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Uniform propagation of chaos for a class of

nonlinear diffusions

Pierre Del Moral∗ & Julian Tugaut†‡

Abstract

We are interested in nonlinear diffusions in which the own law inter-
venes in the drift. This kind of diffusions corresponds to the hydrodynam-
ical limit of some particle system. One also talks about propagation of
chaos. It is well known, for McKean-Vlasov diffusions, that such a propa-
gation of chaos holds on finite time interval. However, it has been proved
that the lack of convexity of the external force implies that there is no
uniform propagation of chaos if the diffusion coefficient is small enough.
We here aim to establish a uniform propagation of chaos even if the ex-
ternal force is not convex, with a diffusion coefficient sufficiently large.
The idea consists in combining the propagation of chaos on a finite time
interval with a functional inequality, already used by Bolley, Gentil and
Guillin, see [BGG12a, BGG12b].

Key words and phrases: Nonlinear diffusions ; Propagation of chaos ;
Feynman-Kac ; McKean-Vlasov models ; Functional inequality
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Introduction

We are interested in some nonlinear processes in R
d defined by an equation

in which the own law of the process intervenes in the drift. In this work, we
consider a diffusion of the form

{
Xt = X0 + σBt −

∫ t
0
b (µs, Xs) ds ,

µs = L (Xs) ,
(I)

where b is a function from P
(
R
d
)
×R

d to R
d and {Bt ; t ≥ 0} is a d-dimensional

Wiener process. The assumptions are detailed subsequently. Let us just say that
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b(µ, x) does only depend on x and on some finite number of moments of µ. The
infinitesimal generator of Diffusion (I) therefore is

Aµ :=
σ2

2
∆µ−∇. {b (µ , .)µ} .

The associated semi-group is denoted by (Pt)t≥0. In other words, one has µt =
µ0Pt. We notice that Xt, µt, Pt and A depend on σ. We do not write it for
simplifying the reading.
An example of such diffusion is the McKean-Vlasov one:

Xt = X0 + σBt −
∫ t

0

∇V (Xs) ds−
∫ t

0

(
∇F ∗ L (Xs)

)
(Xs)ds , (II)

where V and F respectively are called the confinement and the interaction
potentials. The notation ∗ is used for denoting the convolution.

This equation is nonlinear in the sense of McKean, see [McK67, McK66].

It is well known, see [McK67], that the law L (Xt) is absolutely continuous
with respect to the Lebesgue measure for all t > 0, provided some regularity
hypotheses on V and F . Moreover, its density, which is denoted by ut, satisfies
the so-called granular media equation,

∂

∂t
ut = ∇.

{
σ2

2
∇ut + (∇V +∇F ∗ ut)ut

}
.

The setting of this work is restricted to the McKean-Vlasov case. However, we
could apply to more general hypotheses. Let us notice that we do not assume
any convex properties on the confinement potential nor on the interaction one.
Under easily checked assumptions, Diffusion (II) corresponds to the hydrody-
namical limit of the following particle system





X1
t = X1

0 + σB1
t −

∫ t
0

[
∇V

(
X1
s

)
+

∑N
j=1

1
N∇F

(
X1
s −Xj

s

)]
ds ,

...

Xi
t = Xi

0 + σBit −
∫ t
0

[
∇V

(
Xi
s

)
+

∑N
j=1

1
N∇F

(
Xi
s −Xj

s

)]
ds ,

...

XN
t = XN

0 + σBNt −
∫ t
0

[
∇V

(
XN
s

)
+

∑N
j=1

1
N∇F

(
XN
s −Xj

s

)]
ds ,

(III)

{
Bit ; t ≥ 0

}
being N independent d-dimensional Wiener processes. We also as-

sume that
{
Xi

0 ; i ∈ N
∗} is a family of independent random variables, identically

distributed with common law L (X0) (and independent from the Brownian mo-
tions). The particles therefore are excheangeable. We notice that X1

t , · · · , XN
t

depends on N and on σ. We do not write it for simplifying the reading. We
here focus on the first diffusion. By µ1,N

t , we denote the law at time t of the
diffusion X1.
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One says, in this work, that simple propagation of chaos holds on interval [0;T ]
with T > 0 if we have the limit

lim
N→+∞

sup
0≤t≤T

W2

(
µ1,N
t ; µ0Pt

)
= lim
N→+∞

sup
0≤t≤T

W2

(
µ1,N
t ; µt

)
= 0 ,

W2 standing for the Wasserstein distance (see Definition 1.1). This means that
X1 is a good approximation of Diffusion (I) as N goes to infinity.

Such limit (with another distance) has been investigated for the special case
of the McKean-Vlasov diffusion, see [BRTV98, BAZ99, Mal01, Mal03, Szn91].
Indeed, it is a consequence of the classical coupling result,

sup
t≤T

E

{∣∣∣∣Xt −X1
t

∣∣∣∣2
}
≤ λ

eKT

N
,

with λ,K > 0. Uniform propagation of chaos, that is

lim
N→+∞

sup
t≥0

W2

(
µ1,N
t ; µ0Pt

)
= lim
N→+∞

sup
t≥0

W2

(
µ1,N
t ; µt

)
= 0 ,

has been proved if both confinement potential V and interaction potential F
are convex, see [CGM08]. The particularity here is that the coupling between
the two diffusions is not necessary made with the same Brownian motions.

A consequence of the uniform propagation of chaos for the nonlinear diffu-
sion is the uniqueness of the invariant probability µσ and the weak conver-
gence toward this measure. However, without convex properties, it is proved
in [HT10, Tug13b, Tug12] that there is non-uniqueness of the invariant prob-
abilities under simple assumptions, provided that the diffusion coefficient σ is
sufficiently small.
But, as pointed out in [Tug13b], if σ is large enough, we have a unique invariant
probability. The question thus is: does uniform propagation of chaos holds if σ
is sufficiently large? Also, can we reciprocally use the convergence toward the
unique invariant probability to obtain this uniform propagation of chaos?

We positively answer to the two questions by using the simple propagation of
chaos and a so-called WJ-inequality already used in [AGS08, BGG12b].

To the best of our knowledge, the first uniform propagations of chaos estimates
for mean field particle models have been developed in [DMM00] and in [DMG01]
in the context of Feynman-Kac interaction jump models. Further results in
this direction can be found in [DMR11] as well as in the research monographs
[DM13, DM04], including exponential concentration inequalities w.r.t. the time
horizon, and contraction inequalities w.r.t. several classes of relative entropy
criteria.

The analysis of interaction jump particle models clearly differs from the more
traditional coupling analysis of the McKean-Vlasov diffusion models developed
in the present article. The common feature is to enter the stability properties of
the limiting nonlinear semigroup into the estimation of the propagation of chaos
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properties of the finite particle systems, to deduce Lp-mean error estimates of

order 1/
√
N
δ
, for any 0 < δ < 1 (cf. for instance theorem 2.11 in [DMM00], at

the level of the empirical processes). In our context using these techniques, we
obtain a variance and a W 2

2 -estimate of order 1/N δ, for some 0 ≤ δ < 1. We
underline that in the context of Feynman-Kac particle models, the order 1/N
can be obtained under stronger mixing conditions, using backward semigroup
techniques. Thus, we conjecture that this decay rate is also met in our context.

The existence problem of a solution to (II) is not investigated here. We thus
assume that there exists a unique strong solution (Xt)t≥0. Let us just mention
that it has been solved under simple assumptions. The method consists in ap-
plying a fixed point theorem, see [BRTV98, HIP08].

In a first section, we introduce the framework of the WJ-inequality and we es-
tablish some functional inequalities based on the work in [BGG12a, BGG12b].
In Section 2, we provide some results on the simple propagation of chaos. Fi-
nally, in last section, we prove the main result that is the uniform propagation
of chaos when the coefficient diffusion is sufficiently large. Before finishing the
introduction, we give the hypotheses of the paper and the main results.

Assumption (A): We say that the confinement potential V , the interaction
potential F and the initial law µ0 satisfy the set of assumptions (A) if
(A-1) V is a smooth function on R

d.
(A-2) for all λ > 0, there exists Rλ > 0 such that ∇2V (x) > λId, for any
||x|| ≥ Rλ.
(A-3) there exists a convex function V0 and ϑ ∈ R such that V (x) = V0(x) −
ϑ
2 ||x||2.
(A-4) the gradient ∇V is slowly increasing: there exist m ∈ N

∗ and C > 0 such

that ||∇V (x)|| ≤ C
(
1 + ||x||2m−1

)
, for all x ∈ R

d.

(A-5) there exist a strictly convex function Θ such that Θ(y) > Θ(0) = 0 for
all y ∈ R

d and p ∈ N such that the following limit holds for any y ∈ R
d:

lim
r→+∞

V (ry)

r2p
= Θ(y).

(A-6) there exist an even polynomial and strictly convex function G on R

and α ∈ R such that F (x) = F0(x) − α
2 ||x||2 with F0(x) := G(||x||). And,

deg(G) =: 2n ≥ 2.
(A-7) the following inequality holds: p > n.
(A-8) the 8q2th moment of the measure µ0 is finite with q := min {m,n}.
(A-9) the measure µ0 admits a C∞-continuous density u0 with respect to the
Lebesgue measure. And, the entropy −

∫
Rd u0(x) log(u0(x))dx is finite.

Hypotheses (A-1)–(A-5) concern the confinement potential V and mean that it
behaves like a polynomial function with degree at least four. Hypothesis (A-6)
states that the interaction between the particles is a polynomial function of the
distance.
The inequality p > n means that the potential F is negligible with respect to
the potential V at infinity. This is a technical assumption which will be used
in order to obtain the functional inequality. This hypothesis has already been
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assumed in [Tug13b, Theorem 2.6] in order to characterize the exact number
of invariant probabilities in the small-noise. An example of couple of potentials

satisfying Hypotheses (A-1)–(A-7) is V (x) := x6

6 + x4

4 − x2

2 and F (x) = x4

4 − x2

2 ,
in the one-dimensional case
The last two hypotheses concern the law µ0. Hypothesis (A-8) is required to
prove the existence of a solution to the nonlinear stochastic differential equation
(II), see [HIP08, BRTV98, CGM08]. And, Hypothesis (A-9) is necessary to ap-
ply the result in [AGS08] which characterize the dissipation of the Wasserstein
distance. This hypothesis was also assumed in order to get the weak conver-
gence, see [Tug13a]. We now give the main results of the paper. We remind the
reader that the Wasserstein distance is defined in Definition 1.1.

Theorem A: We assume that V , F and µ0 satisfy the set of Hypotheses (A).
Thus, there exists σc > 0 such that σ > σc implies Diffusion (II) admits a
unique invariant probability µσ. Moreover, we have the following convergence
with exponential decay if σ > σc:

W2 (µt ; µ
σ) ≤ exp [−C(σ)t]W2 (µ0 ; µ

σ) ,

C(σ) being a positive constant.
Proposition B: We assume that V , F and µ0 satisfy the set of Hypotheses
(A). Thus, even if the initial random variables are not independent, there is a
simple propagation of chaos of the form

sup
0≤t≤T

W2

(
µt ; µ

1,N
t

)
≤ exp [ψ(T )]

N
,

for any T > 0, ψ being a nondecreasing function.
Theorem C: We assume that V , F and µ0 satisfy the set of Hypotheses (A).
If σ ≥ σc (where σc is defined in Theorem A), we have the uniform propagation
of chaos. In other words, we have the limit

lim
N→+∞

sup
t≥0

W2

(
µt ; µ

1,N
t

)
= 0 .

Moreover, we can compute the rate of convergence.

First case: The quantity C(σ)t
ψ(t) goes to λ ∈ R

∗
+

⋃ {+∞} as t goes to infinity,
where ψ is defined in Proposition B. Thus, for all δ > 0, we have:

lim
N→+∞

N
1

2(1+1/λ)
−δ sup

t≥0
W2

(
µt ; µ

1,N
t

)
= 0 .

Second case: The quantity C(σ)t
ψ(t) goes to 0 as t goes to infinity. Thus, for all

δ > 0, we have:

lim
N→+∞

exp

{
C(σ)ψ−1

[
1

2
(1− δ) log(N)

]}
sup
t≥0

W2

(
µt ; µ

1,N
t

)
= 0 .

Remark D: In Proposition B and Theorem C, we assume that the initial
random variables are independent. However, the results hold even if they are
not independent.
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1 Functional inequality

Let us give the framework (definitions and basic propositions) of the current
work. We begin by introducing the Wasserstein distance.

Definition 1.1. For any probability measures on R
d, µ and ν, the Wasserstein

distance between µ and ν is

W2 (µ ; ν) :=

√
inf E

{
||X − Y ||2

}
,

where the infimum is taken over the random variables X and Y with law µ and
ν respectively. One can also write

W2 (µ ; ν) =

√
inf

∫∫

Rd×Rd

||x− y||2 π(dx, dy) ,

where the infimum runs over the probability measures on R
d×R

d with marginals
equal to µ and ν.

The Wasserstein distance can be characterized in the following way, thanks
to Brenier’s theorem, see [Bre91].

Proposition 1.2. Let µ and ν be two probability measures on R
d. If µ is

absolutely continuous with respect to the Lebesgue measure, there exists a convex
function τ from R

d to R such that the following equality occurs for every bounded
test function g: ∫

Rd

g(x)ν(dx) =

∫

Rd

g (∇τ(x))µ(dx) .

Then, we write
ν = ∇τ#µ ,

and we have the following equality

W2 (µ ; ν) =

√∫

Rd

||x−∇τ(x)||2 µ(dx) .

The key-idea of the paper is a so-called WJV,F -inequality. Let us present
the expression that we denote by JV,F (ν | µ) if µ is absolutely continuous with
respect to the Lebesgue measure:

JV,F (ν | µ) := JV,0 (ν | µ) (1.1)

+
1

2

∫∫

R2d

〈∇F (Z(x, y))−∇F (x− y) ; Z(x, y)− (x− y)〉µ(dx)µ(dy) ,

with Z(x, y) := ∇τ(x)−∇τ(y) and

JV,0 (ν | µ) :=
σ2

2

∫

Rd

(
∆τ(x) + ∆τ∗ (∇τ(x))− 2d

)
µ(dx) (1.2)

+

∫

Rd

〈∇V (∇τ(x))−∇V (x) ; ∇τ(x)− x〉µ(dx) ,

6
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where τ∗ denotes the Legendre transform of τ . Here, we have ν = ∇τ#µ. We
now present the transportation inequality, already used in [AGS08, BGG12a,
BGG12b], on which the article is based.

Definition 1.3. Let µ be a probability measure on R
d absolutely continuous

with respect to the Lebesgue measure and C > 0. We say that µ satisfies a
WJV,F (C)-inequality if the inequality

CW2
2 (ν ; µ) ≤ JV,F (ν | µ) (1.3)

holds for any probability measure ν on R
d.

In the same way, we say that µ satisfies a WJV,0(C)-inequality if we have

CW2
2 (ν ; µ) ≤ JV,0 (ν | µ) ,

for any probability measure ν on R
d. In the following, we aim to establish

WJV,F -inequality for an invariant probability µσ of Diffusion (II). However, it
is well known that µσ is absolutely continuous with respect to the Lebesgue mea-
sure. Consequently, we can apply Brenier’s theorem. So, the WJV,F -inequality

consists in obtaining an inequality on the convex function τ from R
d to R.

We now give a classical result which explains why a WJV,F -inequality has con-
sequences on the long-time behavior of McKean-Vlasov diffusions (II). It is
similar to [BGG12b, Proposition 1.1]. See also [AGS08].

Proposition 1.4. Let V and F be two functions satisfying Hypotheses (A-1)–
(A-7). Let µ0 and ν0 be two probability measures on R

d absolutely continuous
with respect to the Lebesgue measure. Set (Xt)t∈R+

and (Yt)t∈R+
two McKean-

Vlasov diffusions (II) starting with law µ0 and ν0. By µt (respectively νt), we
denote the law of Xt (respectively Yt).
Therefore, we have the inequality

1

2

d

dt
W

2
2 (µt ; νt) ≤ −JV,F (νt | µt) . (1.4)

Consequently, if µσ is an invariant probability of Diffusion (II) and if µσ

satisfies a WJV,F (C)-inequality, by combining Ineq. (1.3) and Ineq. (1.4), we
obtain

1

2

d

dt
W

2
2 (µt ; νt) ≤ −JV,F (νt | µt) ≤ −CW2

2 (µt ; νt) ,

for any µ0 absolutely continuous with respect to the Lebesgue measure. This
leads to

W2 (µt ; µ
σ) ≤ e−CtW2 (µ0 ; µ

σ) .

This also establishes the uniqueness of the invariant probability.

Bolley, Gentil and Guillin suggested a method to obtain a WJV,F -inequality in
the non-convex case. But, we proceed in a slightly different way. We first use
their result which provides a WJV0,0 (Cσ)-inequality. Then, we prove that Cσ
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goes to infinity as σ goes to infinity. Finally, we remark that JV,F (µ | µσ) ≥
JV0,0 (µ | µσ)− (max {α ; 0}+ ϑ)W2

2 (µ ;µ
σ) for any measure µ.

In the following, µσ denotes an invariant probability of Diffusion (II). We know
that such a measure exists, see [Tug12, Proposition 2.1]. Moreover, the measure
satisfies the following implicit equation

µσ(dx) :=
exp

{
− 2
σ2W

σ(x)
}

∫
Rd exp

{
− 2
σ2W σ(y)

}
dy

dx

with W σ(x) := V (x) + F ∗ µσ(x). Let us now give a WJV0,0-inequality on the
measure µσ.

Proposition 1.5. We assume that V , F and µ0 satisfy the set of Hypotheses
(A). Thus, the measure µσ satisfies a WJV0,0 (Cσ)-inequality where the constant
Cσ is defined by

Cσ := max
R>0

Cσ(R) > 0

with Cσ(R) := min

{
K(R)

3
;

σ2

72R2
e−

2
σ2 S(R) ;

K(R)

3

3d − 2d

2d
e

2
σ2 (I(R)−S(R))

}
,

K(R) := inf
||x||≥R

∇2V0(x) , I(R) := inf
||x||≤2R

W σ(x)

and S(R) := sup
||x||≤3R

W σ(x) .

The proof is left to the reader and consists in a simple adaptation of the proof
of [BGG12a, Proposition 3.4] that is to say [BGG12a, Section 5]. Let us mention
that we do not need to apply the whole set of assumptions. Indeed, to prove this
result, we simply use Hypotheses (A-1)-(A-2)-(A-6). More precisely, we need
the potential W σ to be C1-continuous (which is an immediate consequence of
(A-1) and (A-6). We also need the function V0 to be convex at infinity, which
is proved by (A-2).

From Proposition 1.5, we also deduce the following corollary which is central in
the section.

Corollary 1.6. We assume that V , F and µ0 satisfy the set of Hypotheses (A).
Therefore, we have the following inequality:

(Cσ −max {α ; 0} − ϑ)W2
2 (µt ; µ

σ) ≤ JV,F (µt | µσ) . (1.5)

Particularly, if Cσ−max {α ; 0}−ϑ > 0, Diffusion (II) admits a unique invariant
probability µσ and we have

W2 (µt ; µ
σ) ≤ exp [− (Cσ −max {α ; 0} − ϑ) t]W2 (µ0 ; µ

σ) , (1.6)

for any t ≥ 0.

Like with Proposition 1.5, we do not need the whole set of assumptions. We
assume V and F to verify (A-1)-(A-2)-(A-6). And, in order to apply Proposition
1.4, we assume that the initial law µ0 satisfy (A-8)-(A-9).

8
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Proof. By Proposition 1.5, we have

CσW2
2 (µt ; µ

σ) ≤ JV0,0 (µt | µσ) . (1.7)

However, by definition, the quantity JV,F (µt | µσ) is equal to

JV,F (µt | µσ) = JV0,0 (µt | µσ)− ϑ

∫

Rd

||∇ϕt(x)− x||2 µσ(dx)

− α

2

∫∫

Rd×Rd

||(∇ϕt(x)−∇ϕt(y))− (x− y)||2 µσ(dx)µσ(dy)

+
1

2

∫∫

R2d

〈∇F0 (Z(x, y))−∇F0(x− y) ; Z(x, y)− (x− y)〉µ(dx)µ(dy) ,

with Z(x, y) := ∇τ(x)−∇τ(y). However, F0 is a convex function. Consequently,
we have

JV,F (µt | µσ) ≥ JV0,0 (µt | µσ)− ϑ

∫

Rd

||∇ϕt(x)− x||2 µσ(dx)

− α

2

∫∫

Rd×Rd

||(∇ϕt(x)−∇ϕt(y))− (x− y)||2 µσ(dx)µσ(dy)

≥JV0,0 (µt | µσ)− (max {α ; 0}+ ϑ)

∫

Rd

||∇ϕt(x)− x||2 µσ(dx) .

By Breniers’s theorem, we obtain

JV,F (µt | µσ) ≥ JV0,0 (µt | µσ)− (max {α ; 0}+ ϑ)W2
2 (µt ; µ

σ) ,

which with (1.7) gives (1.5). Here, the convex function ϕt is defined by µt =:
∇ϕt#µσ. The uniqueness of the stationary measure if Cσ − α− ϑ > 0 and the
exponential decay in (1.6) are consequences of Proposition 1.4.

Let us note that the inequality

ϑ := sup
Rd

−∇2V < −α := inf
Rd

∇2F < 0

implies the uniqueness of the stationary measure µσ and the exponential con-
vergence toward µσ for any σ > 0. Such a result has already been proven in
[CMV03].

Reciprocally, the inequality

α := inf
Rd

∇2F < −ϑ := inf
Rd

∇2V < 0

is not sufficient to ensure the uniqueness and the convergence result. We need
also the center of mass to be fixed, see [Tug13a, CMV03].

Theorem 1.7. We assume that V , F and µ0 satisfy the set of Hypotheses (A).
Thus, there exists σc such that Cσ > α+ϑ for any σ ≥ σc. Consequently, if σ is
large enough, Diffusion (II) admits a unique invariant probability µσ. Moreover,
it satisfies the exponential decay (1.6).

9
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Proof. In order to prove it, we first admit the following limit

lim
σ→+∞

1

σ2

∫

Rd

||x||2n µσ(dx) = 0 , (1.8)

for any family {µσ ; σ ≥ 1} of invariant probabilities of Diffusion (II). In a first
step, we prove that Limit (1.8) implies the statement of Theorem 1.7. In a
second step, we prove (1.8).

Step 1. We admit the limit (1.8). We remind the reader the following equality

W σ(x) = V (x) + F ∗ µσ(x) .

Moreover, Hypothesis (A-6) on F implies

|F ∗ µσ(x)| ≤ C
(
1 + ||x||2n

)(
1 +

∫

Rd

||y||2n µσ(dy)
)

so that, for any R > 0, we have the limit

lim
σ→+∞

1

σ2
sup

||x||≤3R

||W σ(x)|| = 0 ,

thanks to Limit (1.8). Therefore, for any R > 0, the quantities exp
[
− 2
σ2S(R)

]

and exp
[

2
σ2 (I(R)− S(R))

]
go to 1 as σ goes to infinity. We remind the reader

that I(R) and S(R) are defined in Proposition 1.5 by

I(R) := inf
||x||≤2R

W σ(x) and S(R) := sup
||x||≤3R

W σ(x) .

We obtain the following limit for any R > 0:

lim
σ→∞

Cσ(R) = K(R)

3
min

{
1 ;

3d − 2d

2d

}
,

where K(R) := inf
||x||≥R

∇2V0(x). By Assumption (A-2), the quantity K(R) goes

to infinity as R goes to infinity. We take R0 such that

K(R0)

3
min

{
1 ;

3d − 2d

2d

}
> 2(α+ ϑ) .

Then, we take σc large enough such that Cσ(R0) >
1
2 limξ→∞ Cξ(R0) for any

σ ≥ σc. Thus, we have the inequality

Cσ ≥ Cσ(R0) > (α+ ϑ)

for any σ ≥ σc. Consequently, if Limit (1.8) is satisfied, the statement of the
theorem is proved.

Step 2. We now achieve the proof by establishing Limit (1.8). It is in this
step that we use the hypothesis p > n. We proceed a reducto ad absurdum. Let

10
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us assume the existence of a positive constant C and an increasing sequence
(σk)k∈N

which goes to infinity such that for any k ∈ N, Diffusion (II) admits an
invariant probability µσk satisfying

η2n(k) :=

∫

Rd

||x||2n µσk(dx) ≥ Cσ2
k .

In particular, we deduce that the sequence (η2n(k))k∈N
goes to infinity as k goes

to infinity. Since µσk is an invariant probability, we have

η2n(k) =

∫
Rd ||x||2n exp

{
− 2
σ2
k
[V (x) + F ∗ µσk(x)]

}
dx

∫
Rd exp

{
− 2
σ2
k
[V (x) + F ∗ µσk(x)]

}
dx

.

By making the transformation x := (η2n(k))
1
2n y, we obtain

1 =

∫
Rd ||y||2n exp

{
− 2
σ̂k

2

[
V
(
(η2n(k))

1
2n y

)

(η2n(k))
p
n

+
F∗µσk

(
(η2n(k))

1
2n y

)

(η2n(k))
p
n

]}
dy

∫
Rd exp

{
− 2
σ̂k

2

[
V
(
(η2n(k))

1
2n y

)

(η2n(k))
p
n

+
F∗µσk

(
(η2n(k))

1
2n y

)

(η2n(k))
p
n

]}
dy

, (1.9)

with σ̂k := σk√
η2n(k)

(η2n(k))
− p−n

2n ≤ 1√
C
(η2n(k))

− p−n
2n → 0 as k goes to infinity.

For any y ∈ R
d, Hypothesis (A-7) implies

lim
k→+∞

F ∗ µσk

(
(η2n(k))

1
2n y

)

(η2n(k))
p
n

= 0 .

And, Assumption (A-5) yields

lim
k→+∞

V
(
(η2n(k))

1
2n y

)

(η2n(k))
p
n

= Θ(y) ,

the function Θ being strictly convex and such that Θ(y) > Θ(0) = 0 for any
y 6= 0. Consequently, by applying [Tug12, Lemma A.2], the right hand term in
(1.9) goes to 0 as k goes to infinity. Nevertheless, the left hand term is equal to
1. The initial assumption of Step 2 is absurd. This achieves the proof.

Let us remark that Theorem 1.7 goes further than the results in [Tug13b]
concerning the uniqueness of the invariant probability for sufficiently large σ.
Moreover, it provides, with Corollary 1.6 a method for simulating a lower-bound
of the critical value above which there is a unique invariant probability. Never-
theless, this method needs more computation than those described in [Tug13b].

Let us mention that the difference with the results obtained in [BGG12b] is that
the confinement potential V is not assumed to be convex.
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2 Propagation of chaos

The other keystone of the uniform propagation of chaos is the simple propagation
of chaos. We here consider it with the Wasserstein distance. Let us define it
precisely.

Definition 2.1. One says that simple propagation of chaos holds if the inequal-
ity

lim
N→+∞

sup
t∈[0;T ]

W2

(
µt ; µ

1,N
t

)
= 0

is true for any T > 0, where µt (resp. µ1,N
t ) is the law of Diffusion (II) (resp.

the law of the first particle in the system (III)).
Uniform propagation of chaos holds if we have the limit

lim
N→+∞

sup
t∈R+

W2

(
µt ; µ

1,N
t

)
= 0 . (2.1)

We know that the uniform coupling limit

lim
N→+∞

sup
t∈R+

E

{∣∣∣
∣∣∣Xt −X1,N

t

∣∣∣
∣∣∣
2
}

= 0

implies the uniqueness of the invariant probability of Diffusion (II) and the
convergence toward this stationary measure. But, what we call here uniform
propagation of chaos is weaker. However, let us prove that the limit (2.1) implies
the uniqueness of the invariant probability and the convergence in Wasserstein
distance toward this measure.

Proposition 2.2. We assume the uniform propagation of chaos, that is to say
(2.1). If V , F and µ0 satisfy the set of Hypotheses (A), McKean-Vlasov diffusion
(II) admits a unique invariant probability µσ. Moreover, we have the limit

lim
t→+∞

W2 (µt ; µ
σ) = 0 .

Proof. We know that Diffusion (II) admits at least an invariant probability µσ,
see [Tug12, Proposition 2.1] or [BGG12b, Proposition A.1].

Hence, we have the inequality

W2 (µt ; µ
σ) =W2 (µ0Pt ; µ

σPt)

≤W2

(
µ0Pt ; µ

1,N
t

)
+W2

(
µ1,N
t ; µ1,N,σ

t

)

+W2

(
µ1,N,σ
t ; µσPt

)
,

where µ1,N,σ
t is the law at time t of the particle X1 in the system (III) starting

from (µσ)
⊗N

. Let ǫ be a positive constant. Limit (2.1) implies the existence of
N such that

sup
t≥0

{
W2

(
µ0Pt ; µ

1,N
t

)
+W2

(
µ1,N,σ
t ; µσPt

)}
<
ǫ

2
.
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Assumptions (A-2) and (A-6) imply that the potential on
(
R
d
)N

defined by

ΥN (X1, · · · , XN ) :=
N∑

i=1

V (Xi) +
1

2N

∑

1≤i,j≤N
F (Xi −Xj) ,

is convex at infinity. Consequently, we can apply the results in [BBCG08]. We
deduce the existence of a positive constant CN such that Diffusion (III) satisfies
a Poincaré inequality with constant CN . Consequently, for any ǫ > 0, there
exists TN > 0 such that

W2

(
µ1,N
t ; µ1,N,σ

t

)
<
ǫ

2
,

if t ≥ TN . This achieves the proof.

In order to obtain the uniform propagation of chaos, we first need to prove
the simple propagation of chaos. It is a classical result. However, we will provide
the proof because we will need to establish a coupling result starting from non
i.i.d. random variables.

Proposition 2.3. We assume that V , F and µ0 satisfy the set of Hypotheses
(A). Let X1

0 , · · · , XN
0 be N random variables with common law µ0. We do not

assume these variables to be independent. We consider the two following particle
systems:

Xi
t = Xi

0 + σBit −
∫ t

0

∇V
(
Xi
s

)
ds−

∫ t

0

∇F ∗ L
(
Xi
s

) (
Xi
s

)
ds , (2.2)

and

Zit = Xi
0 + σBit −

∫ t

0

∇V
(
Zis

)
ds− 1

N

N∑

j=1

∫ t

0

∇F
(
Zis − Zjs

)
ds , (2.3)

B1, · · · , BN being N independent Brownian motions (and independent from the
initial random variables). Then, for any T > 0, we have the following inequality:

sup
t∈[0;T ]

E

{∣∣∣∣Xi
t − Zit

∣∣∣∣2
}
≤ C(µ0)

(ϑ+ 2α)
2
N

exp [2 (ϑ+ 2α)T ] , (2.4)

where C(µ0) is a positive function of
∫
Rd ||x||8q

2

µ0(dx).

Proof. By µt, we denote the law L
(
X1
t

)
= · · · = L

(
XN
t

)
. By definition, for

any 1 ≤ i ≤ N , we have

Zit −Xi
t =−

∫ t

0

{
∇V (Zis)−∇V (Xi

s)
}
ds

−
∫ t

0





1

N

N∑

j=1

∇F (Zis − Zjs)−∇F ∗ µs(Xi
s)



 ds .
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We apply Itô formula to Zit −Xi
t with the function x 7→ ||x||2. By introducing

the notation ξi(t) :=
∣∣∣∣Zit −Xi

t

∣∣∣∣2, we obtain

dξi(t) = −2∆1(i, t)dt−
2

N
∆2(i, t)dt

with ∆1(i, t) :=
〈
Zit −Xi

t ; ∇V (Zit)−∇V
(
Xi
t

)〉

and ∆2(i, t) :=

〈
Zit −Xi

t ;
N∑

j=1

[
∇F (Zit − Zjt )−∇F ∗ µt

(
Xi
t

)]
〉
.

By taking the sum on the integer i running between 1 and N , we get

d

N∑

i=1

ξi(t) = −2∆1(t)dt−
2

N

N∑

i=1

N∑

j=1

(
∆2(i, j, t) + ∆3(i, j, t)

)
dt

with ∆1(t) :=

N∑

i=1

∆1(i, t) ,

∆2(i, j, t) :=
〈
∇F (Zit − Zjt )−∇F (Xi

t −Xj
t ) ; Z

i
t −Xi

t

〉

and ∆3(i, j, t) :=
〈
∇F (Xi

t −Xj
t )−∇F ∗ µt

(
Xi
t

)
; Zit −Xi

t

〉
.

According to the definition of the function F0 in Hypothesis (A-6), it is convex.
This implies 〈x− y ; ∇F0(x− y)〉 ≥ 0 for any x, y ∈ R

d. This inequality yields

1

N

N∑

i=1

N∑

j=1

(∆2(i, j, t) + ∆2(j, i, t)) ≥ −4α
N∑

i=1

∣∣∣∣Zit −Xi
t

∣∣∣∣2 .

Indeed, we have

∆2(i, j, t) + ∆2(j, i, t)

=
〈
∇F (Zit − Zjt )−∇F (Xi

t −Xj
t ) ;

(
Zit −Xi

t

)
−

(
Zjt −Xj

t

)〉

=
〈
∇F0(Z

i
t − Zjt )−∇F0(X

i
t −Xj

t ) ;
(
Zit −Xi

t

)
−
(
Zjt −Xj

t

)〉

− α
〈
∇(Zit − Zjt )− (Xi

t −Xj
t ) ;

(
Zit −Xi

t

)
−
(
Zjt −Xj

t

)〉

=
〈
∇F0(Z

i
t − Zjt )−∇F0(X

i
t −Xj

t ) ;
(
Zit − Zjt

)
−

(
Xi
t −Xj

t

)〉

− α
∣∣∣
∣∣∣
(
Zit − Zjt

)
−

(
Xi
t −Xj

t

)∣∣∣
∣∣∣
2

≥− α
∣∣∣
∣∣∣
(
Zit − Zjt

)
−

(
Xi
t −Xj

t

)∣∣∣
∣∣∣
2

≥− 2α

{∣∣∣∣Zit −Xi
t

∣∣∣∣2 +
∣∣∣
∣∣∣Zjt −Xj

t

∣∣∣
∣∣∣
2
}
.
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Consequently, we have

E



− 2

N

N∑

i=1

N∑

j=1

∆2(i, j, t)



 =

1

2
E



− 2

N

N∑

1≤i,j≤N

(
∆2(i, j, t) + ∆2(j, i, t)

)




≤ 4α

N∑

i=1

∣∣∣∣Zit −Xi
t

∣∣∣∣2 . (2.5)

By definition of ϑ in Assumption (A-3), for any x, y ∈ R
d we have the inequality

〈∇V (x)−∇V (y) ; x− y〉 ≥ −ϑ ||x− y||2. This implies

−2
N∑

i=1

∆1(i, t) ≤ 2ϑ
N∑

i=1

ξi(t) . (2.6)

We now deal with the sum containing ∆3(i, j, t). We apply Cauchy-Schwarz
inequality:

−E



N∑

j=1

∆3(i, j, t)


 ≤

{
E

[∣∣∣∣Zit −Xi
t

∣∣∣∣2
]} 1

2





N∑

j=1

N∑

k=1

E
[〈
ρij(t) ; ρ

i
k(t)

〉]




1
2

with ρij(t) := ∇F (Xi
t −Xj

t )−∇F ∗ µt
(
Xi
t

)
.

Let us prove that E
[〈
ρij(t) ; ρ

i
k(t)

〉]
= 0 for any j 6= k. We use the following

conditioning:

E
[〈
ρij(t) ; ρ

i
k(t)

〉]
= E

{
E
[〈
ρij(t) ; ρ

i
k(t)

〉
| X1

0 , · · · , XN
0

]}
.

We now condition by
(
Xi
s

)
0≤s≤t and by

(
Xj
s

)
0≤s≤t:

E
[〈
ρij(t) ; ρ

i
k(t)

〉]

= E

{
E

[〈
ρij(t) ; E

(
ρik(t) |

(
Xi
s

)
0≤s≤t ,

(
Xj
s

)
0≤s≤t

)〉
| X1

0 , · · · , XN
0

]}
.

However, we have

E

(
∇F

(
Xi
t −Xk

t

)
|
(
Xi
s

)
0≤s≤t ,

(
Xj
s

)
0≤s≤t , X

1
0 , · · · , XN

0

)
= ∇F ∗ µt

(
Xi
t

)
.

We deduce immediatly:

E

(
ρik(t) |

(
Xi
s

)
0≤s≤t ,

(
Xj
s

)
0≤s≤t , X

1
0 , · · · , XN

0

)
= 0 ,

so that
E
{〈
ρij(t) ; ρ

i
k(t)

〉}
= 0 ,

for any j 6= k. And, if j = k, we have

E

{∣∣∣∣ρij(t)
∣∣∣∣2

}
= E

{∣∣∣
∣∣∣∇F

(
Xi
t −Xj

t

)
−∇F ∗ µt

(
Xi
t

)∣∣∣
∣∣∣
2
}
.
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The diffusions Xi and Xj are not independent but they are independent con-
ditionally to the initial random variables. However, according to Hypothesis
(A-6), we have F (x) = G (||x||) where G is a polynomial function of degree 2n,
we have the following inequality:

E

[
||∇F (Xt − Yt)−∇F ∗ µt(Xt)||2

]
≤ C

(
1 + E

[
||Xt||4n−2

])
,

Xt and Yt being two independent random variables with common law µt and
C is a positive constant. Then, we use the control of the moments obtained in
[HIP08, Theorem 2.13] and we obtain the following majoration:

sup
t≥0

E

[
||∇F (Xt − Yt)−∇F ∗ µt(Xt)||2

]
≤ C(µ0) ,

C(µ0) being a function of the 8q2 moment of the law µ0. Consequently, we have

E

{∣∣∣∣ρij(t)
∣∣∣∣2 | X1

0 , · · · , XN
0

}
≤ C(µ0) ,

for any 1 ≤ i, j ≤ N . By taking the expectation, we obtain

E

{∣∣∣∣ρij(t)
∣∣∣∣2

}
≤ C(µ0) ,

for any 1 ≤ i, j ≤ N . Therefore, we deduce the following inequality:

−E



N∑

j=1

∆3(i, j, t)


 ≤

√
C(µ0)

√
NE [ξi(t)] . (2.7)

By combining (2.5), (2.6) and (2.7), we obtain

d

dt

N∑

i=1

E [ξi(t)] ≤ 2

N∑

i=1

{
(ϑ+ 2α)E [ξi(t)] +

√
C(µ0)√
N

√
E [ξi(t)]

}
. (2.8)

However, the particles are exhangeables. Consequently, for any 1 ≤ i ≤ N , we
have

d

dt
E {ξi(t)} ≤ 2 (ϑ+ 2α)E {ξi(t)}+

2
√
C(µ0)√
N

√
E [ξi(t)] .

By introducing τi(t) :=
√
E {ξi(t)}, we obtain

τ ′i(t) ≤ (ϑ+ 2α)

{
τi(t) +

√
C(µ0)

(ϑ+ 2α)
√
N

}

The application of Grönwall lemma yields

E

{∣∣∣∣Zit −Xi
t

∣∣∣∣2
}
≤ C(µ0)

N (ϑ+ 2α)
2 exp [2 (ϑ+ 2α) t] .

We obtain (2.4) by taking the supremum for t running between 0 and T .
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This result is not the classical propagation of chaos because the initial ran-
dom variables are not supposed to be independent. However, we have the same
inequality and this is one of the main tools of the proof of the main theorem.
Before giving the proof of the main theorem, we give the following result for
controlling the moments.

Proposition 2.4. We assume that the potentials V and F and the probability
measure µ0 satisfy the set of Assumptions (A). Let Z1

0 , · · · , ZN0 be N i.i.d. ran-
dom variables with common law µ0. We consider the following particle system:

Zit = Zi0 + σBit −
∫ t

0

∇V
(
Zis

)
ds− 1

N

N∑

j=1

∫ t

0

∇F
(
Zis − Zjs

)
ds , (2.9)

B1, · · · , BN being N independent Brownian motions (and independent from the
initial random variables). Then, there exists a constant M(µ0) such that

max
1≤k≤8q2

sup
t≥0

E

{∣∣∣∣Zit
∣∣∣∣k

}
≤M(µ0) , (2.10)

for any N ∈ N.

The proof is classical and can be adapted from [CGM08, Section 2.1] so it
is left to the reader. Let us just mention that the only hypotheses that we
need on the potentials V and F are (A-1), (A-2), (A-4) and (A-6). Indeed,
these hypotheses are sufficient to ensure the convexity at infinity of the drift
V + F ∗ µt. About the law µ0, we do need the initial entropy to be finite.

3 Main results

In this paragraph, we prove the main results: there is uniform (with respect to
the time) propagation of chaos with sufficiently large σ. In all this section, we
assume the following inequality (simple propagation of chaos):

sup
0≤t≤T

W2

(
µt ; µ

1,N
t

)
≤ exp [ψ(T )]√

N
,

for any T > 0. Here, the function ψ is nondecreasing. Let us remark that under
the set of assumptions (A), this inequality is satisfied thanks to the coupling
result obtained in Proposition 2.3,

sup
0≤t≤T

E

{∣∣∣
∣∣∣Xt −X1,N

t

∣∣∣
∣∣∣
2
}

≤ C(µ0)

N(ϑ+ 2α)2
exp [2 (ϑ+ 2α)T ] .

In this case, we can write ψ(T ) = (ϑ+ 2α)T + log

(√
C(µ0)

ϑ+2α

)
.
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Theorem 3.1. We assume that the potentials V and F and the probability
measure µ0 satisfy the set of Assumptions (A). If σ ≥ σc (σc being defined in
Theorem 1.7), we have the uniform propagation of chaos:

lim
N→+∞

sup
t≥0

W2

(
µt ; µ

1,N
t

)
= 0 . (3.1)

Moreover, we can compute the rate of convergence. By C(σ), we denote the
expression Cσ −max {α ; 0} − ϑ > 0.

First case: The quantity C(σ)t
ψ(t) goes to λ ∈ R

∗
+

⋃ {+∞} as t goes to infinity.
Therefore, for all δ > 0, we have:

lim
N→+∞

N
1

2(1+1/λ)
−δ sup

t≥0
W2

(
µt ; µ

1,N
t

)
= 0 . (3.2)

Second case: The quantity C(σ)t
ψ(t) goes to 0 as t goes to infinity. Thus, for all

δ > 0, we have:

lim
N→+∞

exp

{
C(σ)ψ−1

[
1

2
(1− δ) log(N)

]}
sup
t≥0

W2

(
µt ; µ

1,N
t

)
= 0 . (3.3)

Proof. Step 1. Let t be a positive real. The idea is to consider the nonlinear
diffusion (II) starting with law µ1,N

t . Let T be a positive real.

Step 2. The triangular inequality implies

W2

(
µT+t ; µ

1,N
T+t

)
≤W2 (µT+t ; µ

σ) +W2

(
µσ ; µ1,N

t PT

)

+W2

(
µ1,N
t PT ; µ1,N

T+t

)
.

Step 3. We can bound easily the last term. By definition, we have:

W
2
2

(
µ1,N
t PT ; µ1,N

T+t

)
≤ E

{∣∣∣
∣∣∣Z̃iT − ẐiT

∣∣∣
∣∣∣
2
}
,

for any 1 ≤ i ≤ N . Here, the diffusions Ẑi and Z̃i are defined like so

Ẑis = Xi
t + σ

(
Bit+s −Bit

)
−
∫ s

0

∇V
(
Ẑiu

)
du−

∫ s

0

[
∇F ∗ L

(
Ẑiu

)](
Ẑiu

)
du

and

Z̃is = Xi
t + σ

(
Bit+s −Bit

)
−

∫ s

0

∇V
(
Z̃iu

)
du− 1

N

N∑

j=1

∫ s

0

∇F
(
Z̃iu − Z̃ju

)
du .

We notice that the diffusions
(
Z̃is

)
s≥0

and
(
Ẑis

)
s≥0

depend on σ, on t and on

N . We do not write it for simplifying the reading. By applying the coupling ob-
tained in Proposition 2.3 and the uniform control of the moments in Proposition
(2.4), we obtain:

W2

(
µ1,N
t PT ; µ1,N

T+t

)
≤ exp [ψ(T )]√

N
.
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The first term can be bounded like so:

W2 (µT+t ; µ
σ) ≤ e−C(σ)(T+t)

W2 (µ0 ; µ
σ) .

We proceed in a similar way with the second term

W2

(
µσ ; µ1,N

t PT

)
≤ e−C(σ)T

W2

(
µσ ; µ1,N

t

)

≤ e−C(σ)T
(
W2 (µ

σ ; µt) +W2

(
µt ; µ

1,N
t

))

≤ e−C(σ)(T+t)
W2 (µ

σ ; µ0) + e−C(σ)T
W2

(
µt ; µ

1,N
t

)
.

Consequently, we have:

W2

(
µT+t ; µ

1,N
T+t

)
≤e−C(σ)T

W2

(
µt ; µ

1,N
t

)
+ 2e−C(σ)(T+t)

W2 (µ0 ; µ
σ)

+
exp [ψ(T )]√

N
.

We now take the supremum for t running between (k − 1)T and kT and we
obtain

sup
kT≤t≤(k+1)T

W2

(
µt ; µ

1,N
t

)
≤e−C(σ)T sup

(k−1)T≤t≤kT
W2

(
µt ; µ

1,N
t

)
(3.4)

+ 2e−C(σ)kT
W2 (µ0 ; µ

σ) +
exp [ψ(T )]√

N
.

We denote λk(T ) := sup
kT≤t≤(k+1)T

W2

(
µt ; µ

1,N
t

)
and γ := 2W2 (µ0 ; µ

σ). The

inequality (3.4) can be written in the following way:

λk(T ) ≤ e−C(σ)Tλk−1(T ) + γe−C(σ)kT +
exp [ψ(T )]√

N
.

Step 4. By elementary computations, we have:

λk(T ) ≤
1

1− e−C(σ)T

exp [ψ(T )]√
N

+ kγe−C(σ)kT .

By taking T > 1
C(σ) , the sequence

(
ke−C(σ)kT

)
k≥1

is decreasing. Therefore, we

have sup
k≥0

ke−C(σ)kT = e−C(σ)T . Consequently, we deduce

sup
t≥0

W2

(
µt ; µ

1,N
t

)
= sup

k≥0
λk(T ) ≤

exp [ψ(T )]

1− e−C(σ)T

1√
N

+ γe−C(σ)T . (3.5)

Let ǫ > 0 be arbitrarily small. We take T > 1
C log

(
2γ
ǫ

)
so that γe−C(σ)T < ǫ

2 .

Then, by taking N large enough, we have exp[ψ(T )]
1−e−C(σ)T

1√
N

< ǫ
2 . This implies
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sup
t≥0

W2

(
µt ; µ

1,N
t

)
< ǫ if N is large enough. This proves Limit (3.1).

Step 5. We now prove the rate of convergence result. Let δ > 0 be arbitrarily
small.
Step 5.1. We look at the first case. Inequality (3.5) holds for any T > 0. We

take TN := 1
C(σ)

(
1

2(1+1/λ) log(N)
)
. We immediately deduce 1

1−e−C(σ)TN
≤ 2 for

N large enough. We thus have:

exp [ψ (TN )]√
N

1

1− e−C(σ)TN
≤ 2

exp
[
1
2

1
1+1/λ log(N) ψ(TN )

C(σ)TN

]

√
N

.

For N large enough, the quantity ψ(TN )
C(σ)TN

is less than 1
λ + δ

(
1 + 1

λ

)
so that the

quantity exp[ψ(TN )]
N is less than N−( 1

2(1+1/λ)
− δ

2 ). We deduce

N
1

2(1+1/λ)
−δ exp [ψ (TN )]

1− e−ϕ(TN )

1√
N

≤ N− δ
2 −→ 0 ,

as N goes to infinity. The second term, γe−C(σ)TN , is equal to γN− 1
2(1+1/λ) so

N
1

2(1+1/λ)
−δγe−C(σ)TN = γN−δ −→ 0 ,

as N goes to infinity. This achieves the proof of Limit (3.2).
Step 5.2. We now look at the second case. Here, we obtain

sup
t≥0

W2

(
µt ; µ

1,N
t

)
≤ N− δ

2

1− e−C(σ)TN
+ γe−C(σ)ψ−1( 1

2 (1−δ) log(N)) ,

by taking TN := ψ−1
(
1
2 (1− δ) log(N)

)
. This implies Limit (3.3).

The second case, that is to say when lim
t→+∞

ψ(t)

t
= +∞, does not hold with

McKean-Vlasov diffusion. However, the current work aims to be applied for
more general diffusions.

Remark 3.2. According to Proposition 2.3, we have the simple propagation of
chaos on [0;T ] even if the initial random variables are not independent. Then,
the result of Theorem 3.1 holds even if the initial measure in Diffusion (III) is
not µ⊗N

0 . Indeed, the control of the moments obtained in Proposition 2.4 can
also be applied by using the same conditioning than previously.

This uniform propagation of chaos has a consequence on the interaction
particle system. Let us denote by

(
PNt

)
t≥0

the semi-group associated to Dif-

fusion (III) on
(
R
d
)N

. Let us precise the norm that we use. For any X =

(X1, · · · , XN ) ∈
(
R
d
)N

, we consider

||X ||2 :=
1

N

N∑

i=1

||Xi||2 .
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With this norm, we obtain the following result.

Corollary 3.3. We assume that the triples (V, F, µ0) and (V, F, ν0) satisfy the
set of Assumptions (A). Then, if σ ≥ σc (σc being defined in Theorem 1.7) for
any N ∈ N

∗ and t ≥ 0, we have the inequality:

W2

(
µ⊗N
0 PNt ; ν⊗N0 PNt

)
≤ γe−C(σ)t + 2η(N) ,

with lim
N→+∞

η(N) = 0 and γ := W2 (µ0 ; µ
σ) +W2 (ν0 ; µ

σ).

Proof. The triangular inequality gives us

W2

(
µ⊗N
0 PNt ; ν⊗N0 PNt

)
≤ W2

(
µ⊗N
0 PNt ; µ⊗N

0 P⊗N
t

)

+W2

(
µ⊗N
0 P⊗N

t ; ν⊗N0 P⊗N
t

)
+W2

(
ν⊗N0 P⊗N

t ; ν⊗N0 PNt
)
.

According to the definition of the norm that we use in
(
R
d
)N

, for any proba-

bility measure on R
d, µ and ν, wwe have

W
2
2

(
µ⊗N ; ν⊗N

)
= inf

1

N

N∑

i=1

E

{
||Xi − Yi||2

}
,

the infimum running over the random variables X1, · · · , XN and Y1, · · · , YN
such that L (Xi) = µ, L (Yi) = ν and Xi (respectively Yi) is independent from
Xj (respectively Yj) for any 1 ≤ i 6= j ≤ N . We deduce

W
2
2

(
µ⊗N ; ν⊗N

)
= W

2
2 (µ ; ν) .

According to the definition of the semi-group (Pt)t≥0, we have

W2

(
µ⊗N
0 P⊗N

t ; ν⊗N0 P⊗N
t

)
= W2

(
µ⊗N
t ; ν⊗Nt

)
= W2 (µt ; νt) .

Then, we apply Theorem 1.7 and we obtain

W2

(
µ⊗N
0 P⊗N

t ; ν⊗N0 P⊗N
t

)
≤ W2 (µt ; µ

σ) +W2 (νt ; µ
σ)

≤ e−C(σ)t {W2 (µ0 ; µ
σ) +W2 (ν0 ; µ

σ)} .

Finally, we apply Theorem 3.1 to achieve the proof.

We remind the reader that in [CGM08, Theorem 3.2], the authors obtain a
uniform propagation of chaos of the form

sup
t≥0

E

{∣∣∣∣Xt −X1
t

∣∣∣∣2
}
≤ K

N−(1−ρ) ,

with 0 < ρ < 1. However, by using a method similar to the one of the proof of
Theorem 3.1, we obtain a better inequality with the Wasserstein distance.
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Corollary 3.4. Let us assume that V , F and µ0 satisfy the set of Assumptions
(A) and that max {α ; ϑ} ≤ 0. For any σ > 0, we have the following uniform
propagation of chaos result:

lim
N→∞

N1−δ sup
t≥0

W
2
2

(
µt ; µ

1,N
t

)
= 0

for any 0 < δ < 1.

Proof. By proceeding exactly like in [BRTV98, Lemma 5.4], there exists K > 0
such that the following inequality holds:

sup
0≤t≤T

E

{∣∣∣∣Xt −X1
t

∣∣∣∣2
}
≤ KT 2

N
(3.6)

for any T > 0. Here, there are two differences with the proof in [BRTV98]. First,
here, there is the presence of a confinement potential but since this potential
is convex, we can proceed similarly. And, in [BRTV98], the initial random
variables are assumed to be independent. However, we need here to relax this
independence hypothesis (like in the proof of Theorem 3.1). We use the same
technic than the one in Proposition 2.3 by conditioning with respect to the
initial random variables and we have the result. Inequality (3.6) implies

sup
0≤t≤T

W2

(
µt ;µ

1,N
t

)
≤ exp [ψ(T )]√

N

with ψ(T ) := 1
2 log(K) + log(T ).

Now, since α ≤ 0 and ϑ ≤ 0, any invariant probability µσ satisfies a WJV,F -
inequality with a constant C(σ) > 0. Consequently, we have

lim
t→+∞

C(σ)t

ψ(t)
= +∞ .

We apply Theorem 3.1 and we obtain the statement for any δ > 0.

The rate that we obtain is better. However, the coupling that we proceed
is not necessary with the same Brownian motions. Indeed, we do not obtain a
coupling between X and X1.

In Theorem 3.1, we remark that the stationary measure plays a particular role
in the WJ-inequality. Consequently, we can obtain a better result if we start
from µ0 = µσ, the unique invariant probability.

Corollary 3.5. We assume that the potentials V and F satisfy the hypotheses
(A-1)–(A-7). If σ ≥ σc (σc being defined in Theorem 1.7), we have the following
uniform propagation of chaos result if we start from µ0 = µσ:

sup
t≥0

W2

(
µt, ; µ

1,N
t

)
≤ K

N
,

K being a positive constant.

22

ha
l-0

07
98

81
3,

 v
er

si
on

 2
 - 

3 
N

ov
 2

01
3



Proof. Since the invariant probability µσ satisfies Hypotheses (A-8) and (A-9),
we can apply Theorem 1.7. However, in the proof of Theorem 1.7, we obtained
Inequality (3.5):

sup
t≥0

W2

(
µt ; µ

1,N
t

)
≤ exp [ψ(T )]

1− e−CT
1

N
+ γe−CT ,

with γ = 2W2 (µ0 ; µ
σ) = 0. Therefore, we immediately obtain

sup
t≥0

W2

(
µσ ; µ1,N

t

)
≤ exp [ψ(T )]

1− e−CT
1

N
,

for any T > 0.

We stress that the contraction which holds in Theorem 1.7 links the measure
µt with the invariant probability µσ. But we do not have any contraction
between µ0Pt and ν0Pt. Let us note that if we had the contraction inequality

W2 (µt ; νt) ≤ e−CtW2 (µ0 ; ν0) ,

we would have the following uniform propagation of chaos

sup
t≥0

W2

(
µt ; µ

1,N
t

)
≤ K

N
,

K being a positive constant. However, to obtain such an inequality requires the
strictly uniform convexity of V , see [SvR05]. And, in this case, we directly have
the uniform propagation of chaos without using the convergence.
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