of Corollary
2.2 we can establish the following result.

Corollary 2.4. Let W : Rd × Mm×d → [0,∞] be a Borel measurable function
satisfying (2.1), (2.2), (2.3), (2.4) and (2.5). Then

Γ(L1)- lim
ε→0

Jε = Jhom

with Jhom : W 1,∞(Ω;Rm)→ [0,∞] given by

Jhom(u) :=

{
Ihom(u) if u ∈W 1,∞

0 (Ω;Rm)
∞ otherwise.

To reduce technicalities and emphasize the essential difficulties, in the present paper
we have restricted our attention on Theorem 2.1 and Corollary 2.2. The details of
the proof of Corollary 2.4 are left to the reader.

2.2. Towards applications in hyperelasticity. Let d ≥ 1 be an integer and let
B be the unit open ball in Md×d. Given a continuous function g : Md×d → [0,∞[
and a convex function h : [0, 1[→ [0,∞[ such that

(2.6) h(t) ≥ ctp

1− tp
for all t ∈ [0, 1[ and some c > 0 and p > 0,

we consider f : Md×d → [0,∞] given by

f(ξ) :=

{
g(I + ξ) + h(|ξ|) if ξ ∈ B
∞ otherwise,

where I denotes the identity matrix in Md×d. Given a 1-periodic function a ∈
L∞(Rd) such that α ≤ a(x) ≤ β for all x ∈ Rd and some β > α > 0, we define
W : Rd ×Md×d → [0,∞] by

W (x, ξ) := a(x)f(ξ).

The following proposition makes clear the fact that such a W is consistent with the
assumptions of Corollaries 2.2 and 2.4 as well as with some (but not all) conditions of
hyperelasticity, i.e., the non-interpenetration of the matter, see Proposition 2.5(iv),
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and the necessity of an infinite amount of energy to compress a finite volume of
matter into zero volume, see Proposition 2.5(v). However, since the effective domain
of W is convex, it does not satisfy the material frame indifference axiom. Thus, we
are still far from a result on homogenization that can be compared to Ball’s lower
semicontinuity theorem (see [Bal77]).

Proposition 2.5. Let W : Rd ×Md×d → [0,∞] be defined as above. Then:

(i) W is 1-periodic with respect to the first variable;
(ii) W satisfies (2.2) with C = B;

(iii) W satisfies (2.3), (2.4) and (2.5);
(iv) for every (x, ξ) ∈ Rd × B, W (x, ξ) <∞ if and only if det(I + ξ) > 0;
(v) for every x ∈ Rd, W (x, ξ)→∞ as det(I + ξ)→ 0.

Proof. (i) and (ii) are obvious, and (iv) follows from the classical fact that I+B ⊂
{ξ ∈Md×d : det(I + ξ) > 0}.
(iii) Since B is compact and g is continuous, g is bounded on B, i.e., there exists
C > 0 such that g(ξ) ≤ C for all ξ ∈ B. Given any t ∈ [0, 1[, as a(x) ≤ β for all
x ∈ Rd it follows that

sup
x∈Rd

sup
ξ∈tB

W (x, ξ) ≤ βC + β sup
|ξ|≤t

h(|ξ|).

But, h is convex and finite, hence sup|ξ|≤t h(|ξ|) <∞, and (2.3) follows.

As a(x) ≥ α for all x ∈ Rd, using (2.6) we see that

inf
x∈Rd

inf
ξ∈B\tB

W (x, ξ) ≥ α inf
t<|ξ|<1

h(|ξ|) ≥ αc tp

1− tp

for all t ∈ [0, 1[, which gives (2.4) because tp

1−tp →∞ as t→ 1.

For each r > 0, set ω(r) := sup{|g(ζ1) − g(ζ2)| : ζ1, ζ2 ∈ I + B and |ζ1 − ζ2| ≤ r}.
As g is uniformly continuous on I + B we have ω(r) → 0 as r → 0. Given any
t ∈ [0, 1], as a(x) ≤ β for each x ∈ Rd and h is convex, we see that

W (x, tξ)−W (x, ξ) = a(x)(g(I + tξ)− g(I + ξ) + h(|tξ|)− h(|ξ|)
≤ βω(1− t) + β(t− 1)h(|ξ|) + β(1− t)h(0)

≤ βω(1− t) + β(1− t)h(0)

for all x ∈ Rd and all ξ ∈ B, hence

sup
x∈Rd

sup
ξ∈B

W (x, tξ)−W (x, ξ) ≤ βω(1− t) + β(1− t)h(0)

for all t ∈ [0, 1], and (2.5) follows because ω(1− t)→ 0 as t→ 1.
(v) Let x ∈ Rd and let {ξn}n ⊂Mm×d be such that limn→∞ det(I + ξn) = 0. Since
domW (x, ·) = B, without loss of generality we can assume that {ξn}n ⊂ B and
there exists ξ ∈ B such that limn→∞ |ξn− ξ| = 0. By continuity of the determinant
we obtain det(I + ξ) = 0, and so |ξ| = 1. Thus

(2.7) lim
n→∞

|ξn| = 1.

On the other hand, using (2.6) we see that W (x, ξn) ≥ αc |ξn|
p

1−|ξn| for all n ≥ 1, and

consequently limn→∞W (x, ξn) =∞ because limn→∞
|ξn|p

1−|ξn| =∞ by (2.7). �
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3. Auxiliary results

3.1. Ru-usc functions. Let U ⊂ Rd be an open set and let L : U×Mm×d → [0,∞]
be a Borel measurable function. For each x ∈ U , we denote the effective domain of
L(x, ·) by Lx and we define ∆L : [0, 1]→]−∞,∞] by

∆L(t) := sup
x∈U

sup
ξ∈Lx

L(x, tξ)− L(x, ξ).

Definition 3.1. We say that L is radially uniformly upper semicontinuous (ru-usc)
if

lim
t→1

∆L(t) ≤ 0.

Remark 3.2. If L is ru-usc then

(3.1) lim
t→1

L(x, tξ) ≤ L(x, ξ)

for all x ∈ U and all ξ ∈ Lx. Indeed, given x ∈ U and ξ ∈ Lx, we have

L(x, tξ) ≤ ∆L(t) + L(x, ξ) for all t ∈ [0, 1],

which gives (3.1) since limt→1 ∆L(t) ≤ 0.

Remark 3.3. If there exist x ∈ U and ξ ∈ Lx such that L(x, ·) is lsc at ξ then

(3.2) lim
t→1

∆L(t) ≥ 0.

Indeed, given such x ∈ U and ξ ∈ Lx, we have

∆L(t) ≥ L(x, tξ)− L(x, ξ) for all t ∈ [0, 1],

which gives (3.2) since limt→1(L(x, tξ)− L(x, ξ)) ≥ 0.

The following lemma is essentially due to Wagner (see [Wag09]).

Lemma 3.4. Assume that L is ru-usc and consider x ∈ U such that

(3.3) tLx ⊂ Lx for all t ∈]0, 1[,

where Lx denotes the closure of Lx. Then

lim
t→1

L(x, tξ) = lim
t→1

L(x, tξ)

for all ξ ∈ Lx.

Proof. Fix ξ ∈ Lx. It suffices to prove that

(3.4) lim
t→1

L(x, tξ) ≤ lim
t→1

L(x, tξ).

Without loss of generality we can assume that limt→1 L(x, tξ) <∞ and there exist
{tn}n, {sn}n ⊂]0, 1[ such that:

� tn → 1, sn → 1 and tn
sn
→ 1;

� lim
t→1

L(x, tξ) = lim
n→∞

L(x, tnξ);

� lim
t→1

L(x, tξ) = lim
n→∞

L(x, snξ).
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From (3.3) we see that for every n ≥ 1, snξ ∈ Lx, and so we can assert that for
every n ≥ 1,

(3.5) L(x, tnξ) ≤ ∆L

(
tn
sn

)
+ L(x, snξ).

On the other hand, as L is ru-usc we have limn→∞∆L

(
tn
sn

)
≤ 1, and (3.4) follows

from (3.5) by letting n→∞. �

Define L̂ : U ×Mm×d → [0,∞] by

L̂(x, ξ) := lim
t→1

L(x, tξ).

The interest of Definition 3.1 comes from the following theorem.

Theorem 3.5. If L is ru-usc and if for every x ∈ U ,

(3.6) tLx ⊂ int(Lx) for all t ∈]0, 1[

(in particular (3.3) holds) and L(x, ·) is lsc on int(Lx), where int(Lx) denotes the
interior of Lx, then:

(i) L̂(x, ξ) =


L(x, ξ) if ξ ∈ int(Lx)
lim
t→1

L(x, tξ) if ξ ∈ ∂Lx
∞ otherwise;

(ii) L̂ is ru-usc;

(iii) for every x ∈ U , L̂(x, ·) is the lsc envelope of L(x, ·).

Proof. (i) Lemma 3.4 shows that, for x ∈ U and ξ ∈ Lx, L̂(x, ξ) = limt→1 L(x, tξ).
From remark 3.2 we see that if ξ ∈ int(Lx) then limt→1 L(x, tξ) ≤ L(x, ξ). On
the other hand, from (3.6) it follows that if ξ ∈ int(Lx) then tξ ∈ int(Lx) for all
t ∈]0, 1[. Thus, limt→1 L(x, tξ) ≥ L(x, ξ) whenever ξ ∈ int(Lx) since L(x, ·) is lsc
on int(Lx), and (i) follows.

(ii) Fix any t ∈]0, 1[ any x ∈ U and any ξ ∈ L̂x, where L̂x denotes the effective

domain of L̂(x, ·). As L̂x ⊂ Lx we have ξ ∈ Lx and tξ ∈ Lx since (3.3) holds. From
Lemma 3.4 we can assert that:

� L̂(x, ξ) = lim
s→1

L(x, sξ);

� L̂(x, tξ) = lim
s→1

L(x, s(tξ)),

and consequently

(3.7) L̂(x, tξ)− L̂(x, ξ) = lim
s→1

L(x, t(sξ))− L(x, sξ).

On the other hand, by (3.3) we have sξ ∈ Lx for all s ∈]0, 1[, and so

L(x, t(sξ))− L(x, sξ) ≤ ∆L(t) for all s ∈]0, 1[.

Letting s→ 1 and using (3.7) we deduce that ∆L̂(t) ≤ ∆L(t) for all t ∈]0, 1[, which
gives (ii) since L is ru-usc.
(iii) Given x ∈ U , we only need to prove that if |ξn − ξ| → 0 then

(3.8) lim
n→∞

L(x, ξn) ≥ L̂(x, ξ).

Without loss of generality we can assume that

lim
n→∞

L(x, ξn) = lim
n→∞

L(x, ξn) <∞, and so sup
n≥1

L(x, ξn) <∞.
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Thus ξn ∈ Lx for all n ≥ 1, hence ξ ∈ Lx, and so

L̂(x, ξ) = lim
t→1

L(x, tξ)

by Lemma 3.4. Moreover, using (3.3) we see that, for any t ∈]0, 1[, tξ ∈ Lx and
tξn ∈ Lx for all n ≥ 1, and consequently

lim
n→∞

L(x, tξn) ≥ L(x, tξ) for all t ∈]0, 1[

because L(x, ·) is lsc on Lx and |tξn − tξ| → 0. It follows that

(3.9) lim
t→1

lim
n→∞

L(x, tξn) ≥ L̂(x, ξ).

On the other hand, for every n ≥ 1 and every t ∈ [0, 1], we have

L(x, tξn) ≤ L(x, ξn) + ∆L(t).

As L is ru-usc, letting n→∞ and t→ 1 we obtain

lim
t→1

lim
n→∞

L(x, tξn) ≤ lim
n→∞

L(x, ξn),

which gives (3.8) when combined with (3.9). �

In what follows, given any bounded open set A ⊂ Rd, we denote the space of con-
tinuous piecewise affine functions from A to Rm by Aff(A;Rm), i.e., u ∈ Aff(A;Rm)
if and only if u ∈ C(A;Rm) and there exists a finite family {Ai}i∈I of open dis-
joint subsets of A such that |A \ ∪i∈IAi| = 0 and, for each i ∈ I, |∂Ai| = 0 and
∇u(x) = ξi in Ai with ξi ∈Mm×d. Define ZL : U ×Mm×d → [0,∞] by

ZL(x, ξ) := inf

{∫
Y

L(x, ξ +∇φ(y))dy : φ ∈ Aff0(Y ;Rm)

}
with Y :=]0, 1[d and Aff0(Y ;Rm) :=

{
φ ∈ Aff(Y ;Rm) : φ = 0 on ∂Y

}
. Roughly,

Proposition 3.6 shows that ru-usc functions have a nice behavior with respect to
relaxation.

Proposition 3.6. If L is ru-usc then ZL is ru-usc.

Proof. Fix any t ∈ [0, 1], any x ∈ U and any ξ ∈ ZLx, where ZLx denotes the
effective domain of ZL(x, ·). By definition, there exists {φn}n ⊂ Aff0(Y ;Rm) such
that:

� ZL(x, ξ) = lim
n→∞

∫
Y

L (x, ξ +∇φn(y)) dy;

� ξ +∇φn(y) ∈ Lx for all n ≥ 1 and a.a. y ∈ Y .

Moreover, for every n ≥ 1,

ZL(x, tξ) ≤
∫
Y

L (x, t(ξ +∇φn(y))) dy

since tφn ∈ Aff0(Y ;Rm), and so

ZL(x, tξ)−ZL(x, ξ) ≤ lim
n→∞

∫
Y

(
L(x, t(ξ +∇φn(y)))− L(x, ξ +∇φn(y))

)
dy.

As L is ru-usc it follows that

ZL(x, tξ)−ZL(x, ξ) ≤ ∆L(t),

which implies that ∆ZL(t) ≤ ∆L(t) for all t ∈ [0, 1], and the proof is complete. �
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Assume that U = Rd and define HL : Rd ×Mm×d → [0,∞] by

HL(ξ) := inf
k≥1

inf

{
−
∫
kY

L(x, ξ +∇φ(x))dx : φ ∈W 1,∞
0 (kY ;Rm)

}
.

Roughly, Proposition 3.7 shows that ru-usc functions have a nice behavior with
respect to homogenization.

Proposition 3.7. If L is ru-usc then HL is ru-usc.

Proof. Fix any t ∈ [0, 1] and any ξ ∈ HL, where HL denotes the effective domain
of HL. By definition, there exists {kn;φn}n such that:

� φn ∈W 1,∞
0 (knY ;Rm) for all n ≥ 1;

� HL(ξ) = lim
n→∞

−
∫
knY

L(x, ξ +∇φn(x))dx;

� ξ +∇φn(x) ∈ Lx for all n ≥ 1 and a.a. x ∈ knY .

Moreover, for every n ≥ 1,

HL(tξ) ≤ −
∫
knY

L(x, t(ξ +∇φn(x)))dx

since tφn ∈W 1,∞
0 (knY ;Rm), and so

HL(tξ)−HL(ξ) ≤ lim
n→∞

−
∫
knY

(
L(x, t(ξ +∇φn(x)))− L(x, ξ +∇φn(x))

)
dx.

As L is ru-usc it follows that

HL(tξ)−HL(ξ) ≤ ∆L(t),

which implies that ∆HL(t) ≤ ∆L(t) for all t ∈ [0, 1], and the proof is complete. �

As a consequence of Theorem 3.5 and Propositions 3.6 and 3.7 we have

Corollary 3.8. Let W : Rd × Mm×d → [0,∞] be a Borel measurable function
satisfying (2.2) and (2.4). If W is ru-usc then

ẐHW (ξ) =


ZHW (ξ) if ξ ∈ C
lim
t→1
ZHW (tξ) if ξ ∈ ∂C

∞ otherwise.

Proof. Denote the effective domain of ZHW by ZHW.

Step 1: we prove that ZHW is ru-usc. First of all, we can assert that ZHW
is continuous on int(ZHW) because of the following lemma due to Fonseca (see
[Fon88]).

Lemma 3.9. ZL is continuous on int(ZL).

On the other hand, from Proposition 3.7 we see that HW is ru-usc, hence ZHW
is ru-usc by Proposition 3.6.
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Step 2: we prove that C ⊂ ZHW ⊂ C. As ZHW ≤W and W satisfies (2.2)
we have C ⊂ ZHW. Fix any t ∈ [0, 1[. Using (2.2) we see that

W (x, ξ) ≥ δW (t)dist(ξ, C) =: Gt(ξ) for all (x, ξ) ∈ Rd ×Mm×d,

where dist(ξ, C) := inf
{
|ξ − ζ| : ζ ∈ C

}
. But Gt : Mm×d → [0,∞] is convex, hence

ZHGt = Gt, and consequently

ZHW (ξ) ≥ δW (t)dist(ξ, C) for all ξ ∈Mm×d and all t ∈ [0, 1[.

As W satisfies (2.4) we deduce that ZHW ≥ ∞ whenever ξ 6∈ C, which shows that
ZHW ⊂ C.

Step 3: we prove that tZHW ⊂ int(ZHW) for all t ∈]0, 1[. Let t ∈]0, 1|.
As ZHW ⊂ C (by Step 2) we have ZHW ⊂ C, and so tZHW ⊂ tC. But tC ⊂ C
because C is open and convex and 0 ∈ C, hence tZHW ⊂ C. On the other hand,
as C ⊂ ZHW (by Step 2) and C is open we have C ⊂ int(ZHW), and consequently
tZHW ⊂ int(ZHW).

Step 4: application of Theorem 3.5. By Step 2 we deduce that int(ZHW) = C
(because C is open) and ∂(ZHW) = ∂C, and, taking Step 3 into account, the result
follows from Theorem 3.5. �

Remark 3.10. Under (2.2) and (2.4) we have tHW ⊂ int(HW) for all t ∈]0, 1[,
where HW denotes the effective domain of HW . Indeed, as HW ≤ W and, for
every t ∈ [0, 1[, Gt is both lsc and convex, arguing as in Step 2, it is easy to see
that if (2.2) and (2.4) hold then C ⊂ HW ⊂ C, and the result follows by the same
method as in Step 3.

3.2. Approximation of ru-usc functions with respect to homogenization.
Let C ⊂ Mm×d be a convex bounded open set and let L : Rd ×Mm×d → [0,∞]
be a Borel measurable function such that domL(x, ·) ⊂ C for all x ∈ Rd, where
domL(x, ·) denotes the effective domain of L(x, ·). We also assume that L is locally
bounded in C, i.e.,

(3.10) ML(t) <∞ for all t ∈ [0, 1[ with ML(t) := sup
x∈Rd

sup
ξ∈tC

L(x, ξ),

and singular on the boundary ∂C of C, i.e.,

(3.11) lim
t→1

δL(t) =∞ with δL(t) := inf
x∈Rd

inf
ξ∈C\tC

L(x, ξ) for all t ∈ [0, 1[.

Under (3.10) and (3.11) we have domL(x, ·) = C for all x ∈ Rd. For each t ∈ [0, 1[,
we define Lt : Rd ×Mm×d → [0,∞] by

(3.12) Lt(x, ξ) :=

{
L(x, ξ) if ξ ∈ tC
δL(t)

(
1 + dist(ξ, C)

)
if ξ 6∈ tC.

As 0 ∈ C we have dist(ξ, C) ≤ |ξ| for all ξ ∈ Mm×d, and so for every t ∈ [0, 1[, Lt
is of 1-polynomial growth, i.e.,

Lt(x, ξ) ≤ αt(1 + |ξ|) for all (x, ξ) ∈ Rd ×Mm×d

with αt := max {δL(t),ML(t)}. On the other hand, under (3.10) and (3.11), it is
easy to see that {Lt}t∈[0,1[ is increasing to L, i.e.,

L(x, ξ) = lim
t↑1

Lt(x, ξ) = sup
t∈[0,1[

Lt(x, ξ) for all (x, ξ) ∈ Rd ×Mm×d.
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Moreover, we have

Proposition 3.11. Under (3.10), (3.11), if L is ru-usc then

lim
t↑1
HLt = sup

t∈[0,1[

HLt ≥ ĤL,

where HLt,HL : Mm×d, ĤL→ [0,∞] are given by

� HLt(ξ) := inf
k≥1

inf

{
−
∫
kY

Lt(x, ξ +∇φ(x))dx : φ ∈W 1,∞
0 (kY ;Rm)

}
;

� HL(ξ) := inf
k≥1

inf

{
−
∫
kY

L(x, ξ +∇φ(x))dx : φ ∈W 1,∞
0 (kY ;Rm)

}
;

� ĤL(ξ) := lim
s→1
HL(sξ).

Proof. Set L := supt∈[0,1[HLt, fix ξ ∈ Mm×d and, without loss of generality,

assume that L(ξ) <∞. Noticing that (by a change of variable)

(3.13) HLt(ξ) = inf
k≥1

inf

{∫
Y

Lt(ky, ξ +∇φ(y))dy : φ ∈W 1,∞
0 (Y ;Rm)

}
,

given any t ∈ [0, 1[, there exist kt ≥ 1 and φt ∈W 1,∞
0 (Y ;Rm) such that∫

Y

Lt(kty, ξ +∇φδ(y))dy < HLt(ξ) +
1

δL(t)
≤ L(ξ) +

1

δL(t)
.

Setting At :=
{
y ∈ Y : ξ + ∇φt(y) ∈ tC

}
and taking (3.12) into account, we see

that: ∫
At

L(kty, ξ +∇φt(y))dy < L(ξ) +
1

δL(t)
;(3.14) ∫

Y \At
dist(ξ +∇φt(y), C)dy + |Y \At| <

1

δL(t)

(
L(ξ) +

1

δL(t)

)
.(3.15)

As L(ξ) <∞, from (3.15) we deduce that:

lim
t→1

∫
Y

dist(ξ +∇φt(y), C)dy = 0;(3.16)

lim
t→1
|Y \At| = 0.(3.17)

Recall, in our context, the following lemma due to Müller (see [Mül99, Theorem 4]
for a proof, see also [Zha92]).

Lemma 3.12. Given ξ ∈ Mm×d and {φt}t∈[0,1[ ∈ W 1,∞
0 (Y ;Rm), if (3.16) holds

then one can find another sequence {ψt}t∈[0,1[ ⊂W 1,∞
0 (Y ;Rm) such that:

lim
t→1

sup
y∈Y

dist(ξ +∇ψt(y), C) = 0;(3.18)

lim
t→1
|Bt| = 0 with Bt :=

{
y ∈ Y : ∇ψt(y) 6= ∇φt(y)

}
.(3.19)

Let {ψt}t∈[0,1[ ⊂ W 1,∞
0 (Y ;Rm) be given by Lemma 3.12. Fix any s ∈]0, 1[. Using

(3.18) (and the fact that C is convex and 0 ∈ C) we can assert that there exists
ts ∈ [0, 1[ such that for every t ∈ [ts, 1[ and every y ∈ Y ,

(3.20) ξ +∇ψt(y) ∈ 1√
s
C, i.e.,

√
s(ξ +∇ψt(y)) ∈ C.
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Using (3.20) we see that for any t ∈ [ts, 1[,∫
Y

L (kty, t(ξ +∇ψt(y))) dy =

∫
(Y \Bt)∩At

L (kty, t(ξ +∇φt(y))) dy

+

∫
(Y \At)∪Bt

L
(
kty,
√
s
√
s(ξ +∇ψt(y))

)
dy

≤
∫
At

L (kty, t(ξ +∇φt(y))) dy

+ML(
√
s) (|Y \At|+ |Bt|) .

As ξ +∇φt(y) ∈ tC for all y ∈ At and tC ⊂ C (because C is open and convex and
0 ∈ C) it follows that∫

Y

L (kty, sξ +∇(sψt)(y)) dy ≤
∫
At

L (kty, ξ +∇φt(y)) dy + ∆L(s)

+ML(
√
s) (|Y \At|+ |Bt|)

with ∆L(s) := supx∈Rd supζ∈C L(x, sζ)−L(x, ζ). Noticing that sψt ∈W 1,∞
0 (Y ;Rm)

and taking (3.13) and (3.14) into account, we deduce that

HL(sξ) ≤ L(ξ) +
1

δL(t)
+ ∆L(s) +ML(

√
s) (|Y \At|+ |Bt|)

for all t ∈ [ts, 1[. As ML(
√
s) <∞ by (3.10), letting t→ 1 and using (3.11), (3.17)

and (3.19), we obtain HL(sξ) ≤ L(ξ) + ∆L(s) for all s ∈]0, 1[, hence

lim
s→1
HL(sξ) ≤ L(ξ),

because L is ru-usc, i.e., lims→1 ∆L(s) ≤ 0, and the result follows from Theorem
3.5(iii). �

3.3. Weak star Γ-liminf of periodic integrals of 1-polynomial growth. For
the convenience of the reader, in what follows we recall classical techniques on sub-
additivity, localization and blow up (see for instance [LM02, AM04]). In particular,
Proposition 3.16 below will be used in the proof of Theorem 2.1(i).

3.3.1. A subadditive theorem. Let Ob(Rd) be the class of all bounded open subsets
of Rd. We begin with the following definition.

Definition 3.13. Let S : Ob(Rd)→ [0,∞] be a set function.

(i) We say that S is subadditive if

S(A) ≤ S(B) + S(C)

for all A,B,C ∈ Ob(Rd) with B,C ⊂ A, B ∩ C = ∅ and |A \B ∪ C| = 0.
(ii) We say that S is Zd-invariant if

S(A+ z) = S(A)

for all A ∈ Ob(Rd) and all z ∈ Zd.

Let Cub(Rd) be the class of all open cubes in Rd and let Y :=]0, 1[d. The following
theorem is due to Akcoglu and Krengel (see [AK81], see also [LM02] and [AM02,
§B.1]).
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Theorem 3.14. Let S : Ob(Rd) → [0,∞] be a subadditive and Zd-invariant set
function for which there exists c > 0 such that

(3.21) S(A) ≤ c|A|
for all A ∈ Ob(Rd). Then, for every Q ∈ Cub(Rd),

lim
ε→0

S
(

1
εQ
)∣∣ 1

εQ
∣∣ = inf

k≥1

S(kY )

kd
.

Proof. Fix Q ∈ Cub(Rd). First of all, it is easy to see that, for each k ≥ 1 and
each ε > 0, there exist kε ≥ 1 and zε ∈ Zd such that limε→0 kε =∞ and

(3.22) (kε − 2)kY + k(zε + ê) ⊂ 1

ε
Q ⊂ kεkY + kzε

with ê := (1, 1, · · · , 1). Fix any k ≥ 1 and any ε > 0. As the set function S is
subadditive and Zd-invariant, using the left inclusion in (3.22) we obtain

S
(

1

ε
Q

)
≤ (kε − 2)dS(kY ) + S

(
1

ε
Q \

(
(kε − 2)kY + k(zε + ê)

))
.

Moreover, it is clear that∣∣∣∣[1

ε
Q \

(
(kε − 2)kY + k(zε + ê)

) ]
\ ∪
i∈I

(Ai + qi)

∣∣∣∣ = 0

where qi ∈ Zd and {Ai}i∈I is a finite family of disjoint open subsets of kY with
card(I) = kdε − (kε − 2)d, and so

S
(

1

ε
Q

)
≤ (kε − 2)dS(kY ) + c(kdε − (kε − 2)d)kd

by (3.21). It follows that

S
(

1
εQ
)∣∣ 1

εQ
∣∣ ≤ S(kY )

kd
+ c

kdε − (kε − 2)d

(kε − 2)d

because | 1εQ| ≥ (kε − 2)dkd by the left inequality in (3.22). Letting ε → 0 and
passing to the infimum on k, we obtain

lim
ε→0

S
(

1
εQ
)∣∣ 1

εQ
∣∣ ≤ inf

k≥1

S(kY )

kd
.

On the other hand, using the right inequality in (3.22) with k = 1, by subadditivity
and Zd-invariance we have

S(kεY ) ≤ S
(

1

ε
Q

)
+ S

(
(kεY + zε) \

1

ε
Q

)
.

As previously, since, up to a set of zero Lebesgue measure, the set (kεY + zε) \ 1
εQ

can be written as the disjoint union of kdε − (kε − 2)d integer translations of open
subsets of Y , by using (3.21), we deduce that

S(kεY ) ≤ S
(

1

ε
Q

)
+ c(kdε − (kε − 2)d),

and consequently

inf
k≥1

S(kY )

kd
≤ S(kεY )

kdε
≤
S
(

1
εQ
)∣∣ 1

εQ
∣∣ + c

kdε − (kε − 2)d

kdε
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because | 1εQ| ≤ kdε by the right inequality in (3.22) with k = 1. Letting ε → 0 we
obtain

inf
k≥1

S(kY )

kd
≤ lim
ε→0

S
(

1
εQ
)∣∣ 1

εQ
∣∣ ,

and the proof is complete. �

Given a Borel measurable function L : Rd ×Mm×d → [0,∞], for each ξ ∈ Mm×d,
we define Sξ : Ob(Rd)→ [0,∞] by

(3.23) Sξ(A) := inf

{∫
A

L(x, ξ +∇φ(x))dx : φ ∈W 1,∞
0 (A;Rm)

}
.

It is easy that the set function Sξ is subbadditive. If we assume that L is 1-periodic
with respect to the first variable,i.e.,

(3.24) L(x+ z, ξ) = L(x, ξ) for all x ∈ Rd, all z ∈ Rd and all ξ ∈Mm×d,

then Sξ is Zd-invariant. Moreover, if L is of 1-polynomial growth, i.e.,

(3.25) L(x, ξ) ≤ α(1 + |ξ|) for all ξ ∈Mm×d and some α > 0,

then Sξ(A) ≤ α(1 + |ξ|)|A| for all A ∈ Ob(Rd). From the above, we see that the
following result is a direct consequence of Theorem 3.14.

Corollary 3.15. If L satisfies (3.24) and (3.25), then for every ξ ∈ Mm×d and
every Q ∈ Cub(Rd),

lim
ε→0

Sξ
(

1
εQ
)∣∣ 1

εQ
∣∣ = inf

k≥1

Sξ(kY )

kd
.

3.3.2. Localization and blow up techniques. In what follows, “
∗
⇀” denotes the weak

star convergence in W 1,∞(Ω;Rm).

Proposition 3.16. Let L : Rd × Mm×d → [0,∞] be a Borel measurable func-

tion, let u ∈ W 1,∞(Ω;Rm) and let {uε}ε ⊂ W 1,∞(Ω;Rm) be such that uε
∗
⇀ u in

W 1,∞(Ω;Rm). If L satisfies (3.24) and (3.25), then

(3.26) lim
ε→0

∫
Ω

L
(x
ε
,∇uε(x)

)
dx ≥

∫
Ω

HL(∇u(x))dx

with HL : Mm×d → [0,∞] defined by

HL(ξ) := inf
k≥1

Sξ(kY )

kd
,

where Sξ : Ob(Rd)→ [0,∞] is given by (3.23).

Proof. Without loss of generality we can assume that:

lim
ε→0

∫
Ω

L
(x
ε
,∇uε(x)

)
dx = lim

ε→0

∫
Ω

L
(x
ε
,∇uε(x)

)
dx <∞;(3.27)

sup
ε
‖∇uε‖L∞(Ω;Mm×d) <∞;(3.28)

lim
ε→0
‖uε − u‖L∞(Ω;Rm) = 0.(3.29)
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Step 1: localization. For each ε > 0, we define fε ∈ L1(Ω; [0,∞]) by

fε := L
( ·
ε
,∇uε(·)

)
.

By (3.27) we have supε ‖fε‖L1(Ω;[0,∞]) < ∞, and so there exist f ∈ L1(Ω; [0,∞])
and a finite positive Radon measure µs with |supp(µs)| = 0 such that

fεdx ⇀ fdx+ µs in the sense of measures,

where for a.e. x0 ∈ Ω,

f(x0) = lim
ρ→0

lim
ε→0
−
∫
Qρ(x0)

fε(x)dx = lim
ρ→0

lim
ε→0
−
∫
Qρ(x0)

L
(x
ε
,∇uε(x)

)
dx

with Qρ(x0) := x0 + ρY . By Alexandrov’s theorem we have

lim
ε→0

∫
Ω

L
(x
ε
,∇uε

)
dx = lim

ε→0

∫
Ω

fεdx ≥
∫

Ω

fdx+ µs(Ω) ≥
∫

Ω

fdx

and so, to prove (4.1) it suffices to show that for a.e. x0 ∈ Ω,

(3.30) f(x0) = lim
ρ→0

lim
ε→0
−
∫
Qρ(x0)

L
(x
ε
,∇uε(x)

)
dx ≥ HL(∇u(x0)).

Step 2: cut-off method. Fix any δ ∈]0, 1[. Let φ ∈ C∞c (Qρ(x0); [0, 1]) be a cut-
off function between Qρδ(x0) and Qρ(x0) such that ‖∇φ‖L∞(Qρ(x0);Rd) ≤ 2

ρ(1−δ) .

Setting

vε := φuε + (1− φ)l∇u(x0)

with l∇u(x0)(x) := u(x0) +∇u(x0)(x− x0), it follows that

(3.31) ∇vε :=

 ∇uε on Qρδ(x0)
φ∇uε + (1− φ)∇u(x0) + Ψε,ρ on Sρ
l∇u(x0) on ∂Qρ(x0),

with Sρ := Qρ(x0) \Qρδ(x0) and Ψε,ρ := ∇φ⊗
(
uε − l∇u(x0)

)
, which, in particular,

means that

(3.32) vε − l∇u(x0) ∈W 1,p
0 (Qρ(x0);Rm).

As L is of 1-polynomial growth, i.e., L satisfies (3.25), we have

−
∫
Qρ(x0)

L
(x
ε
,∇vε

)
dx ≤ −

∫
Qρ(x0)

L
(x
ε
,∇uε

)
dx

+
1

ρd

∫
Sρ

L
(x
ε
,∇vε

)
dx

≤ −
∫
Qρ(x0)

L
(x
ε
,∇uε

)
dx+ α(1− δd)

+
α

ρd

∫
Sρ

|∇vε|dx.
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On the other hand, for every x ∈ Sρ, we have

|∇vε(x)| ≤ |∇uε(x)|+ |∇u(x0)|+ |Ψε,ρ(x)|
≤ sup

ε
‖∇uε‖L∞(Ω;Mm×d) + |∇u(x0)|+ ‖Ψε,ρ‖pL∞(Qρ(x0);Mm×d)

≤ c+ |∇u(x0)|+ 2

ρ(1− δ)
‖uε − u‖L∞(Ω;Rm)

+
2

1− δ
1

ρ
‖u− l∇u(x0)‖L∞(Qρ(x0);Rm)

with c := supε ‖∇uε‖L∞(Ω;Mm×d) <∞ by (3.28), and so

α

ρd

∫
Sρ

|∇vε|dx ≤ α(1− δd)(c+ |∇u(x0)|) +
2α(1− δd)
ρ(1− δ)

‖uε − u‖L∞(Ω;Rm)

+
2α(1− δd)

1− δ
1

ρ
‖u− l∇u(x0)‖L∞(Qρ(x0);Rm).

Thus, for every ε > 0 and every ρ > 0,

−
∫
Qρ(x0)

L
(x
ε
,∇vε

)
dx ≤ −

∫
Qρ(x0)

L
(x
ε
,∇uε

)
dx(3.33)

+α(1− δd)(1 + c+ |∇u(x0)|)

+
2α(1− δd)
ρ(1− δ)

‖uε − u‖L∞(Ω;Rm)

+
2α(1− δd)

1− δ
1

ρ
‖u− l∇u(x0)‖L∞(Qρ(x0);Rm).

Step 3: passing to the limit. Taking (3.32) into account we see that for every
ε > 0,

−
∫
Qρ(x0)

L
(x
ε
,∇vε

)
dx ≥ 1

|Qρ(x0)|
S∇u(x0)

(
1

ε
Qρ(x0)

)
,

where, for any ξ ∈ Mm×d and any open set A ⊂ Rd, Sξ(A) is defined by (3.23).
From Corollary 3.15 we deduce that

(3.34) lim
ε→0
−
∫
Qρ(x0)

L
(x
ε
,∇vε

)
dx ≥ HL(∇u(x0)) for all ρ > 0.

On the other hand, as u ∈ W 1,∞(Ω;Rm) we can assert that u is differentiable at
x0, hence

(3.35) lim
ρ→0

1

ρ
‖u− l∇u(x0)‖L∞(Qρ(x0);Rm) = 0.

Taking (3.33) into account, from (3.34), (3.29) and (3.35) we deduce that

lim
ρ→0

lim
ε→0
−
∫
Qρ(x0)

L
(x
ε
,∇uε

)
dx ≥ HL(∇u(x0)) + c′(δd − 1)

with c′ := α(1 + c+ |∇u(x0)|), and (3.30) follows by letting δ → 1. �
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3.4. Approximation of integrals which are locally bounded. Let C ⊂Mm×d

be a convex bounded open set such that 0 ∈ C and let L : Mm×d → [0,∞] be a
Borel measurable function which is locally bounded in C, i.e.,

(3.36) ML(t) <∞ for all t ∈ [0, 1[ with ML(t) := sup
ξ∈tC

L(ξ).

To prove Proposition 3.18 below, we need the following lemma whose proof can be
found in [DM99, Theorem 10.16 and Corollary 10.21] (see also [AH10, Proposition
5.1]). (Recall that, given any bounded open set A ⊂ Rd, Aff(A;Rm) denotes the
space of continuous piecewise affine functions from A to Rm.)

Lemma 3.17. Let Ω ⊂ Rd be a bounded open set with Lipschitz boundary and let
v ∈ W 1,∞(Ω;Rm). Given t ∈]0, 1[, if ∇v(x) ∈ tC for a.a. x ∈ Ω then there exists
{Ωn; vn}n such that:

Ωn is an open subset of Ω and |∂Ωn| = 0 for all n ≥ 1;(3.37)

lim
n→∞

|Ω \ Ωn| = 0;(3.38)

vn ∈W 1,∞(Ω;Rm), vn|Ωn ∈ Aff(Ωn;Rm) and vn = v on ∂Ω for all n ≥ 1,(3.39)

∇vn(x) ∈
(
t+

1

n

)
C for a.a. x ∈ Ω and all n ≥ 1;(3.40)

lim
n→∞

‖vn − v‖W 1,1(Ω;Rm) = 0.(3.41)

Proposition 3.18. Let Ω ⊂ Rd be a bounded open set with Lipschitz boundary
and let v ∈ W 1,∞(Ω;Rm). Given t ∈]0, 1[, if ∇v(x) ∈ tC for a.a. x ∈ Ω and if
L is continuous on C, then there exists {Ωn; vn}n satisfying (3.37), (3.38), (3.39),
(3.40), (3.41) and

(3.42) lim
n→∞

∫
Ω

L(∇vn(x))dx =

∫
Ω

L(∇v(x))dx.

Proof. Let {vn}n ⊂ W 1,∞(Ω;Rm) be given by Lemma 3.17. Taking (3.41) into
account we can assert that, up to a subsequence,

(3.43) ∇vn(x)→ ∇v(x) for a.a. x ∈ Ω.

Given αt ∈]t, 1[, there exists nt ≥ 1 such that t+ 1
n < αt for all n ≥ nt, hence

(3.44) ∇vn(x) ∈ αtC for a.a. x ∈ Ω and all n ≥ nt

by (3.40). Using (3.43) it follows that

(3.45) ∇v(x) ∈ αtC for a.a. x ∈ Ω.

As αtC ⊂ C (because C is open and convex and 0 ∈ C) and L is continuous on C,
from (3.43), (3.44) and (3.45) we deduce that

L(∇vn(x))→ L(∇v(x)) for a.a. x ∈ Ω.

Moreover, from (3.44) we see that L(∇vn(x)) ≤ ML(αt) for a.a. x ∈ Ω and all
n ≥ nt, where ML(αt) < ∞ because L is locally bounded in C, i.e., L satisfies
(3.36), and (3.42) follows from Lebesgue’s dominated convergence theorem. �
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3.5. Approximation of the relaxation formula. Given a Borel measurable
function L : Mm×d → [0,∞] we consider ZL : Mm×d → [0,∞] defined by

ZL(ξ) := inf

{∫
Y

L(ξ +∇φ(y))dy : φ ∈ Aff0(Y ;Rm)

}
with Y :=]0, 1[d and Aff0(Y ;Rm) :=

{
φ ∈ Aff(Y ;Rm) : φ = 0 on ∂Y

}
where

Aff(Y ;Rm) is the space of continuous piecewise affine functions from Y to Rm. The
following proposition is adapted from [AHM08, Lemma 3.1] (see also [AHM07]).

Proposition 3.19. Given ξ ∈ Mm×d and a bounded open set A ⊂ Rd there exists
{φk}k ⊂ Aff0(A;Rm) such that:

� lim
k→∞

‖φk‖L∞(A;Rm) = 0;

� lim
k→∞

−
∫
A

L(ξ +∇φk(x))dx = ZL(ξ).

Proof. Given ξ ∈Mm×d there exists {φn}n ⊂ Aff0(Y ;Rm) such that

(3.46) lim
n→∞

∫
Y

L(ξ +∇φn(y))dy = ZL(ξ).

Fix any n ≥ 1 and k ≥ 1. By Vitali’s covering theorem there exists a finite
or countable family {ai + αiY }i∈I of disjoint subsets of A, where ai ∈ Rd and
0 < αi <

1
k , such that |A \ ∪i∈I(ai + αiY )| = 0 (and so

∑
i∈I α

d
i = |A|). Define

φn,k ∈ Aff0(A;Rm) by

φn,k(x) := αiφn

(
x− ai
αi

)
if x ∈ ai + αiY.

Clearly ‖φn,k‖L∞(A;Rm) ≤ 1
k‖φn‖L∞(Y ;Rm), hence limk→∞ ‖φn,k‖L∞(A;Rm) = 0 for

all k ≥ 1, and consequently

(3.47) lim
n→∞

lim
k→∞

‖φn,k‖L∞(A;Rm) = 0.

On the other hand, we have∫
A

L(ξ +∇φn,k(x))dx =
∑
i∈I

αdi

∫
Y

L(ξ +∇φn(y))dy = |A|
∫
Y

L(ξ +∇φn(y))dy

for all n ≥ 1 and all k ≥ 1. Using (3.46) we deduce that

(3.48) lim
n→∞

lim
k→∞

−
∫
A

L(ξ +∇φn,k(x))dx = ZL(ξ),

and the result follows from (3.47) and (3.48) by diagonalization. �

3.6. Approximation of the homogenization formula. Given a convex boun-
ded open set C ⊂ Mm×d such that 0 ∈ C and a Borel measurable function L :
Rd × Mm×d → [0,∞] which is 1-periodic with respect to its first variable and
locally bounded in C, i.e.,

(3.49) ML(t) <∞ for all t ∈ [0, 1[ with ML(t) := sup
x∈Rd

sup
ξ∈tC

L(x, ξ),

we consider HL : Mm×d → [0,∞] defined by

HL(ξ) := inf
k≥1

inf

{
−
∫
kY

L(x, ξ +∇φ(x))dx : φ ∈W 1,∞
0 (kY ;Rm)

}
.

The following proposition is adapted from [Mül87, Lemma 2.1(a)].
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Proposition 3.20. Let t ∈]0, 1[, let ξ ∈ Mm×d and let A ⊂ Rd be a bounded open

set. If ξ ∈ tC then there exists {φε}ε ⊂W 1,∞
0 (A;Rm) such that:

� lim
ε→0
‖φε‖L1(A;Rm) = 0;

� lim
ε→0
−
∫
A

L
(x
ε
, ξ +∇φε(x)

)
dx = HL(ξ).

Proof. Consider {kn; φ̂n}n such that:

φ̂n ∈W 1,∞
0 (knY ;Rm) for all n ≥ 1;

lim
n→∞

−
∫
knY

L(x, ξ +∇φ̂n(x))dx = HL(ξ).(3.50)

For each n ≥ 1 and ε > 0, denote the knY -periodic extension of φ̂n by φn, consider
An,ε ⊂ A given by

An,ε := ∪
z∈In,ε

ε(z + knY )

with In,ε :=
{
z ∈ Zd : ε(z + knY ) ⊂ A

}
, where card(In,ε) < ∞ because A is

bounded, and define φn,ε ∈W 1,∞
0 (A;Rm) by

φn,ε(x) := εφn

(x
ε

)
if x ∈ An,ε.

Fix any n ≥ 1. It is easy to see that

‖φn,ε‖L1(A;Rm) =

∫
An,ε

|φn,ε(x)|dx

= ε
∑
z∈In,ε

∫
ε(z+knY )

∣∣∣φn (x
ε

)∣∣∣ dx
≤ ε

|A|
kdn
‖φ̂n‖L1(knY ;Rm)

for all ε > 0, and consequently limε→0 ‖φn,ε‖L1(A;Rm) = 0 for all n ≥ 1. It follows
that

(3.51) lim
n→∞

lim
ε→0
‖φn,ε‖L1(A;Rm) = 0.

On the other hand, for every n ≥ 1 and every ε > 0, we have∫
A

L
(x
ε
, ξ +∇φn,ε(x)

)
dx =

∫
An,ε

L
(x
ε
, ξ +∇φn,ε(x)

)
dx+

∫
A\An,ε

L
(x
ε
, ξ
)
dx.

But∫
An,ε

L
(x
ε
, ξ +∇φn,ε(x)

)
dx =

∑
z∈In,ε

∫
ε(z+knY )

L
(x
ε
, ξ +∇φn

(x
ε

))
dx

= |An,ε|−
∫
knY

L(x, ξ +∇φ̂n(x))dx,

and consequently

|An,ε|HL(ξ) ≤
∫
A

L
(x
ε
, ξ +∇φn,ε(x)

)
dx ≤ |A|−

∫
knY

L(x, ξ +∇φ̂n(x))dx

+|A \An,ε|ML(t)

because ξ ∈ tC. As limε→0 |A \An,ε| = 0 for any n ≥ 1, ML(t) <∞ by (3.49) and
using (3.50) we see that:
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� lim
ε→0
|A \An,ε|HL(ξ) = 0;

� lim
n→∞

lim
ε→0

(
−
∫
knY

L(x, ξ +∇φ̂n)dx−HL(ξ) +
|A \An,ε|
|A|

ML(t)

)
=0.

Hence

(3.52) lim
n→∞

lim
ε→0

∣∣∣∣−∫
A

L
(x
ε
, ξ +∇φn,ε(x)

)
dx−HL(ξ)

∣∣∣∣ = 0,

and the result follows from (3.51) and (3.52) by diagonalization. �

4. Proof of the homogenization theorem

In this section we prove Theorem 2.1.

4.1. Proof of Theorem 2.1(i). Fix u ∈W 1,∞(Ω;Rm) and {uε}ε ⊂W 1,∞(Ω;Rm)
such that ‖uε − u‖L1(Ω;Rm) → 0. We have to prove that

(4.1) lim
ε→0

Iε(uε) ≥ ĤI(u).

Without loss of generality we can assume that

lim
ε→0

Iε(uε) = lim
ε→0

Iε(uε) <∞, and so sup
ε
Iε(uε) <∞.

Then, ∇uε(x) ∈ C for all ε > 0 and a.a. x ∈ Ω because domW (x, ·) = C for all x ∈
Rd, and so supε ‖∇uε‖L∞(Ω;Mm×d) <∞. On the other hand, supε ‖uε‖L1(Ω;Rm) <∞
(since ‖uε − u‖L1(Ω;Rm) → 0) and by Poincaré-Wirtinger’s inequality, there exists
c > 0 such that supε ‖uε‖L∞(Ω;Rm) ≤ c(supε ‖uε‖L1(Ω;Rm)+supε ‖∇uε‖L∞(Ω;Mm×d)).
It follows that, up to a subsequence,

(4.2) uε
∗
⇀ u in W 1,∞(Ω;Rm),

where “
∗
⇀” denotes the weak star convergence in W 1,∞(Ω;Rm).

Step 1: approximation of W by periodic functions of 1-polynomial growth.
For each t ∈ [0, 1[, we define Wt : Rd ×Mm×d → [0,∞] by

Wt(x, ξ) :=

{
W (x, ξ) if ξ ∈ tC
δW (t)

(
1 + dist(ξ, C)

)
if ξ 6∈ tC

with δW (t) := infx∈Rd infξ∈C\tCW (x, ξ). As W is 1-periodic with respect to the

first variable, also is Wt for each t ∈ [0, 1[, i.e.,

(4.3) Wt(x+ z, ξ) = Wt(x, ξ) for all x ∈ Rd, all z ∈ Rd and all ξ ∈Mm×d.

As 0 ∈ C we have dist(ξ, C) ≤ |ξ| for all ξ ∈ Mm×d, and so for every t ∈ [0, 1[, Wt

is of 1-polynomial growth, i.e.,

(4.4) Wt(x, ξ) ≤ αt(1 + |ξ|) for all (x, ξ) ∈ Rd ×Mm×d

with αt := max {δW (t),MW (t)} where MW (t) := supx∈Rd supξ∈tCW (x, ξ) <∞ by

(2.3). On the other hand, under (2.4), it is easy to see that

(4.5) W ≥Ws ≥Wt for all s, t ∈ [0, 1[ with s ≥ t

and W = supt∈[0,1[Wt, i.e., {Wt}t∈[0,1[ is increasing to W .



HOMOGENIZATION OF UNBOUNDED SINGULAR INTEGRALS IN W 1,∞ 21

Step 2: passing to the limit. First of all, using (4.5) we see that

(4.6) HWs ≥ HWt for all s, t ∈ [0, 1[ with s ≥ t,

i.e., {HWt}t∈[0,1[ is increasing, with HWt : Mm×d → [0,∞] given by

HWt(ξ) := inf
k≥1

inf

{
−
∫
kY

Wt(x, ξ +∇φ(x))dx : φ ∈W 1,∞
0 (kY ;Rm)

}
.

On the other hand, given any t ∈ [0, 1[, by (4.5) we have

lim
ε→0

Iε(uε) ≥ lim
ε→0

∫
Ω

Wt

(x
ε
,∇uε(x)

)
dx.

Taking (4.2), (4.3) and (4.4) into account, from Proposition 3.16 we deduce that

lim
ε→0

Iε(uε) ≥
∫

Ω

HWt(∇u(x))dx

for all t ∈ [0, 1[, hence

lim
ε→0

Iε(uε) ≥
∫

Ω

sup
t∈[0,1[

HWt(∇u(x))dx

by using (4.6), and (4.1) follows from Proposition 3.11. �

4.2. Proof of Theorem 2.1(ii). Let u ∈ W 1,∞(Ω;Rm). We have to prove that
there exists {uε}ε ⊂W 1,∞(Ω;Rm) such that ‖uε − u‖L1(Ω;Rm) → 0 and

lim
ε→0

Iε(uε) ≤ ẐHI(u).

Without loss of generality we can assume that ẐHI(u) <∞, and so

(4.7) ∇u(x) ∈ ẐHW for a.a. x ∈ Ω,

where ẐHW denotes the effective domain of ẐHW .

Step 1: characterization of ẐHW . As W is ru-usc, from Propositions 3.7
and 3.6 we can assert that ZHW is ru-usc. Moreover, ZHW is continuous on
int(ZHW) by Lemma 3.9, and from Step 3 of Corollary 3.8 we see that tZHW ⊂
int(ZHW) for all t ∈]0, 1[ (where ZHW denotes the effective domain of ZHW ).
Hence

(4.8) ẐHW is ru-usc, i.e., lim
t→1

∆ẐHW (t) ≤ 0,

by Theorem 3.5(ii). On the other hand, using Corollary 3.8 we deduce that

(4.9) ẐHW (ξ) =


ZHW (ξ) if ξ ∈ C
lim
t→1
ZHW (tξ) if ξ ∈ ∂C

∞ otherwise.
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Step 2: approximation of ẐHW . First of all, it is clear that

(4.10) lim
t→1
‖tu− u‖W 1,1(Ω;Rm) = 0.

On the other hand, from (4.9) we see that ẐHW ⊂ C, and so t∇u(x) ∈ C for a.a.
x ∈ Ω because C is open and convex, 0 ∈ C and (4.7) holds. It follows that∫

Ω

ZHW (t∇u(x))dx ≤
∫

Ω

ẐHW (∇u(x))dx+ |Ω|∆ẐHW (t)

for all t ∈]0, 1[, and consequently

(4.11) lim
t→1

∫
Ω

ZHW (t∇u(x))dx ≤
∫

Ω

ẐHW (∇u(x))dx

because (4.8) holds.

Step 3: approximation of ZHW . Fix any t ∈]0, 1[. From (4.9) we deduce that

ẐHW ⊂ C, and so ∇(tu)(x) ∈ tC for a.a. x ∈ Ω because (4.7) holds. Moreover,
applying Lemma 3.9 with L = HW , we can assert that ZHW is continuous on
int(ZHW). But, arguing as in Step 4 of Corollary 3.8 we see that int(ZHW) = C,
and consequently ZHW is continuous on C. From Proposition 3.18 it follows that
there exists {Ωn,t;un,t}n where for each n ≥ 1, Ωn,t is an open subset of Ω and
un,t ∈W 1,∞(Ω;Rm), such that:

lim
n→∞

|Ω \ Ωn,t| = 0;(4.12)

un,t|Ωn,t ∈ Aff(Ωn,t;Rm) for all n ≥ 1;(4.13)

∇un,t(x) ∈
(
t+

1

n

)
C for a.a. x ∈ Ω and all n ≥ 1;(4.14)

lim
n→∞

‖un,t − tu‖W 1,1(Ω;Rm) = 0;(4.15)

lim
n→∞

∫
Ω

ZHW (∇un,t(x))dx =

∫
Ω

ZHW (t∇u(x))dx.(4.16)

Consider αt ∈]t, 1[ and nt ≥ 1 such that t+ 1
n < αt for all n ≥ nt. From (4.14) we

see that

(4.17) ∇un,t(x) ∈ αtC for a.a. x ∈ Ω and all n ≥ nt.
Fix any n ≥ nt. As un,t|Ωn,t ∈ Aff(Ωn,t;Rm) by (4.13), we can assert that there
exists a finite family {Ui}i∈I of open disjoint subsets of Ωn,t such that |Ωn,t \
∪i∈IUi| = 0 and, for each i ∈ I, |∂Ui| = 0 and ∇un,t(x) = ξi in Ui with ξi ∈Mm×d.
Thus

(4.18)

∫
Ωn,t

ZHW (∇un,t(x))dx =
∑
i∈I
|Ui|ZHW (ξi).

By Proposition 3.19, for each i ∈ I, there exists {φi,k}k ⊂ Aff0(Ui;Rm) such that:

lim
k→∞

‖φi,k‖L∞(Ui;Rm) = 0;(4.19)

lim
k→∞

−
∫
Ui

HW (ξi +∇φi,k(x))dx = ZHW (ξi).(4.20)

For each k ≥ 1, define uk,n,t ∈W 1,∞(Ω;Rm) by

uk,n,t(x) := un,t(x) + φi,k(x) if x ∈ Ui.
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Then:

uk,n,t|Ωn,t ∈ Aff(Ωn,t;Rm);(4.21)

‖uk,n,t − un,t‖L∞(Ω;Rm) = max
i∈I
‖φi,k‖L∞(Ui;Rm).(4.22)

From (4.22) and (4.19) we deduce that

(4.23) lim
k→∞

‖uk,n,t − un,t‖L∞(Ω;Rm) = 0.

On the other hand, taking (4.17) into account, for each k ≥ 1, we have∫
Ω

HW (∇uk,n,t(x))dx =

∫
Ωn,t

HW (∇uk,n,t(x))dx+

∫
Ω\Ωn,t

HW (∇un,t(x))dx

≤
∑
i∈I
|Ui|−
∫
Ui

HW (ξi +∇φi,k(x))dx+ |Ω \ Ωn,t|MW (αt)

with MW (αt) <∞ by (2.3), and consequently

(4.24) lim
k→∞

∫
Ω

HW (∇uk,n,t(x))dx ≤
∫

Ωn,t

ZHW (∇un,t(x))dx+ |Ω\Ωn,t|MW (αt)

by (4.20) and (4.18).

Step 4: approximation of HW . Fix any k ≥ 1. As ZHI(u) < ∞ and
MW (αt) < ∞, from (4.11), (4.16) and (4.24) we see that ∇uk,n,t(x) ∈ HW for
a.a. x ∈ Ω, where HW denotes the effective domain of HW , hence:

t∇uk,n,t(x) ∈ HW for a.a. x ∈ Ω;(4.25)

t∇uk,n,t(x) ∈ tC for a.a. x ∈ Ω(4.26)

because C ⊂ HW ⊂ C (see Remark 2.3) and C is open and convex and 0 ∈ C.
Taking (4.25) into account it follows that

(4.27)

∫
Ω

HW (t∇uk,n,t(x))dx ≤
∫

Ω

HW (∇uk,n,t(x))dx+ |Ω|∆HW (t)

with ∆HW (t) := supξ∈HWHW (tξ)−HW (ξ). From (4.21) we see that tuk,n,t|Ωn,t ∈
Aff(Ωn,t;Rm), and so we can assert that there exists a finite family {Vj}j∈J of open
disjoint subsets of Ωn,t such that |Ωn,t \ ∪j∈JVj | = 0 and, for each j ∈ J , |∂Vj | = 0
and

(4.28) t∇uk,n,t(x) = ζj in Vj with ζj ∈Mm×d.

It follows that

(4.29)

∫
Ωn,t

HW (t∇uk,n,t(x))dx =
∑
j∈J
|Vj |HW (ζj).

From (4.28) and (4.26) we see that ζj ∈ tC for all j ∈ J . Using Proposition 3.20

we deduce that for each j ∈ J , there exists {ψj,ε}ε ⊂W 1,∞
0 (Vj ;Rm) such that:

lim
ε→0
‖ψj,ε‖L1(Vj ;Rm) = 0;(4.30)

lim
ε→0
−
∫
Vj

W
(x
ε
, ζj +∇ψj,ε(x)

)
dx = HW (ζj).(4.31)

For each ε > 0, define uε,k,n,t ∈W 1,∞(Ω;Rm) by

uε,k,n,t(x) := tuk,n,t(x) + ψj,ε(x) if x ∈ Vj .
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Then
‖uε,k,n,t − tuk,n,t‖L1(Ω;Rm) =

∑
j∈J
‖ψj,ε‖L1(Vj ;Rm),

and so

(4.32) lim
ε→0
‖uε,k,n,t − tuk,n,t‖L1(Ω;Rm) = 0

by (4.30). On the other hand, Taking (4.26) into account, for each ε > 0, we have∫
Ω

W
(x
ε
,∇uε,k,n,t

)
dx =

∫
Ω

W
(x
ε
,∇uε,k,n,t

)
dx+

∫
Ω\Ωn,t

W
(x
ε
, t∇uk,n,t

)
dx

≤
∑
j∈J
|Vj |−
∫
Vj

W
(x
ε
, ζj +∇ψj,ε

)
dx+ |Ω \ Ωn,t|MW (t)

with MW (t) <∞ by (2.3), and consequently

lim
ε→0

∫
Ω

W
(x
ε
,∇uε,k,n,t(x)

)
dx ≤

∫
Ωn,t

HW (t∇uk,n,t(x))dx+ |Ω \ Ωn,t|MW (t)

by (4.31) and (4.29). Using (4.27) we conclude that

lim
ε→0

∫
Ω

W
(x
ε
,∇uε,k,n,t(x)

)
dx ≤

∫
Ω

HW (∇uk,n,t(x))dx(4.33)

+|Ω|∆HW (t) + |Ω \ Ωn,t|MW (t).

Step 5: passing to the limit. On one hand, it is easy to see that

‖uε,k,n,t − u‖L1(Ω;Rm) ≤ ‖uε,k,n,t − tuk,n,t‖L1(Ω;Rm) + t‖uk,n,t − un,t‖L1(Ω;Rm)

+t‖un,t − tu‖L1(Ω;Rm) + (t+ 1)‖tu− u‖L1(Ω;Rm),

and consequently

(4.34) lim
t→1

lim
n→∞

lim
k→∞

lim
ε→0
‖uε,k,n,t − u‖L1(Ω;Rm) = 0

by using (4.32), (4.23), (4.15) and (4.10). On the other hand, From (4.33), (4.24),
(4.16) and (4.12) we deduce that

lim
n→∞

lim
k→∞

lim
ε→0

∫
Ω

W
(x
ε
,∇uε,k,n,t(x)

)
dx ≤

∫
Ω

ZHW (t∇u(x))dx+ |Ω|∆HW (t).

But W is ru-usc, and so also is HW , i.e., limt→1 ∆HW (t) ≤ 0, by Proposition 3.7,
hence

(4.35) lim
t→1

lim
n→∞

lim
k→∞

lim
ε→0

∫
Ω

W
(x
ε
,∇uε,k,n,t(x)

)
dx ≤

∫
Ω

ẐHW (∇u(x))dx,

and the result follows from (4.34) and (4.35) by diagonalization. �
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[AK81] M. A. Akcoglu and U. Krengel. Ergodic theorems for superadditive processes. J. Reine

Angew. Math., 323:53–67, 1981.



HOMOGENIZATION OF UNBOUNDED SINGULAR INTEGRALS IN W 1,∞ 25

[AM02] Felipe Alvarez and Jean-Philippe Mandallena. Homogenization of multiparameter inte-

grals. Nonlinear Anal., 50(6, Ser. A: Theory Methods):839–870, 2002.

[AM04] Felipe Alvarez and Jean-Philippe Mandallena. Multi-parameter homogenization by lo-
calization and blow-up. Proc. Roy. Soc. Edinburgh Sect. A, 134(5):801–814, 2004.

[Bal77] John M. Ball. Convexity conditions and existence theorems in nonlinear elasticity. Arch.

Rational Mech. Anal., 63(4):337–403, 1976/77.
[BB00] Hafedh Ben Belgacem. Relaxation of singular functionals defined on Sobolev spaces.

ESAIM Control Optim. Calc. Var., 5:71–85 (electronic), 2000.

[CDA02] Luciano Carbone and Riccardo De Arcangelis. Unbounded functionals in the calculus of
variations, volume 125 of Chapman & Hall/CRC Monographs and Surveys in Pure and

Applied Mathematics. Chapman & Hall/CRC, Boca Raton, FL, 2002. Representation,

relaxation, and homogenization.
[DM99] Bernard Dacorogna and Paolo Marcellini. Implicit partial differential equations.

Progress in Nonlinear Differential Equations and their Applications, 37. Birkhäuser
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