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Uniform propagation of chaos for a class of

inhomogeneous diffusions

Pierre Del Moral∗ & Julian Tugaut†

Abstract

We are interested in inhomogeneous diffusions in which the own law
intervenes in the drift. This kind of diffusions corresponds to the hydrody-
namical limit of some particle system. One also talks about propagation
of chaos. It is well-known, for McKean-Vlasov diffusions, that such a
propagation of chaos holds on finite interval. However, it has been proved
that the lack of convexity of the external force implies that there is no
uniform propagation of chaos if the diffusion coefficient is small enough.
We here aim to establish a uniform propagation of chaos even if the exter-
nal force is not convex, with a diffusion coefficient sufficiently large. The
idea consists in combining the propagation of chaos on a finite interval
with a functional inequality.

Key words and phrases: Nonlinear diffusions ; Propagation of chaos ;
Feynman-Kac ; McKean-Vlasov models ; Functional inequality

2000 AMS subject classifications: Primary 60K35, 60E15 ; Secondary
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Introduction

We are interested in some inhomogeneous processes in R
d defined by an equation

in which the own law of the process intervenes in the drift. In this work, we
consider a diffusion of the form

{
Xt = X0 + σBt −

∫ t
0
b (µs, Xs) ds ,

µs = L (Xs) ,
(I)

where b is a function from P
(
R
d
)
×R

d to R
d and {Bt ; t ≥ 0} is a d-dimensional

Wiener process. The assumptions are detailed subsequently. Let us just say that
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b(µ, x) does only depend on x and on some finite number of moments of µ. The
infinitesimal generator of Diffusion (I) thus is

Aµ :=
σ2

2
∆µ−∇. {b (µ , .)µ} .

The associated semi-group is denoted by (Pt)t≥0. In other words, one has µt =
µ0Pt. We notice that Xt, µt, Pt and A depend on σ. We do not write it for
simplifying the reading.
An example of such diffusion is the McKean-Vlasov one:

Xt = X0 + σBt −
∫ t

0

∇V (Xs) ds−
∫ t

0

(
∇F ∗ L (Xs)

)
(Xs)ds , (II)

where V and F respectively are called the confining and the interacting poten-
tials. The notation ∗ is used for denoting the convolution.

This equation is nonlinear in the sense of McKean, see [McK67, McK66].

It is well-known, see [McK67], that the law L (Xt) is absolutely continuous with
respect to the Lebesgue measure for all t > 0, provided some regularity hy-
potheses on V and F . Moreover, its density, which is denoted by ut, satisfies
the so-called granular media equation,

∂

∂t
ut = ∇.

{
σ2

2
∇ut + (∇V +∇F ∗ ut)ut

}
.

The setting of this work is restricted to the McKean-Vlasov case. However, we
could apply to more general hypotheses. Let us notice that we do not assume any
convex properties on the confining potential nor on the interacting one. Under
easily checked assumptions, Diffusion (II) corresponds to the hydrodynamical
limit of the following particle system





X1
t = X1

0 + σB1
t −

∫ t
0

[
∇V

(
X1
s

)
+

∑N
j=1

1
N∇F

(
X1
s −Xj

s

)]
ds ,

...

Xi
t = Xi

0 + σBit −
∫ t
0

[
∇V

(
Xi
s

)
+

∑N
j=1

1
N∇F

(
Xi
s −Xj

s

)]
ds ,

...

XN
t = XN

0 + σBNt −
∫ t
0

[
∇V

(
XN
s

)
+

∑N
j=1

1
N∇F

(
XN
s −Xj

s

)]
ds ,

(III)

(
W i
t

)
t∈R+

being N independent d-dimensional Wiener processes. We also as-

sume that
{
Xi

0 ; i ∈ N
∗} is a family of independent random variables, identically

distributed with common law L (X0). The particles thus are excheangeable. We

here focus on the first diffusion. By µ1,N
t , we denote the law at time t of the

diffusion X1. The associated semi-group is denoted by
(
PNt

)
t≥0

. We thus have

µ1,N
t = µ0P

N
t . Let us stress that this equality is true only if

{
Xi

0 ; i ∈ N
∗} is

a family of independent random variables, identically distributed with common

2



law µ0.
One says, in this work, that simple propagation of chaos holds on interval [0;T ]
with T > 0 if we have the limit

lim
N→+∞

sup
0≤t≤T

W2

(
µ0P

N
t ; µ0Pt

)
= lim
N→+∞

sup
0≤t≤T

W2

(
µ1,N
t ; µt

)
= 0 ,

W2 standing for the Wasserstein distance. This means that X1 is a good ap-
proximation of Diffusion (I) as N goes to infinity.

Such limit (with another distance) has been investigated for the special case
of the McKean-Vlasov diffusion, see [BRTV98, BAZ99, Mal01, Mal03, Szn91].
Indeed, it is a consequence of the classical result of propagation of chaos which
is proved by a coupling,

sup
t≤T

E

{∣∣∣∣Xt −X1
t

∣∣∣∣2
}
≤ λ

eKT

N
,

with λ,K > 0. Uniform propagation of chaos, that is

lim
N→+∞

sup
t≥0

W2

(
µ0P

N
t ; µ0Pt

)
= lim
N→+∞

sup
t≥0

W2

(
µ1,N
t ; µt

)
= 0 ,

has been proved if both confining potential V and interacting potential F are
convex, see [CGM08]. The particularity here is that the coupling between the
two diffusions is not necessary made with the same Brownian Motions.

A consequence of the uniform propagation of chaos for the nonlinear diffusion
is the uniqueness of the invariant probability µσ and the weak convergence to-
ward this measure. However, without convex properties, we can prove the non-
uniqueness of the invariant probabilities under simple assumptions, provided
that the diffusion coefficient σ is sufficiently small, see [HT10, Tug13, Tug11].
But, as pointed out in [Tug13], if σ is large enough, we have a unique invariant
probability. The question thus is: does uniform propagation of chaos holds if σ
is sufficiently large? Also, can we reciprocally use the convergence toward the
unique invariant probability to obtain this uniform propagation of chaos?

We positively answer to the two questions.

To the best of our knowledge, the first uniform propagations of chaos estimates
for mean field particle models have been developed in [DMM00] and in [DMG01]
in the context of Feynman-Kac interacting jump models. Further results in
this direction can be found in [DMR11] as well as in the research monographs
[DM13, DM04], including exponential concentration inequalities w.r.t. the time
horizon, and contraction inequalities w.r.t. several classes of relative entropy
criteria.

The analysis of interacting jump particle models clearly differs from the more
traditional coupling analysis of the McKean-Vlasov diffusion models developed
in the present article. The common feature is to enter the stability properties of
the limiting nonlinear semigroup into the estimation of the propagation of chaos
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properties of the finite particle systems, to deduce Lp-mean error estimates of

order 1/
√
N
δ
, for any 0 < δ < 1 (cf. for instance theorem 2.11 in [DMM00],

at the level of the empirical processes). In our context using these techniques,
we obtain a variance and a W2-estimate of order 1/N δ, for any 0 ≤ δ < 1. We
underline that in the context of Feynman-Kac particle models, the order 1/N
can be obtained under stronger mixing conditions, using a backward semigroup
techniques. Thus, we conjecture that this decay rate is also met in our context.

The existence problem of a solution to (II) is not investigated here. We thus
assume that there exists a unique strong solution (Xt)t≥0. Let us just mention
that it has been solved under simple assumptions. The method consists in ap-
plying a fixed point theorem, see [BRTV98, HIP08].

In a first section, we introduce the framework of the article and the first results.
Then, we establish some functional inequalities in Section 2. Finally, in last
section, we prove the main result that is the uniform propagation of chaos when
the coefficient diffusion is sufficiently large.

Before finishing the introduction, we give the hypotheses of the paper and the
main result.
Assumption (A): We say that the confining potential V , the interacting po-
tential F and the initial law µ0 satisfy the set of assumptions (A) if
(A-1) V is a smooth function on R

d.
(A-2) lim inf

||x||→+∞
∇2V (x) = +∞.

(A-3) there exists a strictly convex smooth function V0 and ϑ > 0 such that
∇V (x) = ∇V0(x)− ϑx.
(A-4) the gradient ∇V is slowly increasing: there exist m ∈ N

∗ and C > 0 such

that ||∇V (x)|| ≤ C
(
1 + ||x||2m−1

)
, for all x ∈ R

d.

(A-5) there exist a strictly convex function Θ such that Θ(y) > Θ(0) = 0 for
all y ∈ R

d and p ∈ N such that the following limit holds for any y ∈ R
d:

lim
r→+∞

V (ry)

r2p
= Θ(y).

(A-6) there exist an even polynomial and strictly convex function G on R and a
positive constant α > 0 such that F (x) = F0(x)− α

2 ||x||2 with F0(x) := G(||x||).
And, deg(G) =: 2n ≥ 2.
(A-7) the 8q2-th moment of the measure µ0 is finite with q := min {m,n}.
(A-8) the measure µ0 admits a C∞-continuous density u0 with respect to the
Lebesgue measure. And, the entropy −

∫
Rd u0(x) log(u0(x))dx is finite.

The main result (Theorem 2.4 and Theorem 3.1) of the paper can be summa-
rized as follows
Theorem: We assume the set of Hypotheses (A) and also p > n.
Thus, there exists σc such that Diffusion (II) admits a unique invariant prob-
ability µσ if σ ≥ σc. Moreover, there exists a positive constant C(σ) such that
we have the exponential decay

W2 (µt ; µ
σ) ≤ exp [−C(σ)t]W2 (µ0 ; µ

σ) .
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for any measure µ0 with finite entropy. Furthermore, we have the limit

lim
N→+∞

sup
t≥0

W2

(
µt ; µ

1,N
t

)
= 0 .

From now on, τ∗ denotes the Legendre transform of any function τ from R
d to

R.

1 Preliminaries

Let us give the framework (definitions and basic propositions) of the current
work. We begin by the Wasserstein distance.

Definition 1.1. For any probability measures µ and ν, the Wasserstein distance
between µ and ν is

W2 (µ ; ν) :=

√
inf E

{
||X − Y ||2

}
,

where the infimum is taken over the random variables X and Y with law µ and
ν respectively. One can also write

W2 (µ ; ν) =

√
inf

∫∫

Rd×Rd

||x− y||2 π(dx, dy) ,

where the infimum runs over the probability measure on R
d×R

d with marginals
equal to µ and ν.

The Wasserstein distance can be characterized in the following way, by Bre-
nier’s theorem.

Proposition 1.2. Let µ and ν be two probability measures. If µ is absolutely
continuous with respect to the Lebesgue measure, there exists a convex function
τ from R

d to R such that the following equality occurs for every bounded test
function g: ∫

Rd

g(x)ν(dx) =

∫

Rd

g (∇τ(x))µ(dx) .

We write
ν = ∇τ#µ .

We thus have the following characterization:

W2 (µ ; ν) =

√∫

Rd

||x−∇τ(x)||2 µ(dx) .
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The idea-key of the paper is a WJ-inequality. Let us present the expression
that we denote by J :

JV,F (ν | µ) := JV,0 (ν | µ) (1.1)

+
1

2

∫∫

R2d

〈∇F (Z(x, y))−∇F (x− y) ; Z(x, y)− (x− y)〉µ(dx)µ(dy) ,

with Z(x, y) := ∇τ(x)−∇τ(y) and

JV,0 (ν | µ) :=
σ2

2

∫

Rd

(
∆τ(x) + ∆τ∗ (∇τ(x))− 2d

)
µ(dx) (1.2)

+

∫

Rd

〈∇V (∇τ(x))−∇V (x) ; ∇τ(x)− x〉µ(dx) .

Here, we have ν = ∇τ#µ. We now present the transportation inequality on
which the article is based.

Definition 1.3. Let µ be a probability measure on R
d absolutely continuous

with respect to the Lebesgue measure and C > 0. We say that µ satisfies a
WJV,F (C)-inequality if the inequality

CW2 (ν ; µ)
2 ≤ JV,F (ν | µ) (1.3)

holds for any probability measure ν on R
d.

In the same way, we talk about WJV,0-inequality. Since we intend to obtain
WJ-inequality for invariant probability of Diffusion (II), we only consider prob-
ability measures which are uniformly continuous with respect to the Lebesgue
measure.

We now give a classical result which explains why a WJV,F -inequality has con-
sequences on the long-time behavior of McKean-Vlasov diffusions (II). It is
similar to Proposition 1.1 in [BGG12b]. See also [AGS08].

Proposition 1.4. Let µ0 and ν0 be two probability measures on R
d absolutely

continuous with respect to the Lebesgue measure. Set (Xt)t∈R+
and (Yt)t∈R+

two
McKean-Vlasov diffusions (II) starting with law µ0 and ν0. By µt (respectively
νt), we denote the law of Xt (respectively Yt).
Thus, we have the inequality

1

2

d

dt
W2 (µt ; νt)

2 ≤ −JV,F (νt | µt) . (1.4)

Consequently, if µσ is an invariant probability of Diffusion (II) and if µσ

satisfies a WJV,F (C)-inequality, by combining Ineq. (1.3) and Ineq. (1.4), we
obtain

W2 (µt ; µ
σ) ≤ e−CtW2 (µ0 ; µ

σ)

for any µ0 absolutely continuous with respect to the Lebesgue measure. This
also establishes the uniqueness of the invariant probability.
Let us now remind the reader Proposition 3.5 in [BGG12a].
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Proposition 1.5. Let W be a function from R
d to R such that there exist two

constants R ≥ 0 and K > 0 such that ∇2W (x) ≥ K for any ||x|| ≥ R. Let V
be a continuous function from R

d to R.
Thus, there exists C > 0 such that for any convex function τ from R

d to R, we
have

C

∫

Rd

||∇τ(x)− x||2 e−V (x)dx ≤
∫

Rd

[∆τ(x) + ∆τ∗ (∇τ(x))− 2d] e−V (x)dx

+

∫

Rd

〈∇W (∇τ(x))−∇W (x) ; ∇τ(x)− x〉 e−V (x)dx

The other keystone of the uniform propagation of chaos is the simple prop-
agation of chaos. We here consider it with the Wasserstein distance. Let us
define it precisely.

Definition 1.6. One says that simple propagation of chaos holds if the inequal-
ity

lim
N→+∞

sup
t∈[0;T ]

W2

(
µt ; µ

1,N
t

)
= 0

is true for any T > 0, where µt (resp. µ1,N
t ) is the law of Diffusion (II) (resp.

the law of the first particle in the system (III)).
Uniform propagation of chaos holds if we have the limit

lim
N→+∞

sup
t∈R+

W2

(
µt ; µ

1,N
t

)
= 0 . (1.5)

We know that the uniform coupling limit

lim
N→+∞

sup
t∈R+

E

{∣∣∣
∣∣∣Xt −X1,N

t

∣∣∣
∣∣∣
2
}

= 0

implies the uniqueness of the invariant probability of Diffusion (II) and the
convergence toward this stationary measure. But, what we call here uniform
propagation of chaos is weaker. However, let us prove that the limit (1.5) implies
the uniqueness of the invariant probability and the convergence in Wasserstein
distance toward this distance.

Proposition 1.7. We assume the uniform propagation of chaos, that is to say

lim
N→+∞

sup
t∈R+

W2

(
µt ; µ

1,N
t

)
= 0 .

Thus, McKean-Vlasov diffusion (II) admits a unique invariant probability µσ.
Moreover, we have the limit

lim
t→+∞

W2 (µt ; µ
σ) = 0

for any probability measure µ0.

7



Proof. We know that Diffusion (II) admits an invariant probability µσ, see
Proposition 2.1 in [Tug11] or Proposition A.1 in [BGG12b].

Hence, we have the inequality

W2 (µt ; µ
σ) =W2 (µ0Pt ; µ

σPt)

≤W2

(
µ0Pt ; µ0P

N
t

)
+W2

(
µ0P

N
t ; µσPNt

)

+W2

(
µσPNt ; µσPt

)

Let ǫ be a positive constant. Limit (1.5) implies the existence of N such that

sup
t≥0

{
W2

(
µ0Pt ; µ0P

N
t

)
+W2

(
µσPNt ; µσPt

)}
<
ǫ

2
.

The potentials V and F being convex at infinity, the results in [BBCG08] imply
the existence of a positive constant CN such that Diffusion (III) satisfies a
Poincaré inequality with constant CN . Consequently, for any ǫ > 0, there exists
TN > 0 such that

W2

(
µ0P

N
t ; µσPNt

)
<
ǫ

2

if t ≥ TN . This achieves the proof.

2 Functional inequality

Bolley, Gentil and Guillin suggested a method to obtain a WJ inequality in the
non-convex case. But, we proceed in a slightly different way.

In the following, µσ denotes an invariant probability of Diffusion (II). We know
that such a diffusion exists, see Proposition 2.1 in [Tug11]. Moreover, the mea-
sure satisfies the following implicit equation

µσ(dx) :=
exp

{
− 2
σ2W

σ(x)
}

∫
Rd exp

{
− 2
σ2W σ(y)

}
dy

dx

with W σ(x) := V (x) + F ∗ µσ(x). Let us give now a WJ-inequality on the
measure µσ.

Proposition 2.1. Under Assumption (A), the measure µσ satisfies a WJV0,0-
inequality with the constant

Cσ := max
R>0

Cσ(R) > 0

with Cσ(R) := min

{
K(R)

3
;

σ2

72R2
e−

2
σ2 S(R) ;

K(R)

3

3d − 2d

2d
e

2
σ2 (I(R)−S(R))

}
,

K(R) := inf
|x|≥R

∇2V0(x) , I(R) := inf
|x|≤2R

W σ(x)

and S(R) := sup
|x|≤3R

W σ(x) .
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The proof is left to the reader and consists in a simple adaptation of Section
5 in [BGG12a]. This proposition implies a first result about the long-time
convergence of McKean-Vlasov diffusion.

Remark 2.2. Under the hypotheses of [CGM08], there is a unique stationary
measure µ∞ and for any µ0 with finite entropy, there exists λ > 0 such that
W

2
2 (µt ; µ∞) ≤ e−λtW2

2 (µ0 ; µ∞).

In [CGM08], the authors prove a uniform propagation of chaos to obtain a
long-time convergence.

From Proposition 2.1, we also deduce the following corollary which is central in
the section.

Corollary 2.3. Under Assumption (A), µσ satisfies the following inequality

(Cσ − α− ϑ)W2
2 (µt ; µ

σ) ≤ JV,F (µt | µσ) , (2.1)

for any measure µ0 absolutely continuous with respect to the Lebesgue measure
and with finite entropy.
Particularly, if Cσ−α−ϑ > 0, Diffusion (II) admits a unique stationary measure
µσ and for any measure µ0 which satisfies Assumption (A), we have

W2 (µt ; µ
σ) ≤ exp [− (Cσ − α− ϑ) t]W2 (µ0 ; µ

σ) . (2.2)

Proof. By Proposition 2.1, we have

CσW2
2 (µt ; µ

σ) ≤ JV0,0 (µt | µσ) . (2.3)

However, by definition, the quantity JV,F (µt | µσ) is equal to

JV,F (µt | µσ) =JV0,F0
(µt | µσ)− ϑ

∫

Rd

||∇φt(x)− x||2 µσ(dx)

− α

2

∫∫

Rd×Rd

||(∇φt(x)−∇φt(y))− (x− y)||2 µσ(dx)µσ(dy)

≥JV0,0 (µt | µσ)− (α+ ϑ)

∫

Rd

||∇φt(x)− x||2 µσ(dx)

which with (2.3) gives (2.1). Here, the convex function φt is defined by µt =
∇φt#µσ.
The uniqueness of the stationary measure if Cσ−α−ϑ > 0 and the exponential
decay in (2.2) are given by Proposition 1.4.

Let us note that the inequality

inf
Rd

∇2V > sup
Rd

−∇2F

implies the uniqueness of the stationary measure µσ and the exponential con-
vergence toward µσ for any σ > 0. Such a result has already been proven in
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[CMV03].

Reciprocally, the inequality

inf
Rd

∇2F > sup
Rd

−∇2V

is not sufficient to ensure the uniqueness and the convergence result. We need
also the center of mass to be fixed, see [Tug10, CMV03].

Theorem 2.4. We assume the set of Hypotheses (A) and also p > n.
Thus, there exists σc such that Cσ > α+ϑ for any σ ≥ σc. Consequently, if σ is
large enough, Diffusion (II) admits a unique invariant probability µσ. Moreover,
it satisfies the exponential decay (2.2) for any measure µ0 with finite entropy.

Proof. In order to prove it, we first admit the following limit

lim
σ→+∞

1

σ2

∫

Rd

||x||2n µσ(dx) = 0 (2.4)

for a family {µσ ; σ ≥ 1}, µσ being any invariant probability of Diffusion (II).
In a first step, we prove that Limit (2.4) implies the statement of Theorem 2.4.
In a second step, we prove (2.4).

Step 1. We admit the limit (2.4). We remind the reader the following equality

W σ(x) = V (x) + F ∗ µσ(x) .

Moreover, the hypotheses on F imply

|F ∗ µσ(x)| ≤ C
(
1 + ||x||2n

)(
1 +

∫

Rd

||y||2n µσ(dy)
)

so that we have the limit

lim
σ→+∞

1

σ2
sup

||x||≤3R

||W σ(x)|| = 0 .

Thus, for any R > 0, the quantities exp
[
− 2
σ2S(R)

]
and exp

[
2
σ2 (I(R)− S(R))

]

go to 1 as σ goes to infinity. We remind the reader that I(R) and S(R) are
defined in Proposition 2.1. We obtain the following limit for any R > 0:

lim
σ→∞

Cσ(R) = K(R)

3
min

{
1 ;

3d − 2d

2d

}
,

where K(R) = inf ||x||≥R∇2V0(x). By assumption, the quantity K(R) goes to
infinity as R goes to infinity. We take R0 such that

K(R0)

3
min

{
1 ;

3d − 2d

2d

}
> 2(α+ ϑ) .
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Then, we take σc large enough such that Cσ(R0) >
1
2 limξ→∞ Cξ(R0) for any

σ ≥ σc. Thus, we have the inequality

Cσ ≥ Cσ(R0) > (α+ ϑ)

for any σ ≥ σc. Consequently, if Limit (2.4) is satisfied, the statement of the
theorem is proved.

Step 2. We now achieve the proof by establishing Limit (2.4). It is in this
step that we use the hypothesis p > n. We proceed a reducto ad absurdum. Let
us assume the existence of a positive constant C and an increasing sequence
(σk)k∈N

which goes to infinity such that for any k ∈ N, Diffusion (II) admits an
invariant probability µσk satisfying

η2n(k) :=

∫

Rd

||x||2n µσk(dx) ≥ Cσ2
k .

In particular, we deduce that the sequence (η2n(k))k∈N
goes to infinity as k goes

to infinity. Since µσk is a stationary measure, we have

η2n(k) =

∫
Rd ||x||2n exp

{
− 2
σ2
k
[V (x) + F ∗ µσk(x)]

}
dx

∫
Rd exp

{
− 2
σ2
k
[V (x) + F ∗ µσk(x)]

}
dx

.

By making the transformation x := (η2n(k))
1
2n y, we obtain

1 =

∫
Rd ||y||2n exp

{
− 2
σ̂k

2

[
V
(
(η2n(k))

1
2n y

)

(η2n(k))
p
n

+
F∗µσk

(
(η2n(k))

1
2n y

)

(η2n(k))
p
n

]}
dy

∫
Rd exp

{
− 2
σ̂k

2

[
V
(
(η2n(k))

1
2n y

)

(η2n(k))
p
n

+
F∗µσk

(
(η2n(k))

1
2n y

)

(η2n(k))
p
n

]}
dy

(2.5)

with σ̂k := σk√
η2n(k)

(η2n(k))
− p−n

2n ≤ 1√
C
(η2n(k))

− p−n
2n → 0 as k goes to infinity.

By hypotheses, we have the two following limits for any y ∈ R
d:

lim
k→+∞

F ∗ µσk

(
(η2n(k))

1
2n y

)

(η2n(k))
p
n

= 0 and lim
k→+∞

V
(
(η2n(k))

1
2n y

)

(η2n(k))
p
n

= Θ(y) ,

the function Θ being strictly convex and such that Θ(y) > Θ(0) = 0 for any
y 6= 0. Consequently, by applying Lemma A.2 in [Tug11], the right hand term
in (2.5) goes to 0 as k goes to infinity. Nevertheless, the left hand term is equal
to 1. The initial assumption of Step 2 is absurd. This achieves the proof.

Let us remark that Theorem 2.4 goes further than the results in [Tug13]
concerning the uniqueness of the invariant probability for sufficiently large σ.
Moreover, it provides, with Corollary 2.3 a method for simulating a lower-bound
of the critical value above which there is a unique invariant probability. Never-
theless, this method needs more computation than those described in [Tug13].
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3 Main results

In this paragraph, we prove the main results. We remind the reader the work of
Cattiaux, Guillin and Malrieu. But also, we know that there is not a uniform
propagation of chaos since there are several stationary measures. Here, we prove
that there is this propagation of chaos uniform with sufficiently large σ.

In all this section, we assume the following inequality (simple propagation of
chaos):

sup
0≤t≤T

W2

(
µt ; µ

1,N
t

)
≤ exp [ψ(T )]

N
,

for any T > 0. Here, the function ψ is nondecreasing. Let us remark that this
inequality is satisfied thanks to the classical coupling result

sup
0≤t≤T

E

{∣∣∣
∣∣∣Xt −X1,N

t

∣∣∣
∣∣∣
2
}

≤ λ
exp [CT ]

N
.

In this case, we can write ψ(T ) = CT + log(λ).

Theorem 3.1. Under the Hypotheses of Theorem 2.4, if σ ≥ σc, we have the
uniform propagation of chaos. In other words, for any measure µ0 with finite
entropy, we have the limit

lim
N→+∞

sup
t≥0

W2

(
µt ; µ

1,N
t

)
= 0 . (3.1)

Moreover, we can compute the rate of convergence. By C(σ), we denote the
expression Cσ − α− ϑ.

First case: The quantity C(σ)t
ψ(t) goes to λ ∈ R

∗
+

⋃ {+∞} as t goes to infinity.
Thus, for all δ > 0, we have:

lim
N→+∞

N
1

1+1/λ
−δ sup

t≥0
W2

(
µt ; µ

1,N
t

)
= 0 . (3.2)

Second case: The quantity C(σ)t
ψ(t) goes to 0 as t goes to infinity. Thus, for all

δ > 0, we have:

lim
N→+∞

exp
{
C(σ)ψ−1 [(1− δ) log(N)]

}
sup
t≥0

W2

(
µt ; µ

1,N
t

)
= 0 . (3.3)

Proof. Step 1. Let t be a positive real. The idea is to consider the nonlinear
diffusion (II) starting with law µ1,N

t . In other words, let Xt,N
0 be a random

variable with law µ1,N
t . We look at the diffusion

{
Xt,N
s = Xt,N

0 + σ (Bt+s −Bt)−
∫ s
0

(
∇V +∇F ∗ µt,Nr

) (
Xt,N
r

)
dr ,

µt,Nr = L
(
Xt,N
r

)
.

(3.4)

Let T be a positive real. The law at time T of Diffusion (3.4) is µ1,N
t PT .

12



Step 2. The triangular inequality implies

W2

(
µT+t ; µ

1,N
T+t

)
≤W2 (µT+t ; µ

σ) +W2

(
µσ ; µ1,N

t PT

)

+W2

(
µ1,N
t PT ; µ1,N

T+t

)
.

Step 3. The last term is bounded by applying the simple propagation of chaos:

W2

(
µ1,N
t PT ; µ1,N

T+t

)
= W2

(
µ1,N
t PT ; µ1,N

t PNT

)

≤ exp [ψ(T )]

N
.

The first term can be bounded like so:

W2 (µT+t ; µ
σ) ≤ e−C(σ)(T+t)

W2 (µ0 ; µ
σ) .

We proceed in a similar way with the second term

W2

(
µσ ; µ1,N

t PT

)
≤ e−C(σ)T

W2

(
µσ ; µ1,N

t

)

≤ e−C(σ)T
(
W2 (µ

σ ; µt) +W2

(
µt ; µ

1,N
t

))

≤ e−C(σ)(T+t)
W2 (µ

σ ; µ0) + e−C(σ)T
W2

(
µt ; µ

1,N
t

)
.

Consequently, we have:

W2

(
µT+t ; µ

1,N
T+t

)
≤e−C(σ)T

W2

(
µt ; µ

1,N
t

)
+ 2e−C(σ)(T+t)

W2 (µ0 ; µ
σ)

+
exp [ψ(T )]

N
.

We now take the supremum for t running between (k − 1)T and kT and we
obtain

sup
kT≤t≤(k+1)T

W2

(
µt ; µ

1,N
t

)
≤e−C(σ)T sup

(k−1)T≤t≤kT
W2

(
µt ; µ

1,N
t

)
(3.5)

+ 2e−C(σ)kT
W2 (µ0 ; µ

σ) +
exp [ψ(T )]

N
.

We denote λk(T ) := supkT≤t≤(k+1)T W2

(
µt ; µ

1,N
t

)
and γ := 2W2 (µ0 ; µ

σ).

The inequality (3.5) can be written in the following way:

λk(T ) ≤ e−C(σ)Tλk−1(T ) + γe−C(σ)kT +
exp [ψ(T )]

N
.

Step 4. By elementary computations, we have:

λk(T ) ≤
1

1− e−C(σ)T

exp [ψ(T )]

N
+ kγe−C(σ)kT .
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By taking T > 1
C(σ) , the sequence

(
ke−C(σ)kT

)
k≥1

is decreasing. Thus, we have

supk≥0 ke
−C(σ)kT = e−C(σ)T . Consequently, we deduce

sup
t≥0

W2

(
µt ; µ

1,N
t

)
= sup

k≥0
λk(T ) ≤

exp [ψ(T )]

1− e−C(σ)T

1

N
+ γe−C(σ)T . (3.6)

Let ǫ > 0 be arbitrarily small. We take T > 1
C log

(
2γ
ǫ

)
so that γe−C(σ)T <

ǫ
2 . Then, by taking N large enough, we have exp[ψ(T )]

1−e−C(σ)T
1
N < ǫ

2 . This implies

supt≥0 W2

(
µt ; µ

1,N
t

)
< ǫ if N is large enough. This proves Limit (3.1).

Step 5. We now prove the rate of convergence result. Let δ > 0 be arbitrarily
small.
Step 5.1. We look at the first case. Inequality (3.6) holds for any T > 0. We

take TN := 1
C(σ)

(
1

1+1/λ log(N)
)
. We immediately deduce 1

1−e−C(σ)TN
≤ 2 for

N large enough. We thus have:

exp [ψ (TN )]

N

1

1− e−C(σ)TN
≤ 2

exp
[

1
1+1/λ log(N) ψ(TN )

C(σ)TN

]

N
.

For N large enough, the quantity ψ(TN )
C(σ)TN

is less than 1
λ + δ

2

(
1 + 1

λ

)
so that the

quantity exp[ψ(TN )]
N is less than N−( 1

1+1/λ
− δ

2 ). We deduce

lim
N→+∞

N
1

1+1/λ
−δ exp [ψ (TN )]

1− e−ϕ(TN )

1

N
= 0 .

The second term, that is γe−C(σ)TN , is equal to γN
1

1+1/λ so

lim
N→+∞

N
1

1+1/λ
−δϑe−C(σ)TN = 0 .

This achieves the proof of Limit (3.2).
Step 5.2. We now look at the second case. Here, we obtain

sup
t≥0

W2

(
µt ; µ

1,N
t

)
≤ N− δ

2

1− e−C(σ)TN
+ γe−C(σ)ψ−1((1− δ

2 ) log(N)) ,

by taking TN := ψ−1
((
1− δ

2

)
log(N)

)
. This implies Limit (3.3).

The second case, that is to say when limt→+∞
ψ(t)
t = +∞, does not hold

with McKean-Vlasov diffusion. However, the current work aims to be applied
for more general diffusions.

This uniform propagation of chaos has a consequence on the interacting particle
system. Let us denote by

(
PNt

)
t≥0

the semi-group associated to Diffusion (III).

Consequently, we have

L
(
X1
t , · · · , XN

t

)
= L

(
X1

0 , · · · , XN
0

)
PNt .

We recall that, in the current work, L
(
X1

0 , · · · , XN
0

)
= µ⊗N

0 .
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Corollary 3.2. Under the hypotheses of Theorem 3.1, for any measures µ0

and ν0 with finite entropy, we have the following inequality for any N ∈ N
∗ and

t ≥ 0:
W2

(
µ0P

N
t ; ν0P

N
t

)
≤ e−C(σ)t

W2 (µ0 ; ν0) + 2η(N)

with limN→+∞ η(N) = 0. Moreover, we have

W2

(
µ⊗N
0 PNt ; ν⊗N0 PNt

)
≤ e−C(σ)t

W2 (µ0 ; ν0) + 2η(N) .

It is a simple application of Theorem 3.1.

We remind the reader that in [CGM08] (Theorem 3.2), the authors obtain a
uniform propagation of chaos of the form

sup
t≥0

E

{∣∣∣
∣∣∣Xt −X1,N

t

∣∣∣
∣∣∣
2
}

≤ K

N−(1−ρ) ,

with 0 < ρ < 1. However, by using a method similar to the one of the proof of
Theorem 3.1, we obtain a better inequality with the Wasserstein distance.

Corollary 3.3. Under the hypotheses of Theorem 3.2 in [CGM08], for any
σ > 0, we have the following uniform propagation of chaos result:

lim
N→∞

N1−δ sup
t≥0

W2

(
µt ; µ

1,N
t

)
= 0

for any 0 < δ < 1.

Proof. By proceeding exactly like in Lemma 5.4 in [BRTV98], there existsK > 0
such that the following inequality holds:

sup
0≤t≤T

E

{∣∣∣
∣∣∣Xt −X1,N

t

∣∣∣
∣∣∣
2
}

≤ KT 2

N
(3.7)

for any T > 0. Here, the unique difference is the presence of a confining potential
but since this potential is convex, we can proceed similarly. Inequality (3.7)
implies that ψ(T ) = log(K) + 2 log(T ).

Now, since α+ ϑ > 0, any invariant probability µσ satisfies a WJV,F -inequality
with a constant C(σ) > 0. Consequently, we have

lim
t→+∞

C(σ)t

ψ(t)
= +∞ .

We apply Theorem 3.1 and we obtain the statement of Corollary 3.3 for any
δ > 0.

The rate that we obtain is better. However, the coupling that we proceed is
not necessary with the same Brownian Motions.

In Theorem 3.1, we remark that the stationary measure plays a particular role
in the WJ-inequality. Consequently, we can obtain a better result if we start
from µ0 = µσ, the unique stationary measure.
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Corollary 3.4. Under the Hypotheses of Theorem 3.1, if Cσ > α+ ϑ, we have
the following uniform propagation of chaos result if we start from µ0 = µσ:

sup
t≥0

W2

(
µσ ; µσPNt

)
≤ K

N
,

K being a positive constant.

Proof. We recall Inequality (3.6).

sup
t≥0

W2

(
µt ; µ

1,N
t

)
≤ exp [ψ(T )]

1− e−CT
1

N
+ γe−CT .

Here, γ = 2W2 (µ0 ; µ
σ) = 0. Thus, we immediately obtain

sup
t≥0

W2

(
µσ ; µσPNt

)
≤ exp [ψ(T )]

1− e−CT
1

N
,

for any T > 0.

We stress that the contraction which holds in Assumption (A) links the mea-
sure µt with the invariant probability µσ. But we do not have any contraction
between µ0Pt and ν0Pt. Let us note that if we had the contraction inequality

W2 (µt ; νt) ≤ e−CtW2 (µ0 ; ν0) ,

we would have the following uniform propagation of chaos

sup
t≥0

W2

(
µt ; µ

1,N
t

)
≤ K

N
,

K being a positive constant. However, To obtain such an inequality requires
the strictly uniform convexity of V , see [SvR05]. And, in this case, we directly
have the uniform propagation of chaos without using the convergence.

Remark 3.5. We can extend all of these results to any other non-linear mod-
els like (I) provided that we have the simple propagation of chaos between the
interacting particle system and the hydrodynamical limit.
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