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Rossby waves trapped by quantum mechanics

Thierry Paul

Rossby and Poincaré waves appear naturally in the study of large scale oceano-
graphy. Poincaré waves (PW), of period of the order of a day, are fast dispersive
waves and are due to the rotation of the Earth through the Coriolis force. Much
slower, Rossby waves (RW) are sensitive to the variations of the Coriolis parameter,
propagate only eastwards and remain localized for long period of times. We would
like here to report on some new results, obtained in collaboration with C. Cheverry,
I. Gallagher and L. Saint-Raymond [1, 2, 3] studying this phenomenon, dispersivity
of PW and trapping of RW, as a consequence of the study of the oceanic waves in
a shallow water flow subject to strong wind forcing and rotation, linearized around
a inhomogeneous (non zonal) stationary profile. The main feature of our results,
compared to earlier ones, [5, 7, 4] to quote only very few of them, consists in the
fact that we abandon both the betaplane approximation (constant Coriolis force)
and the zonal aspect (non dependence w.r.t. the latitude) of the convection term
(coupling with the wind).

After some scalings and dimensional homogenizations, the Saint-Venant system
of equations for the variations η, u near a constant value of the height h̄ and
divergence free stationary profile of velocity ū takes the form (see [2, 3] for details)

(1)
∂tη + 1

ε
∇ · u + ū · ∇η + ε2∇ · (ηu) = 0

∂tu + 1
ε2

bu⊥ + 1
ε
∇η + ū · ∇u + u · ∇ū + ε2u · ∇u = 0

where b is the horizontal component of the Earth rotation vector normalized to
one and ε−1 measures the Coriolis force.

The linear version of (1) reads (here D := 1
i
∂ and x = (x1, x2) ∈ R

2):

(2) ε2i∂tv +A(x, εD, ε)v = 0, v = (v0, v1, v2) = (η, u1, u2),

with the linear propagator

(3) A(x, εD, ε) := i





εū · ε∇ ε∂1 ε∂2

ε∂1 εū · ε∇ + ε2∂1ū1 −b + ε2∂2ū1

ε∂2 b + ε2∂1ū2 εū · ε∇ + ε2∂2ū2



 .

We will concentrate on (2) with the condition that, essentially, b is increasing
at infinity with all derivatives bounded in module by |b| and only non degenerate
critical points. Moreover ū will have to be smooth with compact support.

A simplified version of our main result reads as follows (see [3] for details).

Theorem 1. Under certain microlocalization properties of the initial condition,
the solution vε(t) = vε(t, .) of (2) decomposes on two Rossby and Poincaré vector
fields vε(t) = vR

ε (t) + vP
ε (t) satisfying

• ∀t > 0, ∀Ω compact set of R2,

(4) ‖vP
ε (t)‖L2(Ω) = O(ε∞)

• ∃Ω bounded set of R such that, ∀t > 0

(5) ‖vR
ε (t)‖L2(Rx1×(R\Ω)x2 )

= O(ε∞).
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Theorem 1 shows clearly the different nature of the two type of waves: dispersion
for Poincaré and confining in x2 for Rossby. The method of proving Theorem 1 will
consist in diagonalizing the “matrix” A(x, εD, ε). Such diagonalization, if possible,
would immediately solve (2) by reducing it to the form ε2i∂tu+D(x, εD, ε)u = 0
with D(x, εD, ε) diagonal and solving it component by component. Diagonalizing
matrices with operator valued entries is not a simple task, but our next result will
show how to achieve it modulo ε∞ in the case of matrices with ε-semiclassical type
operators entries.

To any (regular enough) function Aε ∼
∑∞

0 εlAl on R
2n = T ∗

R
n, possibly ma-

trix valued, we associate the operator Aε (densely defined) on L2(Rn) defined by:

f → Aεf, (Aεf)(x) =
∫

Aε(
x+y
2 , ξ)ei

ξ(x−y)
ε f(y)dydξ

εn
.

Aε is called the symbol of Aε and Aε the (Weyl) quantization of Aε.
Let Aε be suchN×N operator valued matrix of symbol Aε ∼

∑∞
0 εlAl. We will

suppose that A0(x, ξ) is Hermitian and therefore is diagonalizable (at each point)
by U = U(x, ξ), U∗A0U = diag(λ1, . . . , λN ) := D. We will suppose moreover that

(6) ∀(x, ξ), ∀i 6= j, |λi(x, ξ)− λi(x, ξ)| ≥ C > 0.

Theorem 2 ([3]). There exist Vε semiclassical operator and Dε diagonal (w.r.t.
the N ×N structure) such that

V −1
ε AεVε = Dε +O(ε∞) and V ∗

ε Vε = IdL2(Rn,CN ) +O(ε∞) = VεV
∗
ε +O(ε∞).

Moreover Dε = D+ εD1 +O(ε2), where D is the Weyl quantization of D and D1

is the diagonal part of (∆1 −
DI1+I1D

2 ) with (U being the Weyl quantization of U)

(7) ∆1 =
U∗AεU − D

ε
|ε=0, I1 =

U∗U − Id
L2(Rn,CN )

ε
|ε=0.

Let us go back now to the case given by (3). One checks easily that A(x, εD, ε)
is of semiclassical type. Its symbol is

(8) A(x, ξ, ε) =





εū · ξ ξ1 ξ2
ξ1 εū · ξ + ε2∂1ū1 −b + ε2∂2ū1

ξ2 b + ε2∂1ū2 εū · ξ + ε2∂2ū2



 =





0 ξ1 ξ2
ξ1 0 −b
ξ2 b 0



 + O(ε).

The spectrum of the leading orderA(x, ξ, 0) is {−
√

ξ2 + b2(x2), 0,+
√

ξ2 + b2(x2)}.
Therefore Condition (6) is satisfied only if ξ2 + b2(x) ≥ C > 0 which corre-
spond to the microlocalization condition in Theorem 1. Theorem 2 gives, af-
ter a tedious computation, that A(x, εD, ε) is unitary equivalent (modulo ε2)
to the diagonal matrix diag(T+, TR, T−) where T± is the Weyl quantization of

τ±(x, ξ) := ±
√

ξ2 + b2(x2) and TR is the quantization of the Rossby Hamiltonian

τR(x, ξ) := ε( ξ1b
′(x2)

ξ2+b2(x) + ū(x) · ξ).

Under the betaplane approximation, b(x2) = βx2, the Hamiltonians T± are
exactly solvable and one shows by hand the dispersive effect for the Poincaré
waves. In our situation this doesn’t work, and because of the ε2 term in the r.h.s.
of (2) the method of characteristics does not apply. A general argument, inherited
form quantum mechanics will provide us the solution. First we remark that the
Poisson bracket {τ±, x1} = ξ1/τ

±. This indicates, at a classical level, that ẋ1 has
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a sign for each Poincaré polarization, leading to no return travel. The following
theory, due to Eric Mourre, gives the “quantum” equivalent of this argument.

Let H and A be two self-adjoint operators on a Hilbert space H such that: the
intersection of the domains of H and A is dense in the domain of H , t 7→ eitA

maps the domain of H to itself and sup[0,1] ‖HeitAϕ‖ < ∞ for ϕ in the domain

of H , and i[H,A] is bounded from below, closable and the domain of its closure
contains the domain of H . Finally let us suppose the following
Positivity condition: there exist θ > 0 and an open interval ∆ of R such that
if E∆ is the corresponding spectral projection of H , then

(9) E∆i[H,A]E∆ ≥ θE∆,

namely i[H,A] > 0 on any spectral interval of H contained in ∆.

Theorem 3 (E. Mourre ’80, [6]). For any integer m ∈ N and for any θ′ ∈]0, θ[,
there is a constant C such that

‖χ−(A− a− θ′t)e−iHtg(H)χ+(A− a)‖ ≤ Ct−m

where χ± is the characteristic function of R±, g is any smooth compactly supported
function in ∆, and the above bound is uniform in a ∈ R.

In other words, to talk in the quantum langage, if one starts with an initial
condition ϕ such that “A ≥ a” and the positivity condition (9) holds, after any
time t the “probability” that “A ≤ θ′t” is of order t−m. In particular, as t → ∞
the solution e−iHtϕ escape from any compact spectral region of A.

Taking A = x1, Theorem 3 gives, after verification that it applies, exactly
the “Poincaré” part of Theorem 1. The “Rossby part” is given by using the
bicharacteristic method and a small computation done in [3] which shows that
bicharacteristics are trapped in finite regions in the latitude (x2) direction.

Let us mention to finish that the nonlinear terms can be handled by using a
“L∞” Gronwall Lemma and working in some anisotropic and semiclasical Sobolev
spaces, so that the solution of (1) is close to the one of (2) as ε → 0.
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