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We study homogenization by Γ-convergence, with respect to the L 1 -strong convergence, of periodic multiple integrals in W 1,∞ when the integrand can take infinite values outside of a convex bounded open set of matrices. Ω W hom (∇u(x))dx,

Introduction

In this paper we are concerned with homogenization by Γ-convergence of multiple integrals of type (1.1)

Ω W x ε , ∇u(x) dx,
where ε > 0 is a (small) parameter, Ω ⊂ R d is a bounded open set with Lipschitz boundary, u ∈ W 1,∞ (Ω; R m ) and W : R d × M m×d → [0, ∞] is a Borel measurable function which is p-coercive, 1-periodic with respect to its first variable, not necessarily convex with respect to its second variable and infinite outside a convex bounded open set C ⊂ M m×d such that 0 ∈ C. In the scalar case, i.e., min{d, m} = 1, a wide literature exists on homogenization problems with constraints on the gradient, whose techniques cannot be generalized to the vector case, i.e., min{d, m} > 1, (see the book [START_REF] Carbone | Unbounded functionals in the calculus of variations[END_REF] and the reference therein). Thus, constraints on the gradient relating to problems of hyperelasticity cannot be treated with methods from the scalar framework. It is then of interest to develop techniques in the vector case for the homogenization of multiple integrals like (1.1) when the integrand can take infinite values: this is the general purpose of the present paper. For a recent work in the same spirit, we refer the reader to [AHLM] (see also [BB00, Syc05, AHM07, AHM08, AH10, Syc10] for the relaxation case). In this paper, our main contribution (see Theorem 2.1 and Corollaries 2.2 and 2.4) is to prove that under certain assumptions, i.e., (2.3), (2.4) and (2.5), which are related to hyperelasticity but not consistent with the material frame indifference axiom (see §2.2 for more details), (1.1) Γ-converges, as the parameter ε tends to zero, to the homogeneous multiple integral where u ∈ W 1,∞ (Ω; R m ) and W hom : M m×d → [0, ∞] is given by the formula (see also Remark 2.3) The paper is organized as follows. In Section 2 we state the main results of the paper, i.e., Theorem 2.1 and Corollaries 2.2 and 2.4, and, although our assumptions are not compatible with the material frame indifference axiom, indicate how these results could be related to the framework of hyperelasticity (see Proposition 2.5). Section 3 is devoted to the statements and proofs of auxiliary results needed in the proof of Theorem 2.1. Finally, Theorem 2.1 is proved in Section 4.

W hom (ξ) =        ZHW ( 

Main results

2.1. General results. Let d, m ≥ 1 be two integers, let C ⊂ M m×d be a convex bounded open set such that 0 ∈ C and let W : R d × M m×d → [0, ∞] be a Borel measurable function which is 1-periodic with respect to its first variable, i.e., and we consider the following three assertions:

W is locally bounded in C, i.e.,

(2.3) M W (t) < ∞ for all t ∈ [0, 1[; W is singular on the boundary ∂C of C, i.e.,

(2.4) lim

t→1 δ W (t) = ∞;
W is radially uniformly upper semicontinuous (ru-usc), i.e.,

(2.5) lim t→1 ∆ W (t) ≤ 0.

Note that, under (2.3) and (2.4), it is easy to see that if domW (x, •) ⊂ C for all x ∈ R d , then domW (x, •) = C for all x ∈ R d . Let Ω ⊂ R d be a bounded open set with Lipschitz boundary and let I ε , HI, ZHI : W 1,∞ (Ω; R m ) → [0, ∞] be defined by:

I ε (u) := Ω W x ε , ∇u(x) dx; HI(u) := Ω HW (∇u(x))dx; ZHI(u) := Ω ZHW (∇u(x))dx,
where ε > 0 is a (small) parameter and HW, HW , ZHW, ZHW :

M m×d → [0, ∞]
are given by: 

HW (ξ) := inf k≥1 inf - kY W (x, ξ + ∇φ(x))dx : φ ∈ W 1,∞ 0 (kY ; R m ) ; HW ( 
u ∈ W 1,∞ (Ω; R m ). (i) If {u ε } ε ⊂ W 1,∞ (Ω; R m ) is such that u ε -u L 1 (Ω;R m ) → 0, then lim ε→0 I ε (u ε ) ≥ HI(u).
(ii) There exists

{u ε } ε ⊂ W 1,∞ (Ω; R m ) such that u ε -u L 1 (Ω;R m ) → 0 and lim ε→0 I ε (u ε ) ≤ ZHI(u). Let I hom : W 1,∞ (Ω; R m ) → [0, ∞] be defined by I hom (u) := Ω W hom (∇u(x))dx with W hom : M m×d → [0, ∞] given by W hom (ξ) :=      ZHW (ξ) if ξ ∈ C lim t→1 ZHW (tξ) if ξ ∈ ∂C ∞ otherwise.
The following homogenization result is a consequence of Theorem 2.1.

Corollary 2.2. Let W : R d × M m×d → [0, ∞] be a Borel measurable function satisfying (2.1), (2.2), (2.3), (2.4) and (2.5). Then

Γ(L 1 )-lim ε→0 I ε = I hom .
Proof. As ZHI ≤ HI, from Theorem 2.1 we deduce that 

Γ(L 1 )-lim ε→0 I ε (u) = ZHI(u) = Ω ZHW (∇u(x))dx for all u ∈ W 1,∞ (Ω; R m ),
ε : W 1,∞ 0 (Ω; R m ) → [0, ∞] be defined by J ε (u) := I ε (u) if u ∈ W 1,∞ 0 (Ω; R m ) ∞ otherwise.
Using the Dirichlet version of Theorem 2.1 and arguing as in the proof of Corollary 2.2 we can establish the following result.

Corollary 2.4. Let W : R d × M m×d → [0, ∞] be a Borel measurable function satisfying (2.1), (2.2), (2.3), (2.4) and (2.5). Then

Γ(L 1 )-lim ε→0 J ε = J hom with J hom : W 1,∞ (Ω; R m ) → [0, ∞] given by J hom (u) := I hom (u) if u ∈ W 1,∞ 0 (Ω; R m ) ∞ otherwise.
To reduce technicalities and emphasize the essential difficulties, in the present paper we have restricted our attention on Theorem 2.1 and Corollary 2.2. The details of the proof of Corollary 2.4 are left to the reader.

2.2.

Towards applications in hyperelasticity. Let d ≥ 1 be an integer and let B be the unit open ball in M d×d . Given a continuous function g :

M d×d → [0, ∞[ and a convex function h : [0, 1[→ [0, ∞[ such that (2.6) h(t) ≥ ct p 1 -t p for all t ∈ [0, 1[ and some c > 0 and p > 0, we consider f : M d×d → [0, ∞] given by f (ξ) := g(I + ξ) + h(|ξ|) if ξ ∈ B ∞ otherwise,
where I denotes the identity matrix in M d×d . Given a 1-periodic function a ∈ L ∞ (R d ) such that α ≤ a(x) ≤ β for all x ∈ R d and some β > α > 0, we define

W : R d × M d×d → [0, ∞] by W (x, ξ) := a(x)f (ξ).
The following proposition makes clear the fact that such a W is consistent with the assumptions of Corollaries 2.2 and 2.4 as well as with some (but not all) conditions of hyperelasticity, i.e., the non-interpenetration of the matter, see Proposition 2.5(iv), and the necessity of an infinite amount of energy to compress a finite volume of matter into zero volume, see Proposition 2.5(v). However, since the effective domain of W is convex, it does not satisfy the material frame indifference axiom. Thus, we are still far from a result on homogenization that can be compared to Ball's lower semicontinuity theorem (see [START_REF] Ball | Convexity conditions and existence theorems in nonlinear elasticity[END_REF]).

Proposition 2.5. Let W : R d × M d×d → [0, ∞] be defined as above. Then: 

(i) W is 1-periodic with
:= sup{|g(ζ 1 ) -g(ζ 2 )| : ζ 1 , ζ 2 ∈ I + B and |ζ 1 -ζ 2 | ≤ r}.
As g is uniformly continuous on I + B we have ω(r) → 0 as r → 0. Given any t ∈ [0, 1], as a(x) ≤ β for each x ∈ R d and h is convex, we see that

W (x, tξ) -W (x, ξ) = a(x)(g(I + tξ) -g(I + ξ) + h(|tξ|) -h(|ξ|) ≤ βω(1 -t) + β(t -1)h(|ξ|) + β(1 -t)h(0) ≤ βω(1 -t) + β(1 -t)h(0)
for all x ∈ R d and all ξ ∈ B, hence sup Definition 3.1. We say that L is radially uniformly upper semicontinuous (ru-usc) if

x∈R d sup ξ∈B W (x, tξ) -W (x, ξ) ≤ βω(1 -t) + β(1 -t)h(0) for all t ∈ [0, 1],
lim t→1 ∆ L (t) ≤ 0. Remark 3.2. If L is ru-usc then (3.1) lim t→1 L(x, tξ) ≤ L(x, ξ)
for all x ∈ U and all ξ ∈ L x . Indeed, given x ∈ U and ξ ∈ L x , we have

L(x, tξ) ≤ ∆ L (t) + L(x, ξ) for all t ∈ [0, 1],
which gives (3.1) since lim t→1 ∆ L (t) ≤ 0.

Remark 3.3. If there exist x ∈ U and ξ ∈ L x such that L(x, •) is lsc at ξ then (3.2) lim t→1 ∆ L (t) ≥ 0.
Indeed, given such x ∈ U and ξ ∈ L x , we have ∆ L (t) ≥ L(x, tξ) -L(x, ξ) for all t ∈ [0, 1],

which gives (3.2) since lim t→1 (L(x, tξ) -L(x, ξ)) ≥ 0.

The following lemma is essentially due to Wagner (see [START_REF] Wagner | On the lower semicontinuous quasiconvex envelope for unbounded integrands[END_REF]).

Lemma 3.4. Assume that L is ru-usc and consider x ∈ U such that

(3.3) tL x ⊂ L x for all t ∈]0, 1[, where L x denotes the closure of L x . Then lim t→1 L(x, tξ) = lim t→1 L(x, tξ) for all ξ ∈ L x . Proof. Fix ξ ∈ L x . It suffices to prove that (3.4) lim t→1 L(x, tξ) ≤ lim t→1 L(x, tξ).
Without loss of generality we can assume that lim t→1 L(x, tξ) < ∞ and there exist {t n } n , {s n } n ⊂]0, 1[ such that:

t n → 1, s n → 1 and tn sn → 1; lim t→1 L(x, tξ) = lim n→∞ L(x, t n ξ); lim t→1 L(x, tξ) = lim n→∞ L(x, s n ξ).
From (3.3) we see that for every n ≥ 1, s n ξ ∈ L x , and so we can assert that for every n ≥ 1,

(3.5) L(x, t n ξ) ≤ ∆ L t n s n + L(x, s n ξ).
On the other hand, as L is ru-usc we have lim n→∞ ∆ L tn sn ≤ 1, and (3.4) follows from (3.5) by letting n → ∞.

Define L : U × M m×d → [0, ∞] by L(x, ξ) := lim t→1 L(x, tξ).
The interest of Definition 3.1 comes from the following theorem.

Theorem 3.5. If L is ru-usc and if for every x ∈ U ,

(3.6) tL x ⊂ int(L x ) for all t ∈]0, 1[ (in particular (3.3) holds) and L(x, •) is lsc on int(L x )
, where int(L x ) denotes the interior of L x , then:

(i) L(x, ξ) =    L(x, ξ) if ξ ∈ int(L x ) lim t→1 L(x, tξ) if ξ ∈ ∂L x ∞ otherwise; (ii) L is ru-usc; (iii) for every x ∈ U , L(x, •) is the lsc envelope of L(x, •).
Proof. (i) Lemma 3.4 shows that, for x ∈ U and ξ ∈ L x , L(x, ξ) = lim t→1 L(x, tξ). From remark 3.2 we see that if ξ ∈ int(L x ) then lim t→1 L(x, tξ) ≤ L(x, ξ). On the other hand, from (3.6) it follows that if ξ ∈ int(L x ) then tξ ∈ int(L x ) for all t ∈]0, 1[. Thus, lim t→1 L(x, tξ) ≥ L(x, ξ) whenever ξ ∈ int(L x ) since L(x, •) is lsc on int(L x ), and (i) follows. (ii) Fix any t ∈]0, 1[ any x ∈ U and any ξ ∈ L x , where L x denotes the effective domain of L(x, •). As L x ⊂ L x we have ξ ∈ L x and tξ ∈ L x since (3.3) holds. From Lemma 3.4 we can assert that:

L(x, ξ) = lim s→1 L(x, sξ); L(x, tξ) = lim s→1 L(x, s(tξ)),
and consequently

(3.7) L(x, tξ) -L(x, ξ) = lim s→1 L(x, t(sξ)) -L(x, sξ).
On the other hand, by (3.3) we have sξ ∈ L x for all s ∈]0, 1[, and so

L(x, t(sξ)) -L(x, sξ) ≤ ∆ L (t) for all s ∈]0, 1[. Letting s → 1 and using (3.7) we deduce that ∆ L (t) ≤ ∆ L (t) for all t ∈]0, 1[, which gives (ii) since L is ru-usc. (iii) Given x ∈ U , we only need to prove that if |ξ n -ξ| → 0 then (3.8) lim n→∞ L(x, ξ n ) ≥ L(x, ξ).
Without loss of generality we can assume that

lim n→∞ L(x, ξ n ) = lim n→∞ L(x, ξ n ) < ∞, and so sup n≥1 L(x, ξ n ) < ∞.
Thus ξ n ∈ L x for all n ≥ 1, hence ξ ∈ L x , and so

L(x, ξ) = lim t→1 L(x, tξ)
by Lemma 3.4. Moreover, using (3.3) we see that, for any t ∈]0, 1[, tξ ∈ L x and tξ n ∈ L x for all n ≥ 1, and consequently

lim n→∞ L(x, tξ n ) ≥ L(x, tξ) for all t ∈]0, 1[ because L(x, •) is lsc on L x and |tξ n -tξ| → 0. It follows that (3.9) lim t→1 lim n→∞ L(x, tξ n ) ≥ L(x, ξ).
On the other hand, for every n ≥ 1 and every t ∈ [0, 1], we have

L(x, tξ n ) ≤ L(x, ξ n ) + ∆ L (t).
As L is ru-usc, letting n → ∞ and t → 1 we obtain

lim t→1 lim n→∞ L(x, tξ n ) ≤ lim n→∞ L(x, ξ n ),
which gives (3.8) when combined with (3.9).

In what follows, given any bounded open set A ⊂ R d , we denote the space of continuous piecewise affine functions from

A to R m by Aff(A; R m ), i.e., u ∈ Aff(A; R m ) if and only if u ∈ C(A; R m
) and there exists a finite family

{A i } i∈I of open dis- joint subsets of A such that |A \ ∪ i∈I A i | = 0 and, for each i ∈ I, |∂A i | = 0 and ∇u(x) = ξ i in A i with ξ i ∈ M m×d . Define ZL : U × M m×d → [0, ∞] by ZL(x, ξ) := inf Y L(x, ξ + ∇φ(y))dy : φ ∈ Aff 0 (Y ; R m ) with Y :=]0, 1[ d and Aff 0 (Y ; R m ) := φ ∈ Aff(Y ; R m ) : φ = 0 on ∂Y .
Roughly, Proposition 3.6 shows that ru-usc functions have a nice behavior with respect to relaxation.

Proposition 3.6. If L is ru-usc then ZL is ru-usc.

Proof. Fix any t ∈ [0, 1], any x ∈ U and any ξ ∈ ZL x , where ZL x denotes the effective domain of ZL(x, •). By definition, there exists {φ n } n ⊂ Aff 0 (Y ; R m ) such that:

ZL(x, ξ) = lim n→∞ Y L (x, ξ + ∇φ n (y)) dy; ξ + ∇φ n (y) ∈ L x for all n ≥ 1 and a.a. y ∈ Y . Moreover, for every n ≥ 1, ZL(x, tξ) ≤ Y L (x, t(ξ + ∇φ n (y))) dy since tφ n ∈ Aff 0 (Y ; R m ), and so ZL(x, tξ) -ZL(x, ξ) ≤ lim n→∞ Y L(x, t(ξ + ∇φ n (y))) -L(x, ξ + ∇φ n (y)) dy.
As L is ru-usc it follows that ZL(x, tξ) -ZL(x, ξ) ≤ ∆ L (t), which implies that ∆ ZL (t) ≤ ∆ L (t) for all t ∈ [0, 1], and the proof is complete.

Assume that U = R d and define HL :

R d × M m×d → [0, ∞] by HL(ξ) := inf k≥1 inf - kY L(x, ξ + ∇φ(x))dx : φ ∈ W 1,∞ 0 (kY ; R m ) .
Roughly, Proposition 3.7 shows that ru-usc functions have a nice behavior with respect to homogenization. Proposition 3.7. If L is ru-usc then HL is ru-usc.

Proof. Fix any t ∈ [0, 1] and any ξ ∈ HL, where HL denotes the effective domain of HL. By definition, there exists {k n ; φ n } n such that:

φ n ∈ W 1,∞ 0 (k n Y ; R m ) for all n ≥ 1; HL(ξ) = lim n→∞ - knY L(x, ξ + ∇φ n (x))dx; ξ + ∇φ n (x) ∈ L x for all n ≥ 1 and a.a. x ∈ k n Y .
Moreover, for every n ≥ 1,

HL(tξ) ≤ - knY L(x, t(ξ + ∇φ n (x)))dx since tφ n ∈ W 1,∞ 0 (k n Y ; R m ),
and so

HL(tξ) -HL(ξ) ≤ lim n→∞ - knY L(x, t(ξ + ∇φ n (x))) -L(x, ξ + ∇φ n (x)) dx.
As L is ru-usc it follows that HL(tξ) -HL(ξ) ≤ ∆ L (t), which implies that ∆ HL (t) ≤ ∆ L (t) for all t ∈ [0, 1], and the proof is complete.

As a consequence of Theorem 3.5 and Propositions 3.6 and 3.7 we have

Corollary 3.8. Let W : R d × M m×d → [0, ∞] be a Borel measurable function satisfying (2.2) and (2.4). If W is ru-usc then ZHW (ξ) =    ZHW (ξ) if ξ ∈ C lim t→1 ZHW (tξ) if ξ ∈ ∂C ∞ otherwise.
Proof. Denote the effective domain of ZHW by ZHW.

Step 1: we prove that ZHW is ru-usc. First of all, we can assert that ZHW is continuous on int(ZHW) because of the following lemma due to Fonseca (see [START_REF] Fonseca | The lower quasiconvex envelope of the stored energy function for an elastic crystal[END_REF]).

Lemma 3.9. ZL is continuous on int(ZL).

On the other hand, from Proposition 3.7 we see that HW is ru-usc, hence ZHW is ru-usc by Proposition 3.6.

Step 2: we prove that C ⊂ ZHW ⊂ C. As ZHW ≤ W and W satisfies (2.2) we have C ⊂ ZHW. Fix any t ∈ [0, 1[. Using (2.2) we see that 

W (x, ξ) ≥ δ W (t)dist(ξ, C) =: G t (ξ) for all (x, ξ) ∈ R d × M m×d , where dist(ξ, C) := inf |ξ -ζ| : ζ ∈ C . But G t : M m×d → [0, ∞] is convex, hence ZHG t = G t ,
) = C for all x ∈ R d . For each t ∈ [0, 1[, we define L t : R d × M m×d → [0, ∞] by (3.12) L t (x, ξ) := L(x, ξ) if ξ ∈ tC δ L (t) 1 + dist(ξ, C) if ξ ∈ tC.
As 0 ∈ C we have dist(ξ, C) ≤ |ξ| for all ξ ∈ M m×d , and so for every t ∈ [0, 1[, L t is of 1-polynomial growth, i.e.,

L t (x, ξ) ≤ α t (1 + |ξ|) for all (x, ξ) ∈ R d × M m×d
with α t := max {δ L (t), M L (t)}. On the other hand, under (3.10) and (3.11), it is easy to see that 

{L t } t∈[0,1[ is increasing to L, i.e., L(x, ξ) = lim t↑1 L t (x, ξ) = sup t∈[0,1[ L t (x, ξ) for all (x, ξ) ∈ R d × M m×d .
HL t (ξ) := inf k≥1 inf - kY L t (x, ξ + ∇φ(x))dx : φ ∈ W 1,∞ 0 (kY ; R m ) ; HL(ξ) := inf k≥1 inf - kY L(x, ξ + ∇φ(x))dx : φ ∈ W 1,∞ 0 (kY ; R m ) ; HL(ξ) := lim s→1 HL(sξ).
Proof. Set L := sup t∈[0,1[ HL t , fix ξ ∈ M m×d and, without loss of generality, assume that L(ξ) < ∞. Noticing that (by a change of variable)

(3.13) HL t (ξ) = inf k≥1 inf Y L t (ky, ξ + ∇φ(y))dy : φ ∈ W 1,∞ 0 (Y ; R m ) , given any t ∈ [0, 1[, there exist k t ≥ 1 and φ t ∈ W 1,∞ 0 (Y ; R m ) such that Y L t (k t y, ξ + ∇φ δ (y))dy < HL t (ξ) + 1 δ L (t) ≤ L(ξ) + 1 δ L (t)
.

Setting A t := y ∈ Y : ξ + ∇φ t (y) ∈ tC and taking (3.12) into account, we see that:

At L(k t y, ξ + ∇φ t (y))dy < L(ξ) + 1 δ L (t) ; (3.14) Y \At dist(ξ + ∇φ t (y), C)dy + |Y \ A t | < 1 δ L (t) L(ξ) + 1 δ L (t) . (3.15)
As L(ξ) < ∞, from (3.15) we deduce that:

lim t→1 Y dist(ξ + ∇φ t (y), C)dy = 0; (3.16) lim t→1 |Y \ A t | = 0. (3.17)
Recall, in our context, the following lemma due to Müller (see [Mül99, Theorem 4] for a proof, see also [START_REF] Zhang | A construction of quasiconvex functions with linear growth at infinity[END_REF]).

Lemma 3.12. Given ξ ∈ M m×d and {φ

t } t∈[0,1[ ∈ W 1,∞ 0 (Y ; R m ), if (3.16) holds then one can find another sequence {ψ t } t∈[0,1[ ⊂ W 1,∞ 0 (Y ; R m ) such that: lim t→1 sup y∈Y dist(ξ + ∇ψ t (y), C) = 0; (3.18) lim t→1 |B t | = 0 with B t := y ∈ Y : ∇ψ t (y) = ∇φ t (y) . (3.19) Let {ψ t } t∈[0,1[ ⊂ W 1,∞ 0 (Y ; R m )
be given by Lemma 3.12. Fix any s ∈]0, 1[. Using (3.18) (and the fact that C is convex and 0 ∈ C) we can assert that there exists 

t s ∈ [0,
HL(sξ) ≤ L(ξ) + 1 δ L (t) + ∆ L (s) + M L ( √ s) (|Y \ A t | + |B t |) for all t ∈ [t s , 1[. As M L ( √ s) < ∞ by (3.10
), letting t → 1 and using (3.11), (3.17) and (3.19), we obtain HL(sξ) ≤ L(ξ) + ∆ L (s) for all s ∈]0, 1[, hence lim s→1 HL(sξ) ≤ L(ξ), because L is ru-usc, i.e., lim s→1 ∆ L (s) ≤ 0, and the result follows from Theorem 3.5(iii).

3.3. Weak star Γ-liminf of periodic integrals of 1-polynomial growth. For the convenience of the reader, in what follows we recall classical techniques on subadditivity, localization and blow up (see for instance [START_REF] Licht | Global-local subadditive ergodic theorems and application to homogenization in elasticity[END_REF][START_REF] Alvarez | Multi-parameter homogenization by localization and blow-up[END_REF]). In particular, Proposition 3.16 below will be used in the proof of Theorem 2.1(i). (i) We say that S is subadditive if

S(A) ≤ S(B) + S(C) for all A, B, C ∈ O b (R d ) with B, C ⊂ A, B ∩ C = ∅ and |A \ B ∪ C| = 0. (ii) We say that S is Z d -invariant if S(A + z) = S(A) for all A ∈ O b (R d ) and all z ∈ Z d .
Let Cub(R d ) be the class of all open cubes in R d and let Y :=]0, 1[ d . The following theorem is due to Akcoglu and Krengel (see [START_REF] Akcoglu | Ergodic theorems for superadditive processes[END_REF], see also [START_REF] Licht | Global-local subadditive ergodic theorems and application to homogenization in elasticity[END_REF] and [AM02, §B.1]).

Theorem 3.14. Let S : O b (R d ) → [0, ∞] be a subadditive and Z d -invariant set function for which there exists c > 0 such that

(3.21) S(A) ≤ c|A| for all A ∈ O b (R d ). Then, for every Q ∈ Cub(R d ), lim ε→0 S 1 ε Q 1 ε Q = inf k≥1 S(kY ) k d . Proof. Fix Q ∈ Cub(R d ).
First of all, it is easy to see that, for each k ≥ 1 and each ε > 0, there exist k ε ≥ 1 and

z ε ∈ Z d such that lim ε→0 k ε = ∞ and (3.22) (k ε -2)kY + k(z ε + ê) ⊂ 1 ε Q ⊂ k ε kY + kz ε with ê := (1, 1, • • • , 1
). Fix any k ≥ 1 and any ε > 0. As the set function S is subadditive and Z d -invariant, using the left inclusion in (3.22) we obtain

S 1 ε Q ≤ (k ε -2) d S(kY ) + S 1 ε Q \ (k ε -2)kY + k(z ε + ê) .
Moreover, it is clear that

1 ε Q \ (k ε -2)kY + k(z ε + ê) \ ∪ i∈I (A i + q i ) = 0 where q i ∈ Z d and {A i } i∈I is a finite family of disjoint open subsets of kY with card(I) = k d ε -(k ε -2) d
, and so

S 1 ε Q ≤ (k ε -2) d S(kY ) + c(k d ε -(k ε -2) d )k d by (3.21). It follows that S 1 ε Q 1 ε Q ≤ S(kY ) k d + c k d ε -(k ε -2) d (k ε -2) d because | 1 ε Q| ≥ (k ε -2) d k d
by the left inequality in (3.22). Letting ε → 0 and passing to the infimum on k, we obtain

lim ε→0 S 1 ε Q 1 ε Q ≤ inf k≥1 S(kY ) k d .
On the other hand, using the right inequality in (3.22) with k = 1, by subadditivity and Z d -invariance we have

S(k ε Y ) ≤ S 1 ε Q + S (k ε Y + z ε ) \ 1 ε Q .
As previously, since, up to a set of zero Lebesgue measure, the set (

k ε Y + z ε ) \ 1 ε Q can be written as the disjoint union of k d ε -(k ε -2) d integer
translations of open subsets of Y , by using (3.21), we deduce that

S(k ε Y ) ≤ S 1 ε Q + c(k d ε -(k ε -2) d ),
and consequently

inf k≥1 S(kY ) k d ≤ S(k ε Y ) k d ε ≤ S 1 ε Q 1 ε Q + c k d ε -(k ε -2) d k d ε because | 1 ε Q| ≤ k d ε by the right inequality in (3.22) with k = 1. Letting ε → 0 we obtain inf k≥1 S(kY ) k d ≤ lim ε→0 S 1 ε Q 1 ε Q
, and the proof is complete.

Given a Borel measurable function L :

R d × M m×d → [0, ∞], for each ξ ∈ M m×d , we define S ξ : O b (R d ) → [0, ∞] by (3.23) S ξ (A) := inf A L(x, ξ + ∇φ(x))dx : φ ∈ W 1,∞ 0 (A; R m ) .
It is easy that the set function S ξ is subbadditive. If we assume that L is 1-periodic with respect to the first variable,i.e., (3.24)

L(x + z, ξ) = L(x, ξ) for all x ∈ R d , all z ∈ R d and all ξ ∈ M m×d , then S ξ is Z d -invariant. Moreover, if L is of 1-polynomial growth, i.e., (3.25) L(x, ξ) ≤ α(1 + |ξ|) for all ξ ∈ M m×d and some α > 0, then S ξ (A) ≤ α(1 + |ξ|)|A| for all A ∈ O b (R d ).
From the above, we see that the following result is a direct consequence of Theorem 3.14.

Corollary 3.15. If L satisfies (3.24) and (3.25), then for every ξ ∈ M m×d and every

Q ∈ Cub(R d ), lim ε→0 S ξ 1 ε Q 1 ε Q = inf k≥1 S ξ (kY ) k d .

Localization and blow up techniques. In what follows, "

* " denotes the weak

star convergence in W 1,∞ (Ω; R m ). Proposition 3.16. Let L : R d × M m×d → [0, ∞] be a Borel measurable func- tion, let u ∈ W 1,∞ (Ω; R m ) and let {u ε } ε ⊂ W 1,∞ (Ω; R m ) be such that u ε * u in W 1,∞ (Ω; R m ). If L satisfies (3.24) and (3.25), then (3.26) lim ε→0 Ω L x ε , ∇u ε (x) dx ≥ Ω HL(∇u(x))dx with HL : M m×d → [0, ∞] defined by HL(ξ) := inf k≥1 S ξ (kY ) k d ,
where

S ξ : O b (R d ) → [0, ∞] is given by (3.23).
Proof. Without loss of generality we can assume that:

lim ε→0 Ω L x ε , ∇u ε (x) dx = lim ε→0 Ω L x ε , ∇u ε (x) dx < ∞; (3.27) sup ε ∇u ε L ∞ (Ω;M m×d ) < ∞; (3.28) lim ε→0 u ε -u L ∞ (Ω;R m ) = 0. (3.29)
Step 1: localization. For each ε > 0, we define f ε ∈ L 1 (Ω; [0, ∞]) by

f ε := L • ε , ∇u ε (•) .
By (3.27) we have sup ε f ε L 1 (Ω;[0,∞]) < ∞, and so there exist f ∈ L 1 (Ω; [0, ∞]) and a finite positive Radon measure µ s with |supp(µ s )| = 0 such that

f ε dx f dx + µ s in the sense of measures,
where for a.e. x 0 ∈ Ω,

f (x 0 ) = lim ρ→0 lim ε→0 - Qρ(x0) f ε (x)dx = lim ρ→0 lim ε→0 - Qρ(x0) L x ε , ∇u ε (x) dx with Q ρ (x 0 ) := x 0 + ρY . By Alexandrov's theorem we have lim ε→0 Ω L x ε , ∇u ε dx = lim ε→0 Ω f ε dx ≥ Ω f dx + µ s (Ω) ≥ Ω f dx
and so, to prove (4.1) it suffices to show that for a.e. x 0 ∈ Ω,

(3.30) f (x 0 ) = lim ρ→0 lim ε→0 - Qρ(x0) L x ε , ∇u ε (x) dx ≥ HL(∇u(x 0 )).
Step 2: cut-off method.

Fix any δ ∈]0, 1[. Let φ ∈ C ∞ c (Q ρ (x 0 ); [0, 1]) be a cut- off function between Q ρδ (x 0 ) and Q ρ (x 0 ) such that ∇φ L ∞ (Qρ(x0);R d ) ≤ 2 ρ(1-δ) . Setting v ε := φu ε + (1 -φ)l ∇u(x0)
with l ∇u(x0) (x) := u(x 0 ) + ∇u(x 0 )(x -x 0 ), it follows that (3.31)

∇v ε :=    ∇u ε on Q ρδ (x 0 ) φ∇u ε + (1 -φ)∇u(x 0 ) + Ψ ε,ρ on S ρ l ∇u(x0) on ∂Q ρ (x 0 ), with S ρ := Q ρ (x 0 ) \ Q ρδ (x 0 ) and Ψ ε,ρ := ∇φ ⊗ u ε -l ∇u(x0) , which, in particular, means that (3.32) v ε -l ∇u(x0) ∈ W 1,p 0 (Q ρ (x 0 ); R m ).
As L is of 1-polynomial growth, i.e., L satisfies (3.25), we have

- Qρ(x0) L x ε , ∇v ε dx ≤ - Qρ(x0) L x ε , ∇u ε dx + 1 ρ d Sρ L x ε , ∇v ε dx ≤ - Qρ(x0) L x ε , ∇u ε dx + α(1 -δ d ) + α ρ d Sρ |∇v ε |dx.
On the other hand, for every x ∈ S ρ , we have

|∇v ε (x)| ≤ |∇u ε (x)| + |∇u(x 0 )| + |Ψ ε,ρ (x)| ≤ sup ε ∇u ε L ∞ (Ω;M m×d ) + |∇u(x 0 )| + Ψ ε,ρ p L ∞ (Qρ(x0);M m×d ) ≤ c + |∇u(x 0 )| + 2 ρ(1 -δ) u ε -u L ∞ (Ω;R m ) + 2 1 -δ 1 ρ u -l ∇u(x0) L ∞ (Qρ(x0);R m )
with c := sup ε ∇u ε L ∞ (Ω;M m×d ) < ∞ by (3.28), and so

α ρ d Sρ |∇v ε |dx ≤ α(1 -δ d )(c + |∇u(x 0 )|) + 2α(1 -δ d ) ρ(1 -δ) u ε -u L ∞ (Ω;R m ) + 2α(1 -δ d ) 1 -δ 1 ρ u -l ∇u(x0) L ∞ (Qρ(x0);R m ) .
Thus, for every ε > 0 and every ρ > 0,

- Qρ(x0) L x ε , ∇v ε dx ≤ - Qρ(x0) L x ε , ∇u ε dx (3.33) +α(1 -δ d )(1 + c + |∇u(x 0 )|) + 2α(1 -δ d ) ρ(1 -δ) u ε -u L ∞ (Ω;R m ) + 2α(1 -δ d ) 1 -δ 1 ρ u -l ∇u(x0) L ∞ (Qρ(x0);R m ) .
Step 3: passing to the limit. Taking (3.32) into account we see that for every ε > 0,

- Qρ(x0) L x ε , ∇v ε dx ≥ 1 |Q ρ (x 0 )| S ∇u(x0) 1 ε Q ρ (x 0 ) ,
where, for any ξ ∈ M m×d and any open set A ⊂ R d , S ξ (A) is defined by (3.23). From Corollary 3.15 we deduce that

(3.34) lim ε→0 - Qρ(x0) L x ε , ∇v ε dx ≥ HL(∇u(x 0 )) for all ρ > 0.
On the other hand, as u ∈ W 1,∞ (Ω; R m ) we can assert that u is differentiable at x 0 , hence 

(3.35) lim ρ→0 1 ρ u -l ∇u(x0) L ∞ (Qρ(x0);R m ) = 0.
v ∈ W 1,∞ (Ω; R m ). Given t ∈]0, 1[, if ∇v(x)
∈ tC for a.a. x ∈ Ω then there exists {Ω n ; v n } n such that: Proof. Let {v n } n ⊂ W 1,∞ (Ω; R m ) be given by Lemma 3.17. Taking (3.41) into account we can assert that, up to a subsequence, (3.43) ∇v n (x) → ∇v(x) for a.a. x ∈ Ω.

Ω n is an open subset of Ω and |∂Ω n | = 0 for all n ≥ 1; (3.37) lim n→∞ |Ω \ Ω n | = 0; (3.38) v n ∈ W 1,∞ (Ω; R m ), v n | Ωn ∈ Aff(Ω n ; R m ) and v n = v on ∂Ω for all n ≥ 1, (3.39) ∇v n (x) ∈ t + 1 n C for a.a. x ∈ Ω and all n ≥ 1; (3.40) lim n→∞ v n -v W 1,1 (Ω;R m ) = 0. (3.41) Proposition 3.18. Let Ω ⊂ R d
Given α t ∈]t, 1[, there exists n t ≥ 1 such that t + 1 n < α t for all n ≥ n t , hence 

(3.44) ∇v n (x) ∈ α t C
{φ k } k ⊂ Aff 0 (A; R m ) such that: lim k→∞ φ k L ∞ (A;R m ) = 0; lim k→∞ - A L(ξ + ∇φ k (x))dx = ZL(ξ).
Proof. Given ξ ∈ M m×d there exists

{φ n } n ⊂ Aff 0 (Y ; R m ) such that (3.46) lim n→∞ Y L(ξ + ∇φ n (y))dy =
Fix any n ≥ 1 and k ≥ 1. By Vitali's covering theorem there exists a finite or countable family 

{a i + α i Y } i∈I of disjoint subsets of A, where a i ∈ R d and 0 < α i < 1 k , such that |A \ ∪ i∈I (a i + α i Y )| = 0 (and so i∈I α d i = |A|). Define φ n,k ∈ Aff 0 (A; R m ) by φ n,k (x) := α i φ n x -a i α i if x ∈ a i + α i Y. Clearly φ n,k L ∞ (A;R m ) ≤ 1 k φ n L ∞ (Y ;R m ) , hence lim k→∞ φ n,k L ∞ (A;R m ) =
ε(z + k n Y ) with I n,ε := z ∈ Z d : ε(z + k n Y ) ⊂ A , where card(I n,ε ) < ∞ because A is bounded, and define φ n,ε ∈ W 1,∞ 0 (A; R m ) by φ n,ε (x) := εφ n x ε if x ∈ A n,ε .
Fix any n ≥ 1. It is easy to see that

φ n,ε L 1 (A;R m ) = An,ε |φ n,ε (x)|dx = ε z∈In,ε ε(z+knY ) φ n x ε dx ≤ ε |A| k d n φn L 1 (knY ;R m )
for all ε > 0, and consequently lim ε→0 φ n,ε L 1 (A;R m ) = 0 for all n ≥ 1. It follows that

(3.51) lim n→∞ lim ε→0 φ n,ε L 1 (A;R m ) = 0.
On the other hand, for every n ≥ 1 and every ε > 0, we have

A L x ε , ξ + ∇φ n,ε (x) dx = An,ε L x ε , ξ + ∇φ n,ε (x) dx + A\An,ε L x ε , ξ dx. But An,ε L x ε , ξ + ∇φ n,ε (x) dx = z∈In,ε ε(z+knY ) L x ε , ξ + ∇φ n x ε dx = |A n,ε |- knY L(x, ξ + ∇ φn (x))dx,
and consequently

|A n,ε |HL(ξ) ≤ A L x ε , ξ + ∇φ n,ε (x) dx ≤ |A|- knY L(x, ξ + ∇ φn (x))dx +|A \ A n,ε |M L (t)
because ξ ∈ tC. As lim ε→0 |A \ A n,ε | = 0 for any n ≥ 1, M L (t) < ∞ by (3.49) and using (3.50) we see that: 

Proof of the homogenization theorem

In this section we prove Theorem 2.1.

4.1. Proof of Theorem 2.1(i). Fix u ∈ W 1,∞ (Ω; R m ) and {u ε } ε ⊂ W 1,∞ (Ω; R m ) such that u ε -u L 1 (Ω;R m ) → 0.
We have to prove that (4.1) lim

ε→0 I ε (u ε ) ≥ HI(u).
Without loss of generality we can assume that

lim ε→0 I ε (u ε ) = lim ε→0 I ε (u ε ) < ∞, and so sup ε I ε (u ε ) < ∞.
Then, ∇u ε (x) ∈ C for all ε > 0 and a.a. x ∈ Ω because domW (x, •) = C for all x ∈ R d , and so sup ε ∇u ε L ∞ (Ω;M m×d ) < ∞. On the other hand, sup ε u ε L 1 (Ω;R m ) < ∞ (since u ε -u L 1 (Ω;R m ) → 0) and by Poincaré-Wirtinger's inequality, there exists

c > 0 such that sup ε u ε L ∞ (Ω;R m ) ≤ c(sup ε u ε L 1 (Ω;R m ) +sup ε ∇u ε L ∞ (Ω;M m×d ) ).
It follows that, up to a subsequence, (4.2)

u ε * u in W 1,∞ (Ω; R m ),
where " * " denotes the weak star convergence in W 1,∞ (Ω; R m ).

Step 1: approximation of W by periodic functions of 1-polynomial growth. 

For each t ∈ [0, 1[, we define W t : R d × M m×d → [0, ∞] by W t (x, ξ) := W (x, ξ) if ξ ∈ tC δ W (t) 1 + dist(ξ, C) if ξ ∈ tC with δ W (t) := inf x∈R d inf ξ∈C\tC W (x, ξ). As W is 1-periodic with respect to the first variable, also is W t for each t ∈ [0, 1[, i.e., (4.3) W t (x + z, ξ) = W t (x, ξ) for all x ∈ R d , all z ∈ R d and
} ε ⊂ W 1,∞ (Ω; R m ) such that u ε -u L 1 (Ω;R m ) → 0 and lim ε→0 I ε (u ε ) ≤ ZHI(u).
Without loss of generality we can assume that ZHI(u) < ∞, and so (4.7) ∇u(x) ∈ ZHW for a.a. x ∈ Ω, where ZHW denotes the effective domain of ZHW .

Step 1: characterization of ZHW . As W is ru-usc, from Propositions 3.7 and 3.6 we can assert that ZHW is ru-usc. Moreover, ZHW is continuous on int(ZHW) by Lemma 3.9, and from Step 3 of Corollary 3.8 we see that tZHW ⊂ int(ZHW) for all t ∈]0, 1[ (where ZHW denotes the effective domain of ZHW ). Hence (4.8) ZHW is ru-usc, i.e., lim t→1 ∆ ZHW (t) ≤ 0, by Theorem 3.5(ii). On the other hand, using Corollary 3.8 we deduce that (4.9)

ZHW (ξ) =    ZHW (ξ) if ξ ∈ C lim t→1 ZHW (tξ) if ξ ∈ ∂C ∞ otherwise.
Step 2: approximation of ZHW . First of all, it is clear that (4.10) lim

t→1 tu -u W 1,1 (Ω;R m ) = 0.
On the other hand, from (4.9) we see that ZHW ⊂ C, and so t∇u(x) ∈ C for a.a.

x Step 4: approximation of HW . Fix any k ≥ 1. As ZHI(u) < ∞ and M W (α t ) < ∞, from (4.11), (4.16) and (4.24) we see that ∇u k,n,t (x) ∈ HW for a.a. x ∈ Ω, where HW denotes the effective domain of HW , hence: with ∆ HW (t) := sup ξ∈HW HW (tξ) -HW (ξ). From (4.21) we see that tu k,n,t | Ωn,t ∈ Aff(Ω n,t ; R m ), and so we can assert that there exists a finite family {V j } j∈J of open disjoint subsets of Ω n,t such that |Ω n,t \ ∪ j∈J V j | = 0 and, for each j ∈ J, |∂V j | = 0 and From (4.28) and (4.26) we see that ζ j ∈ tC for all j ∈ J. Using Proposition 3.20 we deduce that for each j ∈ J, there exists {ψ j,ε } ε ⊂ W 1,∞ 0 (V j ; R m ) such that: For each ε > 0, define u ε,k,n,t ∈ W 1,∞ (Ω; R m ) by u ε,k,n,t (x) := tu k,n,t (x) + ψ j,ε (x) if x ∈ V j . Step 5: passing to the limit. On one hand, it is easy to see that u ε,k,n,t -u L 1 (Ω;R m ) ≤ u ε,k,n,t -tu k,n,t L 1 (Ω;R m ) + t u k,n,t -u n,t L 1 (Ω;R m ) +t u n,t -tu L 1 (Ω;R m ) + (t + 1) tu -u L 1 (Ω;R m ) , and consequently But W is ru-usc, and so also is HW , i.e., lim t→1 ∆ HW (t) ≤ 0, by Proposition 3.7, hence 

W

  ξ) := inf φ∈Aff0(Y ;R m ) Y HW (ξ + ∇φ(y))dy if ξ ∈ C lim t→1 ZHW (tξ) if ξ ∈ ∂C ∞ otherwise with HW : M m×d → [0, ∞] defined by HW (ξ) := inf (x, ξ + ∇φ(x))dx and Aff 0 (Y ; R m ) denoting the space of continuous piecewise affine functions φ from Y :=]0, 1[ d to R m such that φ = 0 on the boundary ∂Y of Y .

(2. 1 )W

 1 W (x + z, ξ) = W (x, ξ) for all x ∈ R d , all z ∈ R d and all ξ ∈ M m×d , and infinite outside of C, i.e., (2.2) domW (x, •) = C for all x ∈ R d with domW (x, •) denoting the effective domain of W (x, •). We define M W , δ W : [0, 1] → [0, ∞] and ∆ W : [0, 1] →] -∞, ∞] by: M W (t) := sup x∈R d (x, tξ) -W (x, ξ)

  ξ) := lim t→1 HW (tξ); ZHW (ξ) := inf Y HW (ξ + ∇φ(y))dy : φ ∈ Aff 0 (Y ; R m ) ; ZHW (ξ) := lim t→1 ZHW (tξ) with Y :=]0, 1[ d and Aff 0 (Y ; R m ) := φ ∈ Aff(Y ; R m ) : φ = 0 on ∂Y where Aff(Y ; R m ) denotes the space of continuous piecewise affine functions from Y to R m . The main result of the paper is the following. Theorem 2.1. Let W : R d × M m×d → [0, ∞] be a Borel measurable function satisfying (2.1), (2.2), (2.3), (2.4) and (2.5) and let

3.

  Auxiliary results 3.1. Ru-usc functions. Let U ⊂ R d be an open set and let L : U ×M m×d → [0, ∞] be a Borel measurable function. For each x ∈ U , we denote the effective domain of L(x, •) by L x and we define ∆ L : [0, 1] →] -∞, ∞] by ∆ L (t) := sup x∈U sup ξ∈Lx L(x, tξ) -L(x, ξ).

  Moreover, we have Proposition 3.11. Under (3.10), (3.11), if L is ru-usc then lim t↑1 HL t = sup t∈[0,1[ HL t ≥ HL, where HL t , HL : M m×d , HL → [0, ∞] are given by

  3.3.1. A subadditive theorem. Let O b (R d ) be the class of all bounded open subsets of R d . We begin with the following definition. Definition 3.13. Let S : O b (R d ) → [0, ∞] be a set function.

Taking ( 3 -

 3 .33) into account, from (3.34), (3.29) and (3.35) we deduce that lim ρ→0 lim ε→0 Qρ(x0) L x ε , ∇u ε dx ≥ HL(∇u(x 0 )) + c (δ d -1) with c := α(1 + c + |∇u(x 0 )|), and (3.30) follows by letting δ → 1.3.4. Approximation of integrals which are locally bounded. Let C ⊂ M m×d be a convex bounded open set such that 0 ∈ C and let L : M m×d → [0, ∞] be a Borel measurable function which is locally bounded in C, i.e., (3.36) M L (t) < ∞ for all t ∈ [0, 1[ with M L (t) := sup ξ∈tC L(ξ). To prove Proposition 3.18 below, we need the following lemma whose proof can be found in [DM99, Theorem 10.16 and Corollary 10.21] (see also [AH10, Proposition 5.1]). (Recall that, given any bounded open set A ⊂ R d , Aff(A; R m ) denotes the space of continuous piecewise affine functions from A to R m .) Lemma 3.17. Let Ω ⊂ R d be a bounded open set with Lipschitz boundary and let

  be a bounded open set with Lipschitz boundary and let v ∈ W 1,∞ (Ω; R m ). Given t ∈]0, 1[, if ∇v(x) ∈ tC for a.a. x ∈ Ω and if L is continuous on C, then there exists {Ω n ; v n } n satisfying (3.37), (3.38), (3.39), (3.40), (3.41) and (3.42) lim n→∞ Ω L(∇v n (x))dx = Ω L(∇v(x))dx.

  for a.a. x ∈ Ω and all n ≥ n t by (3.40). Using (3.43) it follows that (3.45) ∇v(x) ∈ α t C for a.a. x ∈ Ω. As α t C ⊂ C (because C is open and convex and 0 ∈ C) and L is continuous on C, from (3.43), (3.44) and (3.45) we deduce that L(∇v n (x)) → L(∇v(x)) for a.a. x ∈ Ω. Moreover, from (3.44) we see that L(∇v n (x)) ≤ M L (α t ) for a.a. x ∈ Ω and all n ≥ n t , where M L (α t ) < ∞ because L is locally bounded in C, i.e., L satisfies (3.36), and (3.42) follows from Lebesgue's dominated convergence theorem. 3.5. Approximation of the relaxation formula. Given a Borel measurable function L : M m×d → [0, ∞] we consider ZL : M m×d → [0, ∞] defined by ZL(ξ) := inf Y L(ξ + ∇φ(y))dy : φ ∈ Aff 0 (Y ; R m ) with Y :=]0, 1[ d and Aff 0 (Y ; R m ) := φ ∈ Aff(Y ; R m ) : φ = 0 on ∂Y where Aff(Y ; R m ) is the space of continuous piecewise affine functions from Y to R m . The following proposition is adapted from [AHM08, Lemma 3.1] (see also [AHM07]). Proposition 3.19. Given ξ ∈ M m×d and a bounded open set A ⊂ R d there exists

(

  k L ∞ (A;R m ) = 0. On the other hand, we have A L(ξ + ∇φ n,k (x))dx = i∈I α d i Y L(ξ + ∇φ n (y))dy = |A| Y L(ξ + ∇φ n (y))dy for all n ≥ 1 and all k ≥ 1. Using (3.46) we deduce that + ∇φ n,k (x))dx = ZL(ξ), and the result follows from (3.47) and (3.48) by diagonalization. 3.6. Approximation of the homogenization formula. Given a convex bounded open set C ⊂ M m×d such that 0 ∈ C and a Borel measurable function L : R d × M m×d → [0, ∞] which is 1-periodic with respect to its first variable and locally bounded in C, i.e., (3.49) M L (t) < ∞ for all t ∈ [0, 1[ with M L (t) := sup x∈R d sup ξ∈tC L(x, ξ), we consider HL : M m×d → [0, ∞] defined by HL(ξ) := inf k≥1 inf -kY L(x, ξ + ∇φ(x))dx : φ ∈ W 1,∞ 0 (kY ; R m ) . The following proposition is adapted from [Mül87, Lemma 2.1(a)]. Proposition 3.20. Let t ∈]0, 1[, let ξ ∈ M m×d and let A ⊂ R d be a bounded open set. If ξ ∈ tC then there exists {φ ε } ε ⊂ W 1,∞ 0 (A; R m ) such that: lim ε→0 φ ε L 1 (A;R m ) ∇φ ε (x) dx = HL(ξ). Proof. Consider {k n ; φn } n such that: φn ∈ W 1,∞ 0 (k n Y ; R m ) for all n ≥ 1; lim n→∞ -knY L(x, ξ ∇ φn (x))dx = HL(ξ). (3.50) For each n ≥ 1 and ε > 0, denote the k n Y -periodic extension of φn by φ n , consider A n,ε ⊂ A given by A n,ε := ∪ z∈In,ε

  , ξ + ∇ φn )dx -HL(ξ) + |A \ A n,ε | |A| M L (t) ∇φ n,ε (x) dx -HL(ξ) = 0,and the result follows from (3.51) and (3.52) by diagonalization.

  t∇u k,n,t (x) ∈ HW for a.a. x ∈ Ω; (4.25) t∇u k,n,t (x) ∈ tC for a.a. x ∈ Ω (4.26) because C ⊂ HW ⊂ C (see Remark 2.3) and C is open and convex and 0 ∈ C. Taking (4.25) into account it follows that (4.27) Ω HW (t∇u k,n,t (x))dx ≤ Ω HW (∇u k,n,t (x))dx + |Ω|∆ HW (t)

  (4.28) t∇u k,n,t (x) = ζ j in V j with ζ j ∈ M m×d . k,n,t (x))dx = j∈J |V j |HW (ζ j ).

  + ∇ψ j,ε (x) dx = HW (ζ j ). (4.31)

  k,n,t -u L 1 (Ω;R m ) = 0 by using (4.32), (4.23), (4.15) and (4.10). On the other hand, From (4.33), (4.24), (4.16) and (4.12) we deduce that lim ε,k,n,t (x) dx ≤ Ω ZHW (t∇u(x))dx + |Ω|∆ HW (t).

  ε,k,n,t (x) dx ≤ Ω ZHW (∇u(x))dx,and the result follows from (4.34) and (4.35) by diagonalization.

  and the result follows from Corollary 3.8.Remark 2.3. Under the assumption of Corollary 2.2 we have W hom = HW with HW denoting the lower semicontinuous envelope (lsc) of HW . Indeed, as ZHI ≤ HI, from Theorem 2.1 we see that Γ(L 1 )-lim ε→0 I ε = HI, and consequently HI = I hom by Corollary 2.2. Thus W hom = HW . On the other, by Remark 3.10, tHW ⊂ int(HW) for all t ∈]0, 1[, where HW denotes the effective domain of HW . As W satisfies (2.5), from Proposition 3.7 we can assert that HW is ru-usc (see Definition 3.1) and so HW = HW by Theorem 3.5(iii).

To be complete, let us give the Dirichlet version of Corollary 2.2. For each ε > 0, let J

  Using (3.20) we see that for anyt ∈ [t s , 1[, (|Y \ A t | + |B t |) .As ξ + ∇φ t (y) ∈ tC for all y ∈ A t and tC ⊂ C (because C is open and convex and 0 ∈ C) it follows that R m ) and taking (3.13) and (3.14) into account, we deduce that

		L (k t y, t(ξ + ∇φ t (y))) dy
	(Y \Bt)∩At		
	+	L k t y,	√	s √ s(ξ + ∇ψ t (y)) dy
		(Y \At)∪Bt		
	≤	L (k t y, t(ξ + ∇φ t (y))) dy
	At +M L ( √ s)		

1[ such that for every t ∈ [t s , 1[ and every y ∈ Y , (3.20) ξ + ∇ψ t (y) ∈ 1 √ s C, i.e., √ s(ξ + ∇ψ t (y)) ∈ C. Y L (k t y, t(ξ + ∇ψ t (y))) dy = Y L (k t y, sξ + ∇(sψ t )(y)) dy ≤ At L (k t y, ξ + ∇φ t (y)) dy + ∆ L (s) +M L ( √ s) (|Y \ A t | + |B t |) with ∆ L (s) := sup x∈R d sup ζ∈C L(x, sζ)-L(x, ζ). Noticing that sψ t ∈ W 1,∞ 0 (Y ;

  all ξ ∈ M m×d .As 0 ∈ C we have dist(ξ, C) ≤ |ξ| for all ξ ∈ M m×d , and so for every t ∈ [0, 1[, W t {HW t } t∈[0,1[ is increasing, with HW t : M m×d → [0, ∞] given by

	is of 1-polynomial growth, i.e., (4.4) W t (x, ξ) ≤ α t (1 + |ξ|) for all (x, ξ) ∈ R d × M m×d with α t := max {δ W (t), M W (t)} where M W (t) := sup x∈R d sup ξ∈tC W (x, ξ) < ∞ by (2.3). On the other hand, under (2.4), it is easy to see that (4.5) (4.6) HW s ≥ HW t for all s, t ∈ [0, 1[ with s ≥ t, i.e., HW t (ξ) := inf k≥1 inf -kY W t (x, ξ + ∇φ(x))dx : φ ∈ W 1,∞ 0 (kY ; R m ) . On the other hand, given any t ∈ [0, 1[, by (4.5) we have lim ε→0 I ε (u ε ) ≥ lim ε→0 Ω W t x ε , ∇u ε (x) dx. Taking (4.2), (4.3) and (4.4) into account, from Proposition 3.16 we deduce that ε→0 W ≥ W Step 2: passing to the limit. First of all, using (4.5) we see that lim I ε (u ε ) ≥

s ≥ W t for all s, t ∈ [0, 1[ with s ≥ t

and W = sup t∈[0,1[ W t , i.e., {W t } t∈[0,1[ is increasing to W . Ω HW t (∇u(x))dx for all t ∈ [0, 1[, hence lim ε→0 I ε (u ε ) ≥ Ω sup t∈[0,1[

HW t (∇u(x))dx by using (4.6), and (4.1) follows from Proposition 3.11. 4.2. Proof of Theorem 2.1(ii). Let u ∈ W 1,∞ (Ω; R m ). We have to prove that there exists {u ε

  ∈ Ω because C is open and convex, 0 ∈ C and (4.7) holds. It follows that Fix any n ≥ n t . As u n,t | Ωn,t ∈ Aff(Ω n,t ; R m ) by (4.13), we can assert that there exists a finite family{U i } i∈I of open disjoint subsets of Ω n,t such that |Ω n,t \ ∪ i∈I U i | = 0 and, for each i ∈ I, |∂U i | = 0 and ∇u n,t (x) = ξ i in U i with ξ i ∈ M m×d . Proposition 3.19, for each i ∈ I, there exists {φ i,k } k ⊂ Aff 0 (U i ; R m ) such that: Ui HW (ξ i + ∇φ i,k (x))dx = ZHW (ξ i ). (4.20) For each k ≥ 1, define u k,n,t ∈ W 1,∞ (Ω; R m ) by u k,n,t (x) := u n,t (x) + φ i,k (x) if x ∈ U i . Ωn,t ∈ Aff(Ω n,t ; R m ); (4.21) u k,n,t -u n,t L ∞ (Ω;R m ) = max i∈I φ i,k L ∞ (Ui;R m ) . -u n,t L ∞ (Ω;R m ) = 0.On the other hand, taking (4.17) into account, for each k ≥ 1, we haveΩ HW (∇u k,n,t (x))dx = Ui HW (ξ i + ∇φ i,k (x))dx + |Ω \ Ω n,t |M W (α t ) with M W (α t ) < ∞by (2.3), and consequently (4.24) lim k→∞ Ω HW (∇u k,n,t (x))dx ≤ ZHW (∇u n,t (x))dx + |Ω \ Ω n,t |M W (α t ) by (4.20) and (4.18).

	Then:				
	u k,n,t | (4.22)	
	From (4.22) and (4.19) we deduce that
	Ω for all t ∈]0, 1[, and consequently ZHW (t∇u(x))dx ≤ (4.11) lim t→1 Ω ZHW (t∇u(x))dx ≤ Ω ZHW (∇u(x))dx + |Ω|∆ ZHW (t) Ω ZHW (∇u(x))dx (4.23) lim k→∞ Ω\Ωn,t u k,n,t Ωn,t HW (∇u k,n,t (x))dx + HW (∇u n,t (x))dx
	because (4.8) holds.	≤	|U i |-
					i∈I
						Ωn,t
	(4.12)	lim n→∞	|Ω \ Ω n,t | = 0;
	(4.13)	u n,t | Ωn,t ∈ Aff(Ω n,t ; R m ) for all n ≥ 1;
	(4.14)	∇u n,t (x) ∈ t +	1 n	C for a.a. x ∈ Ω and all n ≥ 1;
	(4.15)	lim n→∞	u n,t -tu W 1,1 (Ω;R m ) = 0;
	(4.16)	lim n→∞ Ω	ZHW (∇u n,t (x))dx =	Ω	ZHW (t∇u(x))dx.
	Consider α t ∈]t, 1[ and n t ≥ 1 such that t + 1 n < α t for all n ≥ n t . From (4.14) we
	see that				
	(4.17) ∇u n,Thus		
	(4.18)		ZHW (∇u n,t (x))dx =
		Ωn,t		
	By lim k→∞ (4.19)	φ i,k L ∞ (Ui;R m ) = 0;
		lim k→∞	-

Step 3: approximation of ZHW . Fix any t ∈]0, 1[. From (4.9) we deduce that ZHW ⊂ C, and so ∇(tu)(x) ∈ tC for a.a. x ∈ Ω because (4.7) holds. Moreover, applying Lemma 3.9 with L = HW , we can assert that ZHW is continuous on int(ZHW). But, arguing as in Step 4 of Corollary 3.8 we see that int(ZHW) = C, and consequently ZHW is continuous on C. From Proposition 3.18 it follows that there exists {Ω n,t ; u n,t } n where for each n ≥ 1, Ω n,t is an open subset of Ω and u n,t ∈ W 1,∞ (Ω; R m ), such that: t (x) ∈ α t C for a.a. x ∈ Ω and all n ≥ n t . i∈I |U i |ZHW (ξ i ).

  Then u ε,k,n,t -tu k,n,t L 1 (Ω;R m ) = -tu k,n,t L 1 (Ω;R m ) = 0 by (4.30). On the other hand, Taking (4.26) into account, for each ε > 0, we have + ∇ψ j,ε dx + |Ω \ Ω n,t |M W (t) with M W (t) < ∞ by (2.3), and consequently HW (t∇u k,n,t (x))dx + |Ω \ Ω n,t |M W (t) by (4.31) and (4.29). Using (4.27) we conclude that +|Ω|∆ HW (t) + |Ω \ Ω n,t |M W (t).

						ψ j,ε L 1 (Vj ;R m ) ,
						j∈J	
	and so						
	(4.32) u ε,k,n,t Ω lim ε→0 W x ε , ∇u ε,k,n,t dx = Ω W	x ε	, ∇u ε,k,n,t dx +	Ω\Ωn,t	W	x ε	, t∇u k,n,t dx
	≤ , ζ j lim j∈J |V j |-Vj W x ε ε→0 Ω W x , ∇u ε,k,n,t (x) dx ≤ ε Ωn,t	
	lim ε→0 Ω	W	x ε	, ∇u			

ε,k,n,t (x) dx ≤ Ω HW (∇u k,n,t (x))dx (4.33)