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A critical elliptic problem for polyharmonic operators

Yuxin Ge, Juncheng Wei and Feng Zhou ∗

Abstract

In this paper, we study the existence of solutions for a critical elliptic problem for
polyharmonic operators. We prove the existence result in some general domain by
minimizing on some infinite-dimensional Finsler manifold for some suitable perturba-
tion of the critical nonlinearity when the dimension of domain is bigger than critical
one. In particular, for the critical dimension, we prove also the existence of solutions
in domains perforated with the small holes. Some instable solutions are obtained in
higher level sets by Coron’s topological method, provided that the minimizing solution
does not exist.

AMS classification scheme numbers: 35J35, 35J40, 35J60

1 Introduction

This paper is a sequel to [21] on some semilinear critical problems for polyharmonic op-
erators. Let K ∈ N and Ω ⊂ RN (N ≥ 2K + 1) be a smooth bounded domain in RN .
We consider the semilinear polyharmonic problem with homogeneous Dirichlet boundary
condition

{

(−∆)Ku = |u|s−2u+ f(x, u) in Ω
u = Du = · · · = DK−1u = 0 on ∂Ω

(1)

where s := 2N
N−2K denotes the critical Sobolev exponent for (−∆)K and f(x, u) is a lower-

order perturbation of |u|s−2u (see the assumption (H2) below). The equation (1) is of
variational type: Solutions of (1) correspond to critical points of the energy functional

E(u) =
1

2
‖u‖2K,2,Ω −

1

s

∫

Ω
|u|s −

∫

Ω
F (x, u), (2)

defined on the Hilbert space

HK
0 (Ω) =

{

v ∈ HK(Ω) | Div = 0 on ∂Ω ∀ 0 ≤ i < K
}

which is endowed with the scalar product

(u, v)Ω =











∫

Ω
((−△)Mu)((−△)Mv) if K = 2M is even

∫

Ω
(∇(−△)Mu)(∇(−△)Mv) if K = 2M + 1 is odd

(3)
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and ‖ · ‖K,2,Ω is the corresponding norm, F (x, u) :=

∫ u

0
f(x, t)dt is the primitive of f .

We assume that

(H1) f(x, u) : Ω×R → R is continuous and sup
x∈Ω,|u|≤M

|f(x, u)| <∞ for every M > 0;

(H2) f(x, u) = a(x)u + g(x, u) with a(x) ∈ L∞(Ω) ∩ C∞(Ω), g(x, u) = o(u) as u → 0
uniformly in x and g(x, u) = o(|u|s−1) as u→ ∞ uniformly in x.

From (H1) to (H2), it follows f(x, 0) = 0 and that f is a lower-order perturbation of

|u|s−2u at infinite in the sense that lim
u→∞

f(x, u)

|u|s−1
= 0 uniformly in x ∈ Ω. Moreover, we

assume that f(x, u) satisfies

(H3) ∂f
∂u (x, u) is continuous on Ω×R;

(H4) |∂f∂u (x, u)| ≤ C(1 + |u|s−2), ∀u ∈ R uniformly in x ∈ Ω;

(H5) f1(x, u) := f(x,u)
u is non-decreasing in u > 0 and non-increasing in u < 0 for a.e.

x ∈ Ω.

For K = 1, f(x, u) = λu and λ ∈ (0, λ1) where λ1 is the first eigenvalue of −∆ for
Dirichlet boundary condition, the problem has a strong background from some variational
problems in geometry and physics, like as the Yamabe’s problem with lack of compactness.
This was considered by Brezis and Nirenberg for positive solutions in their pioneer work
in [5]. Then it has been studied extensively in the last three decades. We recall briefly
some results about the existence and multiplicity of sign-changing solutions to the problem
(1) for K = 1 and f(x, u) = λu. For any fixed λ > 0, the first multiplicity result was
due to Cerami, Fortunato and Struwe [8]. They obtained the number of the solutions of
(1) is bounded below by the number of the eigenvalues of −∆ lying in the open interval
(λ, λ + S|Ω|−2/N ), where S is the best constant for the Sobolev embedding D1,2(RN ) →֒
L2∗(RN ) (see the definition below) and |Ω| denotes the Lebesgue measure of Ω. Capozzi,
Fortunato and Palmieri in [7] established the existence of a nontrivial solution for λ > 0
which is not an eigenvalue of −∆ when N ≥ 4 and for any λ > 0 when N ≥ 5 (see also
[44]). In [11], Devillanova and Solimini proved that, if N ≥ 7, then (1) has infinitely
many solutions for every λ > 0. They proved also in [12] that, if N ≥ 4 and λ ∈ (0, λ1),
then there exist at least N

2 + 1 pairs of nontrivial solutions. Clapp and Weth [9] has
extended this last result to all λ > 0 with N ≥ 4. In the same paper they also obtained
some extensions to critical biharmonic problems for N ≥ 8. When the domain Ω is a ball
and N ≥ 4, Fortunato and Jannelli [15] proved there are infinitely many sign-changing
solutions which are built using particular symmetry of the domain Ω. Schechter and Zou
in [36] showed the same result for any domain Ω when n ≥ 7. In particular, if λ ≥ λ1, it
has and only has infinitely many sign-changing solutions except zero. Their work is based
on the estimates of Morse indices of nodal solutions.

Pucci and Serrin in [34] has studied the problem (1) for K = 2 and λ > 0 when
Ω is a ball. They proved that it admits nontrivial radial symmetric solutions for all
λ ∈ (0, λ1) if and only if N ≥ 8. If N = 5, 6, 7, then there exists λ∗ ∈ (0, λ1) such that
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the problem admits no nontrivial radial symmetric solutions whenever λ ∈ (0, λ∗]. Here
λ1 is understood as the first eigenvalue of ∆2 for Dirichlet boundary conditions. This is
the counterpart of the well known result of [5] on the nonexistence for radial symmetric
solutions for small λ in dimension N = 3 and K = 1 (where λ∗ = λ1/4). They called
these dimensions as critical dimensions. They conjectured that for general K ≥ 1, the
critical dimensions are 2K + 1, · · · , 4K − 1. The conjecture is not completely solved for
all K ≥ 1. Grunau [23] defined later the notion of weakly critical dimensions as the space
dimensions for which a necessary condition for the existence of a positive radial solution
of (1) in B1 is λ ∈ (λ∗, λ1) for some λ∗ > 0. He proved that the conjecture is true in the
weak sense. Gazzola, Grunau and Squassina [18] proved nonexistence of positive radial
symmetric solutions for Navier boundary condition for small λ > 0. They established
also some existence results for λ = 0. Their result strongly depends on the geometry of
domains. For biharmonic operators, Bartsch, Weth and Willem in [3] and Ebobisse and
Ahmedou in [13] have studied the problem (1) on domains with nontrivial topology under
Dirichlet boundary condition and Navier boundary condition respectively. For related
problems, we infer to [4], [14], [16], [17], [22], [24], [31] and the references therein.

For general case K ≥ 1, Ge has studied in [21] the same type of equation (1) for Navier
boundary condition when f(x, u) = λu with 0 ≤ λ < λ1 and λ1 the first eigenvalues of
(−∆)K . He established the existence of positive solutions in some general domain under
the suitable assumptions. In particular instable solutions in higher level set are obtained
by Coron’s topological method in domains perforated with the small holes.

The purpose of this paper is to continue the study of the semilinear polyharmonic
problem (1) to general K ≥ 1 with Dirichlet boundary condition for general domain. Let
us denote the polyharmonic operator

L := (−∆)K − a(x)

and λ1(Ω) ≤ λ2(Ω) ≤ · · · ≤ λn(Ω) ≤ · · · the eigenvalues of L under the homogeneous
Dirichlet boundary condition. It is well known that each eigenvalue λk(Ω), k ≥ 1, can be
described as the minimax value

λk(Ω) = min
V⊂HK

0
(Ω),dimV=k

max
v∈V

∫

Ω
vLv

∫

Ω
v2

.

It follows that λk(Ω) is a non-increasing functional on the domains, that is, if Ω2 ⊂
Ω1, then λk(Ω2) ≥ λk(Ω1). Moreover, from the unique continuation principle, we have
λk(Ω2) > λk(Ω1) for any k ≥ 1, provided Ω1 is connected (see [27, 33]). For the perforated
domain Ω := Ω1 \ Ω2 with the smooth bounded domains Ω2 ⊂ Ω1, with the help of the
above description, we have

limλk(Ω1 \Ω2) = λk(Ω1),

where the limit is taken as the diameter of Ω2 goes to 0. To this aim, it suffices to consider
Ω2 = B(x, ǫ) balls with small radius ǫ > 0 in the sequel.
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Assume now λn(Ω) ≤ 0 and λn+1(Ω) > 0 for some n ≥ 1. Let ei(x) be an eigenfunction
associated to λk(Ω) with ‖ei‖K,2,Ω = 1 for any 1 ≤ i ≤ n. Define

M := {v ∈ HK
0 (Ω) \ {0}| dE(v)(w) = 0, ∀w ∈ Span(v, e1, · · · , en)}.

We prove in Section 2 that under the hypothesis (H1) to (H5), M is then a complete C1

Finsler manifold and it will be a C1,1 Finsler manifold with additional assumptions (H6)
to (H7) (see section 2). This permits to consider the following minimization problem

κ := inf
v∈M

E(v).

We can prove then κ ≤ K
N (SK(Ω))

N
2K for any f satisfying (H1) to (H5), where we denote

SK(Ω) := inf
v∈HK

0
(Ω)\{0}

‖v‖2K,2,Ω

‖v‖2Ls(Ω)

the best constant for the embedding HK
0 (Ω) →֒ Ls(Ω). Here, as for K = 1, it is well

known that SK(Ω) is independent of Ω and SK(Ω) = SK(RN ) := inf
v∈HK(RN )\{0}

‖v‖2K,2,RN

‖v‖2
Ls(RN )

.

Therefore we denote it by SK in the sequel (see [17, 20]). We prove then that for non
critical dimension case N ≥ 4K and f(x, u) = µu, the infimum above is achieved by some
u ∈ M which is a solution of (1). This method can be seen as an alternative approach
to the linking method (see [38]). For the critical dimension 2K < N < 4K, the existence
of solutions to (1) is a delicate issue. To our knowledge, there are few results on it. This
fact comes from the minimizing method fails, for example, for K = 1, when Ω ⊂ R3 is a
ball and when f(x, u) = λu with 0 < λ < λ1

4 . It is well known that there are no positive
solutions. In Section 3, we study the existence of solutions for some perforated domains
in such critical dimensions. We analyze the concentration phenomenon when κ equals to
K
N (SK)

N
2K . Then following Coron’s strategy of topological argument, we obtain the exis-

tence of instable critical points in higher level sets for domains perforated with small holes.

In all this paper, C,C ′ and c denote generic positive constant independent of u, even
their value could be changed from one line to another one. We give also some nota-
tions here. The space DK,2(RN ) (resp. DK,2(RN

+ )) is the completion of C∞
0 (RN ) (resp.

C∞
0 (RN

+ )) for the norm ‖ · ‖K,2,RN (resp. ‖ · ‖K,2,RN
+
).

2 Study of the energy functional E on M

We begin this section by studying some properties of the set M. Observe that v ∈ M is
equivalent to say v 6= 0 and satisfying

l0(v) := ‖v‖2K,2,Ω − ‖v‖sLs(Ω) −

∫

Ω
f(x, v)v = 0

li(v) := (v, ei)Ω −

∫

Ω
|v|s−2vei −

∫

Ω
f(x, v)ei = 0, ∀1 ≤ i ≤ n.

(4)

Let us denote V0 := Span(e1, · · · , en) the n−dimensional vector space spanned by e1, · · · , en.
We prove now the following proposition.
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Proposition 1 Suppose (H1) to (H5) are satisfied. Then M is a complete C1 Finsler
manifold. Furthermore, suppose that

(H6) ∂2f
∂u2 (x, u) is continuous on Ω×R and u 7→ |u|s−2u is C2 on R;

(H7) | ∂2

∂u2 f(x, u)| ≤ C(|u|+ 1)s−3, ∀u ∈ R uniformly in x ∈ Ω.

Then M is a complete C1,1 Finsler manifold.

Proof. The proof is divided into several steps.

Step 1. M is not empty.

By the assumptions (H1)-(H2), E is a continuous functional on HK
0 (Ω). Fixing v 6∈ V0

and let V := Span(v, e1, · · · , en). Clearly, for all w ∈ V , we have

E(w) ≤
1

2
‖w‖2K,2,Ω −

1

2

∫

Ω
a(x)w2 −

1

s

∫

Ω
|w|s, (5)

since it follows from (H2) and (H5) that g(x,u)
u ≥ 0 and F (x, u) ≥ 1

2a(x)u
2 for all u ∈ R\{0}

and for a.e. x ∈ Ω. As V is a finite dimensional vector space, all the norms on it are
equivalent. In particular, the norms ‖ · ‖K,2,Ω and ‖ · ‖Ls(Ω) are equivalent on V . This
implies

lim
w∈V,w→∞

E(w) = −∞. (6)

On the other hand, again from (H2), we infer for any given ε > 0, there exists C > 0 such
that for all u ∈ R and for a.e. x ∈ Ω

g(x, u) ≤ ε|u| + C|u|s−1, F (x, u) ≤
1

2
(a(x) + ε)u2 +

C

s
|u|s, (7)

so that for all w ∈ V

E(w) ≥
1

2
‖w‖2K,2,Ω −

1

2

∫

Ω
(a(x) + ε)w2 −

1 + C

s

∫

Ω
|w|s.

Since v 6∈ V0, we can choose v′ ∈ V ∩ (V0)
⊥ such that 1

2‖v
′‖2K,2,Ω − 1

2

∫

Ω a(x)(v
′)2 > 0. By

taking a sufficiently small ε > 0, we have

1

2
‖v′‖2K,2,Ω −

∫

Ω

1

2
(a(x) + ε)(v′)2 ≥ ε‖v′‖2K,2,Ω. (8)

As a consequence, we obtain
sup
w∈V

E(w) > 0. (9)

Together with (6), there exists ṽ ∈ V such that E(ṽ) = maxw∈V E(w) since V is a finite
dimensional vector space. Clearly, ṽ ∈ M.

Step 2. M is closed.

5



We define the map

L : HK
0 (Ω) → Rn+1

v 7→ (l0(v), · · · , ln(v)).

In view of the assumptions (H1)-(H2), L is continuous on HK
0 (Ω). Let (vk) ⊂ M be a

sequence in M such that vk → v in HK
0 (Ω). Then we get L(v) = 0. Now it suffices to

show v 6= 0. First, we note vk 6∈ V0 for all k ∈ N. Indeed, we have

‖vk‖
2
K,2,Ω −

∫

Ω
a(x)v2k = ‖vk‖

s
Ls(Ω) +

∫

Ω
g(x, vk)vk. (10)

If we have vk ∈ V0 for some k ≥ 1, the term on the left hand is non-positive. But that
one on the right hand is non-negative. Thus, ‖vk‖

s
Ls(Ω) = 0 and the desired contradiction

vk 6= 0 gives the result. Now, we claim there exists some positive number c > 0 such that
‖vk‖K,2,Ω > c. We denote the orthogonal projection of vk on V0 by

v
‖
k :=

n
∑

i=1

(vk, ei)Ωei

and v⊥k its orthogonal complementary

v⊥k := vk − v
‖
k.

As vk ∈ M, we obtain

(vk, v
‖
k)Ω −

∫

Ω
a(x)vkv

‖
k =

∫

Ω
(|vk|

s−2 +
g(x, vk)

vk
)vkv

‖
k.

Together with (10), we have

‖v⊥k ‖
2
K,2,Ω −

∫

Ω
a(x)(v⊥k )

2 − (‖v
‖
k‖

2 −

∫

Ω
a(x)(v

‖
k)

2)

=

∫

Ω
(|vk|

s−2 +
g(x, vk)

vk
)((v⊥k )

2 − (v
‖
k)

2)

which implies

‖v⊥k ‖
2
K,2,Ω −

∫

Ω
a(x)(v⊥k )

2 ≤

∫

Ω
(|vk|

s−2 +
g(x, vk)

vk
)(v⊥k )

2, (11)

since

‖v
‖
k‖

2
K,2,Ω −

∫

Ω
a(x)(v

‖
k)

2 ≤ 0.

Gathering (5), (8) and (11), we get

2ε‖v⊥k ‖
2
K,2,Ω ≤ ‖v⊥k ‖

2 −

∫

Ω
(a(x) + ε)(v⊥k )

2

≤ (1 + C)

∫

Ω
|vk|

s−2(v⊥k )
2

≤ (1 + C)‖vk‖
s−2
Ls(Ω)‖v

⊥
k ‖

2
Ls(Ω) ≤ C ′(1 + C)‖vk‖

s−2
Ls(Ω)‖v

⊥
k ‖

2
K,2,Ω

6



Finally, ‖vk‖Ls(Ω) ≥ c > 0 and the desired claim follows.

Step 3. dL(v) is surjective and its kernel splits for all v ∈ M.

By (H3) and (H4), f(x, u)u and f(x, u) are C1 on Ω×R and
∣

∣

∣

∣

∂(f(x, u)u)

∂u
(x, u)

∣

∣

∣

∣

≤ C(1 + |u|s−1), uniformly in x ∈ Ω and ∀u ∈ R. (12)

Therefore, L is C1 on HK
0 (Ω) provided the assumptions (H1)-(H4) hold. A direct calcu-

lation leads to

dl0(v)(w) = 2(v,w)Ω − s

∫

Ω
|v|s−2vw −

∫

Ω
(f(x, v) + v

∂f(x, v)

∂v
)w,

dli(v)(w) = (w, ei)Ω − (s − 1)

∫

Ω
|v|s−2wei −

∫

Ω

∂f(x, v)

∂v
wei, ∀1 ≤ i ≤ n.

(13)

We claim dL(v)|V , the restriction on V of dL(v), is a bijective endomorphism from V on
Rn+1. As V and Rn+1 have the same dimension, it suffices to prove Ker(dL(v)|V ) = {0}.
Let w ∈ Ker(dL(v)|V ) and write w = µv+

∑n
i=1 µiei where µ, µi ∈ R for each i. Combining

(4) and (13), we get

dl0(v)(w) = −(s− 2)

∫

Ω
|v|s−2vw −

∫

Ω
(−f(x, v) + v

∂f(x, v)

∂v
)w = 0,

dli(v)(w) = −

∫

Ω
(−
f(x, v)

v
+
∂f(x, v)

∂v
)µvei − (s− 2)

∫

Ω
|v|s−2µvei

+(
∑n

j=1 µjej, ei)Ω − (s− 1)

∫

Ω
|v|s−2ei

n
∑

j=1

µjej −

∫

Ω

∂f(x, v)

∂v
ei

n
∑

j=1

µjej = 0,

(14)
for all 1 ≤ i ≤ n. On the other hand, we have

µdl0(v)(w) +
n
∑

i=1

µidli(v)(w) = 0.

Together with (14), we infer

(s − 2)

∫

Ω
|v|s−2w2 +

∫

Ω
|v|s−2(

n
∑

j=1

µjej)
2 +

∫

Ω
(−
f(x, v)

v
+
∂f(x, v)

∂v
)w2

+

∫

Ω

g(x, v)

v
(

n
∑

j=1

µjej)
2 − (

n
∑

j=1

µjej ,
n
∑

i=1

µiei)Ω +

∫

Ω
a(x)(

n
∑

j=1

µjej)
2 = 0.

We know from (H2) and (H5) that − f(x,v)
v + ∂f(x,v)

∂v ≥ 0, g(x,v)
v ≥ 0 and

(
n
∑

j=1

µjej ,
n
∑

i=1

µiei)Ω −

∫

Ω
a(x)(

n
∑

j=1

µjej)
2 ≤ 0.

Finally, we deduce

vw(x) = 0, v
n
∑

j=1

µjej(x) = 0 for a.e. x ∈ Ω (15)
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and

(
n
∑

j=1

µjej ,
n
∑

i=1

µiei)Ω −

∫

Ω
a(x)(

n
∑

j=1

µjej)
2 = 0. (16)

Thus we have

µv2 = vw − v
n
∑

j=1

µjej = 0

which yields µ = 0. Moreover, it follows from (16) that

Lw = 0.

By the unique continuation principle, we have either w ≡ 0 or w(x) 6= 0 for a.e. x ∈ Ω.
Indeed, we state first w is regular. All the derivatives of w vanish a.e. on the set {x ∈
Ω;w(x) = 0} provided this set is not a negligible measurable set. Thus, w vanishes of
infinite order at such points. By the strong unique continuation principle [27], w vanishes.
Going back to (15), we have w ≡ 0 and the desired claim follows. As a consequence, for
all v ∈ M, dL(v) is surjective and HK

0 (Ω) = ker(dL(v)) ⊕ V . M is thus a complete C1

Finsler manifold (see [26]). Furthermore, M is a complete C1,1 Finsler manifold provided
(H6) and (H7) are satisfied.

For any v ∈ HK
0 (Ω) \ V0, we denote by

V + := {tv +
n
∑

i=1

µiei| for all t > 0, µi ∈ R},

the (n+ 1)−dimensional half space spanned by v and {ei} for all 1 ≤ i ≤ n. We have the
following

Lemma 1 Under the assumptions (H1) to (H5), then there exists an unique v0 ∈ M such
that

M∩ V + = {v0}. (17)

Moreover we have
E(v0) = max

w∈V +
E(w). (18)

Proof. Given v ∈ HK
0 (Ω) \ V0, we define for any t > 0 the n−dimensional affine vector

space
Vt := tv + V0.

We divide the proof into several steps.

Step 1. For any t > 0 there exists an unique v(t) ∈ Vt such that E(v(t)) = max
Vt

E.

Moreover, {v(t), t > 0} is a C1 curve in V +.

From (H1) to (H4), it is known that E is C2 on V +. Thanks to (6), we have

lim
w∈Vt,w→∞

E(w) = −∞

8



Thus there exists some v(t) ∈ Vt such that E(v(t)) = maxw∈Vt E(w). A direct calculation
leads to

d2E(v)(w,w) = ‖w‖2K,2,Ω −

∫

Ω
a(x)w2 −

∫

Ω
((s − 1)|v|s−2 +

∂g(x, v)

∂v
)w2

By (H5), we infer
g(x, v)

v
≥ 0 and

∂g(x, v)

∂v
≥
g(x, v)

v
≥ 0.

Hence, d2E(v) < 0 on Vt, that is, the functional E is strictly concave on Vt. This yields the
uniqueness. We note {v(t), t > 0} = {w ∈ V +| dE(w)|V0

= 0}. As the second variation
d2E of E is negative define on V0, it follows from the Implicit Function Theorem that
{v(t), t > 0} is a C1 curve in V + which finishes the proof of step 1.

Step 2. For all w ∈ M∩V +, the restriction of E on V + has a strictly local maximum
at w.

Recall V := Span(v, e1, · · · , en). Let v 6= 0 satisfying dE(v)|V = 0 and w = µv +
∑n

i=1 µiei ∈ V . As in the proof of Proposition 1, we have by (H2),

d2E(v)(w,w) = −(s− 2)

∫

Ω
|v|s−2w2 −

∫

Ω
|v|s−2(

n
∑

j=1

µjej)
2

−

∫

Ω
(−
f(x, v)

v
+
∂f(x, v)

∂v
)w2 −

∫

Ω

g(x, v)

v
(

n
∑

j=1

µjej)
2

+(
n
∑

j=1

µjej ,
n
∑

i=1

µiei)Ω −

∫

Ω
a(x)(

n
∑

j=1

µjej)
2

which implies from (H1) to (H5)

d2E(v)(w,w) < 0 provided w 6= 0.

Therefore, the desired claim follows.

Step 3. There exists an unique t0 > 0 such that v(t0) ∈ M. Moreover, dE(v(t))(v(t)) >
0 for any 0 < t < t0 and dE(v(t))(v(t)) < 0 for any t > t0.

With the same arguments as in the proof of Proposition 1, we have

sup
w∈V +

E(w) > 0. (19)

On the other hand, it follows from (5) that ∀w ∈ V0

E(w) ≤ 0. (20)

In particular, we obtain

sup
w∈V +

E(w) = sup
w∈V +

E(w) = sup
t>0

E(v(t)),

9



where V + is the closure of V +. Combining (6), (19) and (20) and using the continuity of
E on V +, there exists some v0 ∈ M∩ V + such that

E(v0) = sup
w∈V +

E(w).

We know
M∩ V + ⊂ {w ∈ V +| dE(w)|V0

= 0} = {v(t)| t > 0} (21)

so that there exists t0 > 0 such that v(t0) = v0. Set α(t) := E(v(t)) then α′(t) =

dE(v(t))(v′(t)) = l0(v(t))
t since v′(t) − v ∈ V0 and dE(v(t))|V0

= 0. We claim M ∩ V + =
{v(t)| α′(t) = 0}. Obviously, M ∩ V + ⊂ {v(t)| α′(t) = 0}. Conversely, for any v(t)
with α′(t) = 0, by the method of Lagrange multipliers, there exists µ1, · · · , µn ∈ R such

that dE(v(t))|V +
n
∑

i=1

µidli(v(t))|V = 0. Hence, we have on V0,

n
∑

i=1

µid
2E(v(t))(·, ei) = 0.

By virtue of the fact d2E(v)|V0
< 0 for all v ∈ Vt, we infer µ1 = · · · µn = 0 which proves

the claim. Applying (6), we infer

lim
t→+∞

α(t) = −∞,

since
lim

t→+∞
inf
w∈Vt

‖w‖K,2,Ω = +∞.

It follows from Step 2 that there exists only strictly local maximum points for α(t). Hence,
t0 is the only critical point of α(t). Moreover, α′(t) > 0 for any 0 < t < t0 and α′(t) < 0
for any t > t0. The lemma is proved.

Now let us consider the minimization problem

κ := inf
v∈M

E(v). (22)

We have then

Lemma 2 Under assumptions (H1) to (H5), there holds

κ ≤
K

N
(SK)

N
2K . (23)

Proof. Let B(x0, R) ⊂ Ω for some x0 ∈ Ω and R > 0. We consider for some small ν > 0
and for all ǫ ∈ (0, ν), the function

uǫ(x) := CN,K
ǫ(N−2K)/2

(ǫ2 + |x− x0|2)(N−2K)/2
,

10



where the constant CN,K independent of ǫ is chosen such that ‖uǫ‖
s
Ls(RN ) = ‖uǫ‖

2
K,2,RN =

(SK)
N
2K . Let ξ ∈ C∞

0 (B(x0, R)) be a fixed cut-off function satisfying 0 ≤ ξ ≤ 1 and ξ ≡ 1
on B(x0, R/2). Putting wǫ := ξuǫ ∈ C∞

0 (Ω) as in [5] and [24], we obtain as ǫ→ 0

‖wǫ‖
s
Ls = (SK)

N
2K +O(ǫN ) and ‖wǫ‖

2
K,2,Ω = (SK)

N
2K +O(ǫN−2K). (24)

It is clear that as ǫ→ 0, we have

wǫ ⇀ 0 weakly in HK
0 (Ω),

wǫ ⇀ 0 weakly in Ls(Ω), strongly in Lq(Ω) (∀q < s) and a.e. in Ω.

Therefore, there holds

f(x,wǫ) → 0 strongly in L
s

s−1 (Ω). (25)

Indeed, for any M > 0, let

fM (x, u) :=

{

f(x, u), if |u| ≤M
0, if |u| > M.

From (H1) to (H2), it follows that ∀δ > 0, there exists M > 0 such that

|fM(x, u) − f(x, u)| ≤ δ|u|s−1 for a.e. x ∈ Ω and ∀u ∈ R.

Therefore, we have

‖f(x,wǫ)‖
L

s
s−1

≤ ‖f(x,wǫ)− fM (x,wǫ)‖
L

s
s−1

+ ‖fM (x,wǫ)‖
L

s
s−1

≤ δ‖wǫ‖
s−1
Ls + ‖fM (x,wǫ)‖

L
s

s−1
.

(26)

Using Lesbegue’s theorem, we infer that ∀β > 0

‖fM (x,wǫ)‖Lβ → 0.

Letting ǫ→ 0 in (26), we obtain

lim sup
ǫ→0

‖f(x,wǫ)‖
L

s
s−1

≤ 2δC.

Thus (25) is proved. Similarly, we have

lim
ǫ→0

∫

Ω
F (x,wǫ) = 0.

Set e0 = wǫ. Clearly, e0, e1, · · · , en are linearly independent. Denote V ǫ the n+ 1 dimen-
sional vector space spanned by e0, · · · , en and let w̃ǫ ∈ V ǫ ∩M. We claim

lim
ǫ→0

‖wǫ − w̃ǫ‖K,2,Ω = 0.

11



For this purpose, fix some small r > 0. For all (γ0, · · · , γn) ∈ Rn+1 with
∑n

i=0 γ
2
i = r2,

with the same arguments as above, we have the following expansions:

∫

Ω
F (x,wǫ +

n
∑

i=0

γiei) =

∫

Ω
F (x,

n
∑

i=1

γiei) + o(1),

‖wǫ +
n
∑

i=0

γiei‖
2
K,2,Ω = (1 + γ0)

2‖wǫ‖
2
K,2,Ω + ‖

n
∑

i=1

γiei‖
2
K,2,Ω + o(1),

∫

Ω
|wǫ +

n
∑

i=0

γiei|
s = |1 + γ0|

s
∫

Ω
|wǫ|

s +

∫

Ω
|

n
∑

i=1

γiei|
s + o(1)

where o(1) tends to 0 uniformly with respect to (γ0, · · · , γn). As a consequence, we infer

E(wǫ +
∑n

i=0 γiei) ≤
1

2
(1 + γ0)

2‖wǫ‖
2
K,2,Ω −

1

s
|1 + γ0|

s‖wǫ‖
s
Ls(Ω)

+
1

2
‖

n
∑

i=1

γiei‖
2
K,2,Ω −

1

s
‖

n
∑

i=1

γiei‖
s
Ls(Ω)

−
1

2

∫

Ω
a(x)(

n
∑

i=1

γiei)
2 + o(1)

≤
1

2
(1 + γ0)

2‖wǫ‖
2
K,2,Ω −

1

s
|1 + γ0|

s‖wǫ‖
s
Ls(Ω)

+
1

2

n
∑

i=1

γ2i λi(Ω)−
1

s
‖

n
∑

i=1

γiei‖
s
Ls(Ω) + o(1),

(27)

since F (x, u) ≥ 1
2a(x)u

2 for a.e. x ∈ Ω. Gathering (24) and (27), we deduce

E(wǫ +
n
∑

i=0

γiei) < E(wǫ)

provided ǫ is sufficiently small. On the other hand, E(w̃ǫ) = supv∈V ǫ E(v). Hence, we have
wǫ − w̃ǫ =

∑n
i=0 γiei with Γ = (γ0, · · · , γn) ∈ Rn+1 satisfying |Γ|2 =

∑n
i=0 γ

2
i < r2, that is,

the claim is proved. Now, applying (24) and (27), we infer

lim
ǫ→0

E(w̃ǫ) = lim
ǫ→0

E(wǫ) =
K

N
(SK)

N
2K .

This yields the desired result.

The following lemma concerns the linear perturbation problem for the non critical
dimensions case.

Lemma 3 We suppose N ≥ 4K and f(x, u) = µu for some µ > 0. Then we have

κ <
K

N
(SK)

N
2K . (28)

Proof. We keep the same notations as in the proof of Lemma 2. Direct calculations lead
to

‖wǫ‖
s−1
Ls−1 = O(ǫ(N−2K)/2), ‖wǫ‖L1 = O(ǫ(N−2K)/2) and ‖wǫ‖

2
L2 ≥ c1ǫ

2K (29)

12



for some positive constant c1 > 0. When N = 4K, c1 could be any large constant as
wanted. We have also for any i = 1, · · · , n

(wǫ, ei)Ω =

∫

Ω
wǫ(−∆)Kei = O(ǫ(N−2K)/2). (30)

Together with (24), we obtain, since limǫ→0 Γ = 0,

‖w̃ǫ‖
2
K,2,Ω = (1 + γ0)

2(SK)
N
2K + ‖

∑n
i=1 γiei‖

2
K,2,Ω + o(ǫ(N−2K)/2)

‖w̃ǫ‖
2
L2(Ω) ≥ c1(1 + γ0)

2ǫ2K + ‖
∑n

i=1 γiei‖
2
L2(Ω) + o(ǫ(N−2K)/2)

(31)

On the other hand, using the fact that function | · |s is convex on R, we have

‖w̃ǫ‖
s
Ls(Ω) ≥

∫

Ω
(1 + γ0)

s|e0|
s +

∫

Ω
s(1 + γ0)

s−1|e0|
s−2e0

n
∑

i=1

γiei

≥ (1 + γ0)
s(SK)

N
2K + o(ǫ(N−2K)/2).

(32)

Gathering (31) and (32), there holds

E(w̃ǫ) ≤
1

2
(1 + γ0)

2(SK)
N
2K −

1

s
(1 + γ0)

s(SK)
N
2K +

1

2
‖

n
∑

i=1

γiei‖
2
K,2,Ω

−µ
2‖
∑n

i=1 γiei‖
2
L2(Ω) −

c1µ

2
(1 + γ0)

2ǫ2K + o(ǫ(N−2K)/2)

≤
K

N
(SK)

N
2K −

c1µ

2
(1 + γ0)

2ǫ2K + o(ǫ(N−2K)/2),

since
1

2
‖

n
∑

i=1

γiei‖
2
K,2,Ω −

µ

2
‖

n
∑

i=1

γiei‖
2
L2(Ω) ≤ 0

and

sup
t>0

(

1

2
t2(SK)

N
2K −

1

s
ts(SK)

N
2K

)

=
K

N
(SK)

N
2K .

Finally,

E(w̃ǫ) <
K

N
(SK)

N
2K

provided ǫ is sufficiently small, which yields the desired result.

Now we state our main result of this section.

Theorem 1 Suppose (H1) to (H5) and (28) are satisfied. Then there exists u ∈ M such
that E(u) = κ and u is a solution to (1).

Proof. The strategy of the proof is standard. Let (uk) ⊂ M be a minimizing sequence for
E . We prove first that (uk) is bounded and then we can extract a subsequence, if necessary,
which converges to some limit u. We prove then u 6= 0, u ∈ M and u is a minimizer for κ.

Step 1. (uk) is a bounded sequence in HK
0 (Ω) .

13



Recall that (uk) satisfies (4) and

1

2
‖uk‖

2
K,2,Ω −

1

s
‖uk‖

s
Ls(Ω) −

∫

Ω
F (x, uk) = κ+ o(1) (33)

so that
K

N
‖uk‖

s
Ls(Ω) +

∫

Ω

(

f(x, uk)uk
2

− F (x, uk)

)

= κ+ o(1). (34)

From (H5), for a.e x ∈ Ω and ∀u ∈ R, we have

F (x, u) ≤
1

2
f(x, u)u,

which in turn (34) implies

‖uk‖
s
Ls(Ω) ≤

N

K
κ+ o(1). (35)

We infer from (H2) that for a.e x ∈ Ω and ∀u ∈ R, we have also

F (x, u) ≤
1

2
a(x)u2 +

2ǫ|u|s

s
+ C, (36)

thus
∫

Ω
F (x, uk) ≤

2ǫ

s
‖uk‖

s
Ls(Ω) +

1

2

∫

Ω
a(x)u2k + C.

Together with (33) and (35),

‖uk‖
2
K,2,Ω =

2

s
‖uk‖

s
Ls(Ω) + 2

∫

Ω
F (x, uk) + 2κ+ o(1)

≤ C(‖uk‖
s
Ls(Ω) + ‖uk‖

2
Ls(Ω)) + C + 2κ+ o(1)

≤ C.

Hence Step 1 is proved.

Extracting a subsequence, there exists some u ∈ HK
0 (Ω) such that

uk ⇀ u weakly in HK
0 (Ω),

uk ⇀ u weakly in Ls(Ω), strongly in Lq(Ω) (∀q < s) and a.e. on Ω,

so that
li(u) = 0 ∀1 ≤ i ≤ n. (37)

Setting vk = uk − u, we have

‖uk‖
2
K,2,Ω = ‖vk‖

2
K,2,Ω + ‖u‖2K,2,Ω + o(1)

‖uk‖
s
Ls(Ω) = ‖u‖sLs(Ω) + ‖vk‖

s
Ls(Ω) + o(1).

(38)

Step 2. We have u 6= 0.

Suppose by contradiction that u = 0. As in the proof of Lemma 2, we have

f(x, uk) → 0 in L
s

s−1 (Ω) (39)
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and
F (x, uk) → 0 in L1(Ω). (40)

Combining (4), (33), (39) and (40), we deduce

‖uk‖
s
Ls(Ω) =

N

K
κ+ o(1), ‖uk‖

2
K,2,Ω =

N

K
κ+ o(1)

which yields

‖uk‖
2
K,2,Ω

‖uk‖
2
Ls(Ω)

=

(

N

K
κ

)
s−2

s

+ o(1) < SK for sufficiently large k.

This contradiction gives u 6= 0. Consequently, we have u 6∈ V0 because of (37).

Step 3. We have u ∈ M and E(u) = κ.

We need to prove l0(u) = 0 to conclude that u ∈ M and E(u) = κ. So we should
exclude two cases: (i) l0(u) < 0 and (ii) l0(u) > 0. First we suppose that the case (i)
occurs. In this case there exists t ∈ (0, 1) such that u(t) ∈ M because of the Step 3 of
Lemma1. Set vk := uk − u as before and ũk := tuk + u(t)− tu = tvk + u(t). We define for
all w ∈ HK

0 (Ω),

E∞(w) :=
1

2
‖w‖2K,2,Ω −

1

s

∫

Ω
|w|s.

As vk ⇀ 0 weakly in HK
0 (Ω), we obtain

E(ũk) = E∞(tvk) + E(u(t)) + o(1).

Suppose E(u(t)) > κ, otherwise E(u(t)) = κ and then we finish the proof. By Lemma 1
and the fact ũk − tuk ∈ V0, we have

E(ũk) ≤ E(uk) = κ+ o(1)

which implies E∞(tvk) < 0 for sufficiently large k. In particular, vk 6= 0. Consequently,
for sufficiently large k,

‖tvk‖
s
Ls(Ω) >

s

2
‖tvk‖

2
K,2,Ω ≥

s

2
SK‖tvk‖

2
Ls(Ω) > SK‖tvk‖

2
Ls(Ω) (41)

so that
‖vk‖

s
Ls(Ω) > (SK)

N
2K . (42)

On the other hand, we have

‖vk‖
s
Ls(Ω) = ‖uk‖

s
Ls(Ω) − ‖u‖sLs(Ω) + o(1) ≤

N

K
κ− ‖u‖sLs(Ω) + o(1), (43)

which contradicts (42) by using Lemma 2. Thus case (i) is impossible.
Now we treat the case (ii). By the same arguments in the Step 2, we have

∫

Ω
f(x, uk)uk =

∫

Ω
f(x, u)u+ o(1), (44)
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∫

Ω
F (x, uk) =

∫

Ω
F (x, u) + o(1). (45)

Thus, according to (34), (44) and (45), we have

‖vk‖
s
Ls(Ω) =

N

K
κ+

N

K

∫

Ω
(F (x, u) −

1

2
f(x, u)u)− ‖u‖sLs(Ω) + o(1). (46)

Similarly, we have

‖vk‖
2
K,2,Ω =

N

K
κ+

N

K

∫

Ω
F (x, u) + (1−

N

2K
)

∫

Ω
f(x, u)u− ‖u‖2K,2,Ω + o(1). (47)

Combining (45), (47), we see that l0(u) > 0 implies for sufficiently large k

‖vk‖
s
Ls(Ω) > ‖vk‖

2
K,2,Ω.

Consequently, by the definition of SK , we obtain ‖vk‖
s
Ls(Ω) > (SK)

N
2K for sufficiently large

k. This is (42) and as before, we conclude that (ii) does not occur and thus u ∈ M.
Moreover

E(uk) = E(u) + E∞(vk) + o(1) and ‖vk‖
s
Ls(Ω) = ‖vk‖

2
K,2,Ω + o(1).

Thus

E(u) = E(uk)−
K

N
‖vk‖

2
K,2,Ω + o(1).

Finally, we deduce ‖vk‖
2
K,2,Ω = o(1) and therefore E(u) = κ.

Step 4. u is a solution to (1).

In fact u is a critical point of E on M. By the method of Lagrange multipliers, there
exists µ, µ1, · · · , µn ∈ R such that

dE(u) + µdl0(u) +
n
∑

i=1

µidli(u) = 0.

We consider its restriction on V , this means

(

µdl0(u) +
n
∑

i=1

µidli(u)

)

|V = 0

since dE(u)|V = 0. On the other hand, we have seen from Proposition 1 that dL(u)|V is an
isomorphism from V on Rn+1. Consequently, µ = µ1 = · · · = µn = 0, that is, dE(u) = 0.
Finally, u solves the problem (1) which finishes the proof.
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3 Existence of solutions for some perforated domains

In this section, we analyze first the concentration phenomenon for the problem (1). For
this purpose, set

FK(v) :=







((−∆)Mv)2 if K = 2M

|∇(−∆)Mv|2 if K = 2M + 1.

Similarly to Theorem 6 of [21], we have the following theorem and here we just give a
sketch of the proof.

Theorem 2 Suppose the assumptions (H1) to (H5) are satisfied. Moreover, suppose that

κ =
K

N
(SK)

N
2K (48)

and
E(v) > κ, ∀v ∈ M. (49)

Let (uk) ⊂ M be a minimizing sequence for κ, that is, limn→∞ E(uk) = κ. Then there
exists x0 ∈ Ω such that

µk := ζΩ FK(uk) dx ⇀ SKδx0
weakly in R(RN )

and
νk := ζΩ |uk|

s dx ⇀ SKδx0
weakly in R(RN ),

where R(RN ) denotes the space of non-negative Radon measures on RN with finite mass,
δx0

denotes the Dirac measure concentrated at x0 with mass equal to 1 and ζΩ designates
the characteristic function of Ω.

Proof. As in the proof of Theorem 1, we see that (uk) is bounded inHK
0 (Ω). Extracting

a subsequence, there exists some u ∈ HK
0 (Ω) such that

uk ⇀ u weakly in HK
0 (Ω),

uk ⇀ u weakly in Ls(Ω) and a.e. on Ω.

Moreover, for all 1 ≤ j ≤ n, we have lj(u) = 0. Furthermore, we have u = 0. Otherwise,
with the same arguments as in Theorem 1, we infer u ∈ M and E(u) = κ which contradicts
(49). Now the rest of proof is just a consequence of concentration compactness principle
(for details cf [28, 19, 21]).

In the following, we give some classification result. First we recall a basic fact for
non-existence result on the half space RN

+ . It can be stated as follows:

Lemma 4 Let u ∈ DK,2(RN
+ ) be a weak positive solution of the problem







(−∆)Ku = |u|s−2u in RN
+

u = Du = · · · = DK−1u = 0 on ∂RN
+ .

(50)

Then u ≡ 0.
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A stronger result have been obtained by Reichel and Weth in[35] very recently. Here
we give a proof based on the Pohozaev formula (see [29]).

Proof. It follows from the Pohozaev formula DKu = 0 on ∂RN
+ (see the details cf [21]

for the Navier boundary conditions). Now, (−∆)K−1((−∆)u) = us > 0 in RN
+ verifying

Dirichlet boundary condition (−∆)u = · · · = DK−2(−∆)u = 0 on ∂RN
+ . Thanks to the

Boggio’s result, we know the Green function for the operator (−∆)K−1 on the half space
with Dirichlet boundary condition is positive. Thus, (−∆)u > 0 in RN

+ . From Hopf’s
Maximum principle, ∂u

∂n > 0 on ∂RN
+ . This contradiction finishes the proof of Lemma.

The similarly problem in the whole space can be state as follows:

Lemma 5 Let u ∈ DK,2(RN ) be a weak positive solution of the problem

(−∆)Ku = |u|s−2u in RN . (51)

Then there exists a constant λ ≥ 0 and a point x0 ∈ RN such that

u(x) =

(

2λ

1 + λ2|x− x0|2

)
N−2K

2

. (52)

This result has been proved by Wei-Xu (Theorem 1.3 in [43]).

Lemma 6 Let u ∈ DK,2(RN
+ ) (resp. u ∈ DK,2(RN ) ) be a weak sign changing solution of

the problem (50) (resp. (51)). Then

E∞(u) ≥
2K

N
(SK)

N
2K . (53)

Proof. Our proof is an adaptation of Gazzola-Grunau-Squassina’s approach [18].
We consider the closed convex cone

C1 = {v ∈ DK,2(RN
+ ) | v ≥ 0 a.e. in R

N
+}

and its dual cone

C2 = {w ∈ DK,2(RN
+ ) | (w, v)

RN
+
≤ 0 ∀v ∈ C1}.

We claim that C2 ⊂ −C1. Given h ∈ C∞
0 (RN

+ ) ∩ C1, let v be the solution to the problem

(−∆)Kv = h in R
N
+ .

Again from the Boggio’s result, we have v ≥ 0 since the Green function for the operator
(−∆)K on the half space with Dirichlet boundary condition is positive. Consequently, for
all w ∈ C2, we have

∫

R
N
+

hw =

∫

R
N
+

(−∆)Kvw = (v,w)
R
N
+
≤ 0.

This implies w ≤ 0 a.e. in RN
+ . Hence the claim is proved. Using a result of Moreau [30],

for any u ∈ DK,2(RN
+ ), there exists an unique pair (u1, u2) ∈ C1 × C2 such that

u = u1 + u2 with (u1, u2)RN
+
= 0.
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Now let u be a sign-changing solution of the problem (50). Then ui 6= 0 for all = 1, 2.
From the above claim, we see u1 ≥ 0 and u2 ≤ 0 so that |u(x)|s−2u(x)ui(x) ≤ |ui(x)|

s for
i = 1, 2. Applying the Sobolev inequality for ui (i = 1, 2), we obtain

SK‖ui‖
2
Ls ≤ ‖ui‖

2
K,2,RN

+

= (u, ui)RN
+
=

∫

R
N
+

(−∆)Kuui ≤

∫

R
N
+

|ui(x)|
s = ‖ui‖

s
Ls

so that
‖ui‖

s
Ls(Ω) ≥ (SK)

N
2K .

Consequently, using the fact ‖u‖2
K,2,RN

+

= ‖u‖sLs , we infer

E∞(u) =
K

N
‖u‖2K,2,RN

+

=
K

N
(‖u1‖

2
K,2,RN

+

+ ‖u2‖
2
K,2,RN

+

)

≥
K

N
SK(‖u1‖

2
Ls + ‖u2‖

2
Ls) ≥

2K

N
(SK)

N
2K .

Similarly, we have the same result for u ∈ DK,2(RN ).

Theorem 3 Assume (H1), (H2), (H5), (48) and (49) are satisfied. Let (uk) ⊂ HK
0 (Ω)

be a (P.S.)β sequence such that

E(uk) → β ∈ (
K

N
(SK)

N
2K ,

2K

N
(SK)

N
2K ) (54)

dE(uk) → 0 in (HK
0 (Ω))∗. (55)

Then (uk) is precompact in HK
0 (Ω).

Proof. The blow up analysis for (P.S.)β sequences is more or less standard. Its proof
follows from the P. Lions’ concentration compactness principle and it is close to one in
[21]. The only difference is that we need Lemma 6 to rule out sign changing bubbles. We
leave this part to interested readers.

As a consequence, we have

Corollary 1 Under the assumptions (H1) to (H5), (48) and (49), assume moreover

(H8) en(Ω) < 0.

Let (uk) ⊂ M be a (P.S.)β sequence for E on M such that

E(uk) → β ∈ (
K

N
(SK)

N
2K ,

2K

N
(SK)

N
2K ), (56)

‖dE(uk)‖(Tuk
M)∗ → 0. (57)

Then (uk) is precompact in M.
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Proof. As in the proof of Theorem 1, (uk) is a bounded sequence in HK
0 (Ω). On the

other hand, using (33), (34) and (H2), we infer that(uk) is bounded from below by some
positive constant in HK

0 (Ω) and also in Ls(Ω). Set V k the n+1 dimensional vector space
spanned by uk, e1, · · · , en. If there is no confusion, we drop the index k. We claim there
exists some positive constant c > 0 independent of k such that ∀k ∈ N, ∀w ∈ HK

0 (Ω), we
can decompose

w = w1 + w2 (58)

where w1 ∈ V k and w2 ∈ Tuk
M satisfying

‖w1‖K,2,Ω ≤ c‖w‖K,2,Ω, ‖w2‖K,2,Ω ≤ c‖w‖K,2,Ω.

Set e0 = uk and θi = dli(uk)(w) ∈ R for all i = 0, · · · , n. Using (13) and the fact that (uk)
is a bounded sequence in HK

0 (Ω), the vector Θ = (θ0, · · · , θn)
T is bounded in Rn+1 with

respect to k. Moreover, we can estimate

|Θ| ≤ c‖w‖K,2,Ω.

Define (n+ 1)× (n+ 1) symmetric matrix M(k) = (mij)0≤i,j≤n by

mij = d2E(uk)(ei, ej).

We write

w1 =
n
∑

i=0

ψiei

where ψi ∈ R. Denote the vector Ψ = (ψ0, · · · , ψn)
T ∈ Rn+1. Again from (13), the

decomposition (58) is equivalent to solve

d2E(uk)(w1, ei) = dli(uk)(w) ∀0 ≤ i ≤ n,

that is, MΨ = Θ. As in the proof of Lemma 1, the matrix is negative definite. Clearly,
the matrix M(k) is uniformly bounded. We show there exists c > 0 independent of k such
that

M(k) ≤ −cI

where I is the identity matrix. For this purpose, for any vector ΓT = (γ0, · · · , γn) ∈ Rn+1,
denote ξ =

∑n
i=0 γiei we have

ΓTM(k)Γ = d2E(uk)(ξ, ξ)

≤ −(s− 2)

∫

Ω
|uk|

s−2ξ2 −

∫

Ω
|uk|

s−2(
n
∑

j=1

γjej)
2

+(
n
∑

j=1

γjej ,
n
∑

i=1

γiei)Ω −

∫

Ω
a(x)(

n
∑

j=1

γjej)
2

≤ −
s− 2

s− 1

∫

Ω
|uk|

sγ20 +
n
∑

j=1

γ2jλj(Ω).

Thus, the desired result follows. As a consequence, (Ψ = M−1Θ)k is a bounded sequence.
More precisely, we infer

‖w1‖K,2,Ω ≤ c‖w‖K,2,Ω.
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Therefore,
‖w2‖K,2,Ω ≤ (‖w‖K,2,Ω + ‖w1‖K,2,Ω) ≤ c‖w‖K,2,Ω,

that is, the claim is proved. Hence,

|dE(uk)(w)| = |dE(uk)(w2)| ≤ c‖dE(uk)‖(Tuk
M)∗‖w‖K,2,Ω.

Thus, there holds
‖dE(uk)‖(HK

0
(Ω))∗ ≤ c‖dE(uk)‖(Tuk

M)∗

so that
lim
n→∞

‖dE(uk)‖(HK
0
(Ω))∗ = 0.

Finally, applying Theorem 3, we finish the proof.

Now, we can prove the main result for domains perfored with the small holes. Recall
that Ω = Ω1 \ Ω2 is a bounded domain satisfying Ω2 ⊂ B(0, ǫ) and Ω1 is fixed. To search
solutions of (1) in such Ω, we minimize the energy functional E on the Finsler manifold
M. We see that the concentration phenomenon occurs if E can not reach the minimum.
In this case, we will employ Coron’s strategy to search instable critical points in higher
level sets.

Theorem 4 Let Ω be a bounded domain satisfying the above assumption. Assume (H1)
to (H7) hold. Then there exists η > 0 such that for all ǫ < η, the problem (1) admits a
non trivial solution in Ω.

Proof. Thanks to Lemma 2, we have κ ≤ K
N (SK)

N
2K . In the case κ < K

N (SK)
N
2K ,

the desired result follows from Theorem 1. So we suppose κ = K
N (SK)

N
2K . If there exists

u ∈ M such that E(u) = κ, we finish the proof by Step 4 in the proof of Theorem 1.
Hence, we assume ∀v ∈ M there holds E(v) > κ. From the properties of eigenvalues λi(Ω)
described in the previous sections, (H8) is always satisfied for the perforated domain Ω,
provided ǫ is sufficiently small. In fact, in case λi(Ω1) 6= 0 for all i ∈ N, it follows from
the continuity of λi(Ω). In the case λn(Ω1) = · · · = λn+k(Ω1) = 0, we have λn(Ω) > 0.

We devide the proof into several steps.

Step 1. We choose a radially symmetric function ϕ ∈ C∞
0 (RN ) such that 0 ≤ ϕ ≤ 1,

ϕ ≡ 1 on the annulus {x ∈ RN | 1/2 < |x| < 1} and ϕ ≡ 0 outside the annulus {x ∈
RN | 1/4 < |x| < 2}. For any R ≥ 1, define

ϕR(x) =











ϕ(Rx) if 0 ≤ |x| < 1/R
1 if 1/R ≤ |x| < R
ϕ(x/R) if |x| ≥ R.

Denote the unit sphere SN−1 = {x ∈ RN | |x| = 1}. For σ ∈ SN−1, 0 ≤ t < 1, we set

uσt (x) = CN,K

[

1− t

(1− t)2 + |x− tσ|2

]
N−2K

2

∈ HK(RN ),
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where the choice of CN,K is such that ‖uσt ‖
2
K,2,RN = ‖uσt ‖

s
Ls(RN ) = (SK)

N
2K . Let w̃σ

t,R(x) =

uσt (x)ϕR(x) and w
σ
t,R(x) = (4R)

N−2K
2 w̃σ

t,R(4Rx). Hence w
σ
t,R ∈ HK

0 (B(0, 1/2)\B(0, 1/16R2)),

∀σ ∈ SN−1 and ∀t ∈ [0, 1). Clearly,

‖w̃σ
t,R‖Ls(RN ) = ‖wσ

t,R‖Ls(RN ) (59)

‖w̃σ
t,R‖K,2,RN = ‖wσ

t,R‖K,2,RN . (60)

A direct computation leads to ∀R > 1

‖w̃σ
t,R − uσt ‖

2
K,2,RN ≤ C(1− t)N−2KR2K−N (61)

and
‖w̃σ

t,R − uσt ‖
s
Ls(RN ) ≤ CR−N(1− t)N . (62)

Consequently

lim
R→∞

‖w̃σ
t,R‖

2
K,2,RN = lim

R→∞
‖w̃σ

t,R‖
s
Ls(RN ) = (SK)

N
2K

uniformly for t ∈ [0, 1) and σ ∈ SN−1. Set w̄σ
t,R ∈ M∩Vect{e1(Ω), · · · , en(Ω), w

σ
t,R} where

Ω = Ω1 \ Ω2, B(0, 1/2) ⊂ Ω1 and Ω2 ⊂ B(0, 1/16R2). Thanks to the Implicit Function
Theorem, the continuous map

wR : SN−1 × [0, 1) → HK
0 (Ω)

(σ, t) 7→ wσ
t,R

yields a continuous map

w̄R : SN−1 × [0, 1) → M
(σ, t) 7→ w̄σ

t,R.

Recall Ω1 is fixed. A basic observation is that ei(Ω) → ei(Ω1) for all i = 1, · · · , n in
C∞
loc(Ω1 \ {0}) away from 0 and strongly in HK

0 (Ω1) as R→ +∞. We remark that

E(u) ≤
1

2
‖u‖2K,2,Ω −

1

s
‖u‖sLs(Ω) −

1

2

∫

Ω
a(x)u2.

In the following, we consider the simple case F (x, u) = 1
2a(x)u

2 (we can treat the general
case with the same argumens). Fix some small r > 0. As in the proof of Lemma 2, for all
Γ = (γ0, · · · , γn) ∈ Rn+1 with

∑n
i=0 γ

2
i ≤ r2, we infer

sup
t,σ,Ω2

E(wσ
t,R +

n
∑

i=0

γiei) ≤
1

2
(1 + γ0)

2(SK)
N
2K −

1

s
|1 + γ0|

s(SK)
N
2K

+
1

2

n
∑

i=1

γ2i λi(Ω1)−
1

s
‖

n
∑

i=1

γiei(Ω1)‖
s
Ls(Ω1)

+ o(1),

(63)

where o(1) is uniformly with respect to Γ as R→ ∞. Consequently, we deduce

sup
t,σ,Ω2

E(wσ
t,R +

n
∑

i=0

γiei) < E(wσ
t,R) for

n
∑

i=0

γ2i = r2
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provided R is sufficiently large. This implies

w̄σ
t,R − wσ

t,R =
n
∑

i=0

γiei(Ω) for some |Γ| < r,

so that

lim
R→∞

sup
t,σ,Ω2

E(w̄σ
t,R) =

K

N
(SK)

N
2K .

Hence, we can choose R0 > 0 such that for any R ≥ R0

sup
t∈[0,1), σ∈SN−1, Ω2⊂B(0,1/16R2)

E(w̄σ
t,R) <

2K

N
(SK)

N
2K . (64)

Thus we can define a map
α : B(0, 1) → M

(t, σ) 7→ w̄σ
t,R0

.

Step 2. Set η := 1/16R2
0 and fix Ω2 ⊂ B(0, η). From (59) to (62), we infer that

lim
t→1

‖w̄σ
t,R0

‖2K,2,Ω = lim
t→1

‖w̄σ
t,R0

‖sLs(Ω) = (SK)
N
2K uniformly for σ ∈ SN−1

which implies for any σ ∈ SN−1

lim
t→1

E(α(t, σ)) =
K

N
(SK)

N
2K .

Step 3. For any v ∈ M, let

γ(v) =

∫

Ω
x|v(x)|sdx ∈ R

N

denotes its center mass. We claim there exists δ̃ > 0 such that for any v ∈ M satisfying

E(v) ≤ K
N (SK)

N
2K + δ̃, we have

γ(v) ∈ R
N \B(0, ǫ2(SK)

N
2K /2) (65)

where B(0, ǫ2) ⊂ Ω2. Otherwise, we can find a sequence (vn) ⊂ M satisfying

lim
n→∞

E(vn) =
K

N
(SK)

N
2K , (66)

γ(vn) ∈ B(0, ǫ2(SK)
N
2K /2). (67)

Applying Theorem 2, there exists x0 ∈ Ω̄ such that

ζΩ|vn(x)|
sdx→ (SK)

N
2K δx0

.

Consequently,

γ(vn) → (SK)
N
2K x0 6∈ B(0, ǫ2(SK)

N
2K )
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which contradicts (67). Thus, the desired claim yields. Choosing t0 ∈ [0, 1) such that

∀σ ∈ SN−1 and ∀t ∈ [t0, 1), we have E(α(t, σ)) < K
N (SK)

N
2K + δ̃, we set

β := min
f∈H

max
(t,σ)∈(0,t0 ]×SN−1

E(f(t, σ)),

where H is the set of any function homotopic to α on B(0, t0) with the fixed boundary
data, that is,

H = {f | f : B(0, t0) → M is continuous, f |∂B(0,t0) = α|∂B(0,t0) and f is homotopic to α}.

We see that ∀f ∈ H, γ ◦ f : B(0, t0) → RN is a contraction of the loop γ ◦ α|∂B(0,t0) ⊂

RN \B(0, ǫ2(SK)
N
2K /2). On the other hand, it follows from Steps 1 and 2

lim
t→1

γ ◦ α(t, σ) = (SK)
N
2K

σ

4R0
uniformly in σ ∈ SN−1.

Thus, γ ◦ α|∂B(0,t0) is a non-trivial loop in RN \B(0, ǫ2(SK)
N
2K /2). Using (67), we obtain

sup
(t,σ)∈B(0,t0)

E(f(t, σ)) ≥
K

N
(SK)

N
2K + δ̃,

which implies

β ≥
K

N
(SK)

N
2K + δ̃ >

K

N
(SK)

N
2K .

On the other hand, it follows from Step 1

β ≤ sup
(t,σ)∈B(0,t0)

E(α(t, σ)) <
2K

N
(SK)

N
2K .

Recalling Theorem 1 and Corollary 1 and using the deformation lemma, we infer β is
a critical value. Finally, the problem (1) admits a non trivial critical point u such that
E(u) = β.

Remark 0 The condition a ∈ L∞(Ω) ∩C∞(Ω) could be weakened.

Remark 1 We can use the above strategy to treat also the Navier boundary conditions.
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[36] M. Schechter and W. M. Zou, On the Brézis-Nirenberg problem, to appear in Arch.
Rat. Mech. Anal., 2010.

[37] M. Struwe, A global compactness result for elliptic boundary value problem involving
limiting nonlinearities, Math. Z., 26, 511-517 (1984).

26



[38] M. Struwe, Variational Methods, Springer, Berlin-Heidelberg-New York-Tokyo (1990).

[39] C.A. Swanson, The best Sobolev constant, Appl. Anal. 47, No.4, 227-239 (1992).

[40] G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl., IV. Ser. 110,
353-372 (1976).

[41] G. Talenti, Elliptic equations and rearrangements, Ann. Sc. norm. super. Pisa, Cl.
Sci., IV. Ser. 3, 697-718 (1976).

[42] R.C.A.M. Van der Vorst, Best constant for the embedding of the space H2 ∩H1
0 (Ω)

into L2N/(N−4)Ω, Diff. Int. Equ., 6, No.2, 259-276 (1993).

[43] J. Wei and X. Xu, Classification of solutions of higher order conformally invariant

equations, Math. Ann. 313, No.2, 207-228 (1999).

[44] D. Zhang, On multiple solutions of ∆u+ λu+ |u|
4

N−2u = 0, Nonlin. Anal. TMA, 13,
353-372 (1989).

Y. Ge ( ge@univ-paris12.fr )

Laboratoire d’Analyse et de Mathématiques Appliquées
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