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Abstract

In 2002, Després and Lagoutière [Després and Lagoutière (2002)] proposed a low-diffusive advection
scheme for pure transport equation problems, which is particularly accurate for step-shaped solu-
tions, and thus suited for interface tracking procedure by a color function. This has been extended
by Kokh and Lagoutière [Kokh and Lagoutière (2010)] in the context of compressible multifluid flows
using a five-equation model. In this paper, we explore a simplified variant approach for gas-liquid
three-equation models. The Eulerian numerical scheme has two ingredients: a robust remapped
Lagrange solver for the solution of the volume-averaged equations, and a low diffusive compressive
scheme for the advection of the gas mass fraction. Numerical experiments show the performance of
the computational approach on various flow reference problems: dam break, sloshing of a tank filled
with water, water-water impact and finally a case of Rayleigh-Taylor instability. One of the advan-
tage of the present interface capturing solver is its natural implementation on parallel processors or
computers.

Keywords: numerical method, multiphase flow, air-water flow, free boundary, interface capturing,
compressible fluid, finite volume, Lagrange-remap solver, solver for parallel computing, wave
breaking, sloshing, impact problem

1. Introduction

Simulation of free surface flows knows an increasing interest as an essential predictive tool for
innovative Engineering designs into many fields of applications, and a complementary analysis tool
compared to physical experiments. This includes for instance the safety study of water dams,
tsunamis, the extraction of offshore petroleum, the sizing of Liquified Natural Gas (LNG) carriers,
processes of phase separation, waste water treatment, flocculation processes, bio-Engineering, med-
ical applications, etc. The evolution of the interfaces between phases and the consecutive complex
dynamics need to be simulated for the understanding of the flows and the process optimization in
the industrial case. For gas-liquid applications involving fast dynamics, beyond quantities of inter-
est, numerical models have to be able to capture most of the flow features that drive the dynamics,
e.g.:

• wave formation and wave breaking;

• wall wave impacts, local pressure peaks and pressure loadings;

Email addresses: champmar@cmla.ens-cachan.fr (Aude Bernard-Champmartin), devuyst@cmla.ens-cachan.fr
(Florian De Vuyst)

Preprint submitted to Journal of Computational Physics April 23, 2014



• formation of air pockets;

• ejection, fragmentation of liquid droplets;

• Archimedes buoyancy effect with rising of bubbles and fall of droplets;

• effects of gas compressibility inducing a gas-to-liquid response by a pressure wave, etc.

In this paper, we consider immiscible gas-liquid two-phase flow problems. The strong ratio of mass
density between gas and liquid (typically 1:1000) is known to be a source of numerical stiffness and
numerical instability. Therefore robust computational approaches supporting high density ratio have
to be considered. Among the family of conservative Finite Volume methods (FVM), the Lagrange-
Remapped solvers [van Leer (1979); Woodward and Colella (1984); Benson (1992); Bailey (2003);
Heuzé et al. (2009); Arber et al. (2001)...] provide both robustness and stability with achievement
of mathematical properties of positiveness and entropy compatibility.

Lagrange-remap numerical schemes (also referred to as Euler-Lagrange schemes) are a par-
ticular family of Eulerian FVM where, at each time step, the equations are solved according to a
Lagrangian evolution with a mesh that is convected by the flow itself, then the “Lagrange solutions”
are remapped on the initial mesh into a conservative way by estimating both fluxed mass and mo-
mentum. Because of the Lagrangian step of these methods, code coupling or coupling of different
physics is made easier against conventional FV methods. Moreover, the Lagrangian description
is very practical for multi-material flows of multi-phase flows because we are a natural control of
the fluxed quantities material-by-material. Lagrange and Lagrange-remap solvers still know strong
developments today with major contributions as e.g. energy-preserving compatible schemes for stag-
gered methods Caramana et al. (1998b), collocated variables and cell-centered entropy-satisfying
schemes, see Després and Mazeran (2005); Maire et al. (2007); Carré et al. (2009).

In this paper, we rather consider a simpler staggered Lagrange-Remap solver with a direction-
by-direction remapping. More precisely, the 2D multidimensional Lagrange step (operator L∆t

xy )
completely solves the fluid equations while an operator splitting alternating direction (AD) for the
projection (operators Rx and Ry respectively) is used to interpolate on the reference Cartesian Eu-
lerian grid into a conservative manner, involving convective flux balances. Symmetrized operator
splitting can be used to ensure second order accuracy. Both linear and nonlinear numerical stabil-
ity are ensured by the use of standard pseudo-viscosity (viscous pressure) terms, detailed into an
Appendix at the end of this paper. Actually, we use this simple Euler solver because of its sim-
plicity of code implementation and because it can be vectorized/parallelized into a natural manner.
Moreover, the aim of this paper is not about the Hydrodynamics solver: the article mostly focuses
on numerical antidiffusive methods for interface capturing, as part of a global multifluid Hydrody-
namics solver. At the present time, the antidiffusive approaches assumes a direction-by-direction
remapping which leads to a simpler derivation of the andiffusive fluxes.

The issue of an interface tracking/capturing algorithm providing expected properties like ro-
bustness, accuracy, conservation of volume and mass while not being too much computationally
intensive is still the object of today’s active Research. Pure Lagrangian approaches like Smoothed
Particle Hydrodynamics (SPH) methods naturally captures the moving interfaces because each
macro-particle moves with the flow. Each particle is also attached to a given material with its own
equation of state (EOS). For liquid-gas flows, we have liquid particles and gas particles and the
interface of nothing else but the discrete interface separating liquid particles from gas particles. In
the last decade, we have seen in the literature major contributions of improvement in the SPH world
with improved accuracy, stability, and ability to tackle multiphase flow problems with high density
ratios for violent flow applications, see for example Colagrossi and Landrini (2003); Marrone et al.
(2011); Grenier et al. (2013). Despite these improvements, SPH still know some issues. Moreover
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parallelization techniques for SPH are quite technical and require a great expertise (as dealing with
strong density ratio between phases). That’s why we rather choose a more classical computational
approach.
Notice also that there are also mesh-based Lagrangian methods (Maire et al. (2007); Carré et al.
(2009)). But for flows with large deformations, cells may become degenerate, and both regulariza-
tion or remapping procedures are needed.

For Eulerian methods, the family of interface tracking methods try to reconstruct the free
boundary according to some tracking procedure (level set methods [Sethian (1999)] for example).
Interface reconstruction methods try to recontruct a moving interface according to some incomplete
information: volume-of-fluid (VOF) methods [Noh and Woodward (1976); Youngs (1985)] or MOF
(Moment-of-Fluid) methods [Dyadechko and Shashkov (2005)]). The family of interface captur-
ing methods involves at the continuous level the transport equation of an indicator function that
distinguishes the location of the different materials:

∂tz + u · ∇z = 0, z ∈ {0, 1}

(where u is the velocity and z the color function or a phase indicator), expressing that the interface
property between the two phases is advected with the local fluid velocity. From the numerical
point of view, finite volume cells may host different materials. The so-called “mixed cells” need an
additional closure but on the other hand the mass fraction cg ∈ [0, 1] of the gas fluid may be used
as the numerical indicator function:

∂tcg + u · ∇cg = 0, cg ∈ [0, 1].

It can be set up in conservative form in order to conserve the gas mass:

∂t(ρcg) +∇ · (ρcgu) = 0

with ρ representing the mean cell “mixture” density, but of course it induces a “diffuse” interface,
which has to be kept as less diffusive as possible. Let us emphasize that this diffuse feature is only
a pure numerical artefact. This kind of methods uses more or less sophistication levels including
high-order schemes, compressive flux limiters, artificial compression stages, local adaptive mesh re-
finement (AMR) [Berger and Colella (1989)], a posteriori methods in which an anti-diffusion phase
is added after the projection (or the advection) of the quantities, use of pseudo-velocities to correct
the truncation error of the numerical scheme [So et al. (2011); Hill and Szmelter (2011); Navaro
(2002)...], Eulerian methods with Lagrangian tracking of the interface (VFFC-ENIP [Loubère et al.
(2012)]), etc. These methods have been proved to be very efficient. But the price to pay is the
relative important implementation and computational effort. For parallel computer architectures,
the parallel implementation may be tricky or require a tedious work. To summarize what can be
said is that each method in the literature shares both advantages and drawbacks. The combination
of the three properties conservation-accuracy-robustness is actually highly constrained. The paral-
lel computing aspect may also add strong constraints with heavy programming efforts. Regarding
interface capturing methods with a color function, there is two points of view: either a threshold
on z (say z = 1

2) which discriminates the fluid zones as level sets do, or one considers a possibly
smoothed colored function involving a smoothed transition between both fluids. In this case, some
“regularization” closure has to be defined into the model. The “uncertainty” related to a z belong-
ing to on the open interval (0, 1) has to be expressed, for example by a volume-averaged mixture
closure. This is discussed in the next section.

In this work, we have decided to investigate the use of a recent antidiffusive advection scheme
for stepwise solutions, initially proposed by Després and Lagoutière. The idea is to combine both

3



upwinding and downwinding discretizations for the gradient operators. The upwinding process is
known to provide strong stability in Lp norm under a standard CFL condition while pure downwind-
ing is unconditionally unstable because of its over-compressive nature. Després and Lagoutière then
proposed a combination of both upwinding and downwinding “at the limit of stability”, providing
the most compressive solver while ensuring stability with a local discrete maximum principle. This
computational approach has been considered in Kokh and Lagoutière [Kokh and Lagoutière (2010)]
and more recently in [Billaud Friess et al. (2011); Billaud Friess and Kokh (2012)] for multiphase
flow problems with a “five-equation” model that includes the transport of a color function. In fact
the color variable z acts for the interface location whereas another variable y, a gas mass fraction is
necessary for conservation purposes. Thus we present here an adaptation of the Després-Lagoutière
advection scheme to the case of a simpler “three-equation” gas-liquid volume averaged model. In our
case, the gas mass fraction cg also acts as the color variable and is andiffused. We rather reformulate
the mass conservation equations using a gas volume fraction α which is of course a function of cg for
given phase densities. We use isentropic pressure law equations of state per phase, the liquid phase
being seen as a (weakly) compressible fluid. To close the system, we here assume a simple pressure
equilibrium in each mixed cell. Methods based on the instantaneous pressure equilibrium usually
produce overshoots of some material quantity at the interfaces because the instantaneous pressure
equilibrium does not correspond to the behavior of two pure material cells facing each other (see
for example Kamm and Shashkov (2010); Bachmann et al. (2013) for a discussion about this issue).
But there are more realistic closure mechanisms like pressure relaxation mechanisms Kamm and
Shashkov (2010) that improve the behavior at the interface. Once again, this paper does not really
focus on this topic. We mostly want to evaluate the both advantages, limitations and drawbacks of
such an antidiffusive approach, in particular in the case of stiff gas-liquid multiphase flows.

Another motivation that justifies our choice of that type of interface capturing method based on
the solution of a transport equation of an Eulerian Cartesian grid is that we believe they are very
promising for manycore coprocessor parallel computing, like Intel Xeon PHI or Graphics Processing
Units (GPU). While standard PDE discretization methods (mesh, array data structures, sparse
matrices, memory) have been designed and optimized a few decades ago on the assumption of a
sustainable CPU-global memory model, parallel many-core processing architecture is completely
different such that data structures organized by grids of blocks are particularly suitable for finite
difference/volume methods on Cartesian grids.
At the present time, our computations are performed sequentially on a standard CPU for accuracy
assessment of the numerical method and its improvement. Ongoing works are dedicated to the GPU
programming of such a method. Let us finally remark that the last update of the NVIDIA CUDA
Software Development Kit includes an Application Programming Interface (API) for Adaptive Mesh
Refinement (AMR). AMR methods of course could be used with the low-diffusive interface capturing
technique for a more accurate level of interface resolution.

2. Three-equation two-fluid model and equations of state

There are numerous models for gas-liquid two-phase flows subject to gravity forces. In our
targeted field of “violent flow” applications with strong topology changes involving wave breaking
and air pockets, the Saint-Venant shallow-water equations involving a variable height of the interface
are not relevant. We must resort to a multi-fluid system of equations. Let us consider here a phase-
separated model composed of inviscid fluids, separated by a free boundary Γ(t). We use a unique
fluid velocity u leading to a momentum conservation equation. The resulting system is supposed to
be hyperbolic according to the choices of pressure laws and mixture closure. To simplify, we do not
here consider surface tension effects. Let us consider regular smooth solutions with smooth interface
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boundaries. At instant t, for each spatial point x, one has to consider the continuity equation for
the phase k being present:

∂tρk +∇ · (ρku) = 0

where ρk is the mass density of the fluid k, k = g or ℓ (g (resp. ℓ) stands for the gas (resp. for the
liquid)) and u is the fluid velocity. The momentum balance equation reads, for the phase k being
present at point x

∂t(ρku) +∇ · (ρku⊗ u) +∇p = ρkg

considering a pressure p = p(ρk) and a constant gravity field g. Denoting by z = z(x, t) the indicator
function that returns 0 if the current fluid is the liquid and 1 if it is the gaseous phase, one can
define a general mass density ρ,

ρ = zρg + (1− z)ρℓ.

Thus the mass conservation equations write under a condensed form for any phase

∂tρ+∇ · (ρu) = 0.

For the same reason, we have the global momentum equation

∂t(ρu) +∇ · (ρu⊗ u) +∇p = ρg.

The indicator function z is simply convected by the flow field because its Lagrangian derivative is
zero:

Dtz = 0

(Dt is the Lagrangian derivative, i.e. Dt = ∂t + u · ∇), leading (if preferred) to a conservation law

∂t(ρz) +∇ · (ρzu) = 0.

From the numerical point of view, using a fixed mesh that does not move with the flow, we will
necessary have some finite volume cells hosting both phases, with respective volume fractions α and
(1 − α) for gas and liquid. Averaging operations should also involve phasic velocities ug and uℓ.
But, assuming that gas and liquid phases are sufficiently separated, we consider a unique velocity u.
Introducing the gas mass fraction cg per cell, we will then have cg ∈ [0, 1] numerically. The mass
conservation for the gas phase reads

∂t(cgρ) +∇ · (cgρu) = 0.

The mass density now is seen as a mixture-like density according to the volume fraction variable
α ∈ [0, 1]:

ρ = αρg + (1− α)ρℓ. (1)

We expect the mass conservation of the mixture, that is

∂tρ+∇ · (ρu) = 0. (2)

In particular, we get a transport equation for the gas mass fraction

Dtcg = ∂tcg + u · ∇cg = 0.

Actually, the gas mass fraction cg can play the role of a “smoothed” indicator function. The mass
conservation of the different phase can also be written using volume fraction variables, for example
for the gas phase

∂t(αρg) +∇ · (αρgu) = 0. (3)
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We then have the relationship between α and cg

cg =
αρg
ρ

=
αρg

αρg + (1− α)ρℓ
or α =

cgρℓ
cgρℓ + (1− cg)ρg

. (4)

We still have a momentum balance equation considering the mixture momentum on the volume.
That implies the definition of pressures in this volume. As a simple closure model, we here consider
pressure equilibrium between phases

p = pg(ρg) = pℓ(ρℓ). (5)

As discussed in the Introduction, more realistic closures involving for example pressure relaxation
(Kamm and Shashkov (2010)) may be used, but this is not at the aim of this paper.

2.1. Equations of state, speeds of sound

We discuss here the choice of the equation of state (EOS) for each phase. We assume an
isentropic evolution for each fluid, with a phasic pressure pk as a function of the phasic mass
density, i.e., pk = pk(ρk). To get hyperbolicity, we will assume

∂pk
∂ρk

= c2s,k > 0

where ck denotes the speed of sound into the fluid k. For the gas, we decide to use an isentropic
perfect gas law :

pg(ρg) = p0

(

ρg
ρ0g

)γg

(6)

with constant reference pressure p0, density ρ0g and specific heat ratio γg ∈ (1, 3]. The gas speed of
sound cs,g is given by

cs,g =

√
γgpg
ρg

.

An isentropic approximate Tait equation of state is used for the liquid phase [Batchelor (1967)]:

pℓ(ρℓ) = p0 + p0K

((

ρℓ
ρ0ℓ

)γℓ

− 1

)

, (7)

with reference pressure p0 and density ρ0ℓ , γℓ > 1 and where K =
ρ0ℓ c̄

2
s,ℓ

γlp0
is the bulk modulus (c̄s,ℓ

is a reference liquid speed of sound). With K ≫ 1, this EOS assumes that the liquid is quasi-
incompressible since an high change of pressure entertains very slow variations on the density1,2.
For the liquid speed of sound, we have

c2s,ℓ = c̄2s,ℓ

(ρℓ
ρ0ℓ

)γl−1
, (8)

that we can rewrite as :

c2s,ℓ = c̄2s,ℓ
ρ0ℓ
ρℓ

+
γℓ(p− p0)

ρℓ

1For instance, with a speed of sound c̄s,ℓ = 350 m.s−1, ρ0ℓ = 1000 kg.m−3 and γℓ = 7: from a pressure of reference
p0 = 105 Pa, a division by 2 of this pressure yields to a variation of the density of the order of 0.004%.

2The treatment of the liquid as a compressible fluid avoids to invert a Poisson system and gives us a real pressure,
the drawback is the high celerity of sound of the water which restrains the time step of the numerical scheme.
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showing the stiffened gas-like behaviour. The validity domain of this EOS is expressed by c2s,ℓ > 0,
so we will assume that the pressure will always satisfies the inequality

p > max
(
0, p0 −

ρ0ℓ c̄
2
s,ℓ

γℓ

)
.

Let us add a comment on the whole hyperbolicity of the system. Of course, under pure phase
conditions, the existence of speeds of sound for the EOS guarantees the property. Let us consider
now mixed cell conditions that arise into the diffuse interface (α ∈ (0, 1)) and consider the 1D case
for simplicity. Setting up the system in variables (ρ, cg, u) (cg is the gas mass fraction), we have for
smooth solutions

∂tρ+ u∂xρ+ ρ∂xu = 0,

∂tcg + u∂xcg = 0,

∂tu+ u∂xu+
1

ρ
∂xp = g.

Considering p as a function of ρ and cg, i.e. p = p(ρ, cg), the characteristic polynomial is given by

P (λ) = (u− λ)
[
(u− λ)2 − ∂p

∂ρ

]
. Under pressure equilibrium conditions, we respectively have

α =
ρcg
ρg(p)

, 1− α =
(1− cg)ρ

ρℓ(p)
.

Using the identity α+ (1− α) = 1, we get

cg
ρg(p)

+
(1− cg)

ρℓ(p)
=

1

ρ
.

By derivating w.r.t ρ this expression, we get

∂p

∂ρ

[

−
cgρ

′
g(p)

(ρg(p))2
−

(1− cg)ρ
′
ℓ(p)

(ρℓ(p))2

]

= −
1

ρ2
.

As ρ′g(p) =
1

c2s,g
and ρ′ℓ(p) =

1
c2s,ℓ

, then we derive the mixture speed of sound cm,s of the system:

c2m,s =
∂p

∂ρ
=

1

cg

(
ρ

ρg(p)

)2
1

c2s,g
+ (1− cg)

(
ρ

ρℓ(p)

)2
1

c2s,ℓ

.

The system is thus hyperbolic, with real eigenvalues u− cm,s, u and u+ cm,s.

2.2. Summary
To summarize, there are two equivalent ways to represent the system, either using the volume

fraction α:

∂t
(
αρg

)
+∇ · (αρgu) = 0, (9)

∂t
(
(1− α)ρℓ

)
+∇ ·

(
(1− α)ρℓu

)
= 0, (10)

∂t(ρu) +∇ · (ρu⊗ u) +∇p = ρg, (11)

or using the mass fraction cg:

∂tρ+∇ · (ρu) = 0, (12)

∂t(ρcg) +∇ · (ρcgu) = 0, (13)

∂t(ρu) +∇ · (ρu⊗ u) +∇p = ρg, (14)

adding a pressure equilibrium closure p = pg(ρg) = pℓ(ρℓ) for mixed cells. This system is hyperbolic.
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2.3. EOS parameters

In our targeted applications, we consider air-water flows. For simplicity, the air phase will be
modeled using a perfect gas law, with γg = 1.4. For the liquid water phase, we will use γℓ = 7.
We will work near under atmospheric conditions, and thus we will practically use the following
parameters: ρ0g = 1.28 kg.m−3, ρ0ℓ = 1000 kg.m−3, p0 = 105 Pa, cℓ = 1500 m.s−1. We can consider
during the simulation a constant celerity of sound since cs,ℓ ∼ c̄s,ℓ thanks to (8), and due to the
weakly compressible caracter of the water. Moreover, in order to lower the stiffness between fluid
velocities and sound speed (low Mach number conditions), we can artificially lower the liquid speed
of sound, for example c̃ℓ = 350 m.s−1 (keeping the weakly compressible character of the water, cf
[Monaghan (1994)]).

3. Numerical scheme

In this section we describe a staggered Lagrange+Remap scheme (also referred to as remapped
Lagrange scheme). The solver here is a variant version of the BBC scheme discussed in Woodward
and Collela [Woodward and Colella (1984)] also discussed in [Heuzé et al. (2009), De Vuyst et al.
(2013)]. This Eulerian scheme uses a two-dimensional Cartesian staggered grid where the velocity
variables are defined at the edge midpoints while all the other quantities are defined at cell centers
(Fig. 1). In the following we write the constant spatial steps ∆x and ∆y such that the coordinates
of the center of the cell are xi = i∆x and yj = j∆y (for simplicity we write xi,j = (xi, yj)). Note
that the volume of the Eulerian cell is constant, given by Vi,j = ∆x∆y.

Cell i,j

x∆

y∆ 1
/2
,

i
j

u
+

1
/2
,

i
j

u
−

, 1/2i j
v −

, 1/2i j
v

+

Figure 1: Staggered mesh of the BBC scheme: the first component of the velocity u is defined at the
vertical edge midpoints and the second v at the horizontal edge midpoints. All the other physical
quantities (like α and the pressure p) are defined at the center of the cell.

3.1. Lagrangian step

This step allows us to solve the Euler equations written in Lagrangian form:

ρDt

(1

ρ

)
−∇ · u = 0, (15)

ρDtu+∇p = g, (16)

Dtcg = 0, (17)

where Dt = ∂t + u · ∇ is the Lagrangian (particle) derivative. In that scheme, the derivatives in
space are centered. To achieve numerical stability, a pseudo-viscosity pressure q is added. Artifical
viscosity only acts on compression areas (∇ · u < 0) allowing us to keep second-order accuracy
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into expansion zones [Heuzé et al. (2009), Donea and Huerta (2003), Caramana et al. (1998a)] (in
AppendixB the exact form of the pseudo-viscosity used is described).

To get second order of accuracy in time we use a multi-step scheme with the help of two
intermediate time steps tn+1/4 = tn + ∆t

4 and tn+1/2 = tn + ∆t
2 before the final time step tn+1 =

tn +∆t. To summarize, the Lagrangian step consists of:

• A first step of prediction of an intermediate velocity at the time tn+1/4:

u
n+1/4,L
i+1/2,j = uni+1/2,j −

∆t

4

∆y

mn
i+1/2,j

[

(p+ q)ni+1,j − (p+ q)ni,j

]

, (18)

v
n+1/4,L
i,j+1/2 = vni,j+1/2 −

∆t

4

∆x

mn
i,j+1/2

[

(p+ q)ni,j+1 − (p+ q)ni,j

]

+
∆t

4
g,

(19)

where the total masses at the edges are defined by: mn
i+1/2,j =

mn
i,j+mn

i+1,j

2 and mn
i,j+1/2 =

mn
i,j+mn

i,j+1

2 (mn
i,j = mn

gi,j +mn
ℓi,j

, the sum of the mass of gas and the mass of liquid into the

finite volume cell (i, j)).

• A second step of prediction of the quantities at the time tn+1/2 using the new velocities at
tn+1/4:

V
n+1/2,L
i,j = V n

i,j +
∆t
2 ∆y

(

u
n+1/4,L
i+1/2,j − u

n+1/4,L
i−1/2,j

)

+ ∆t
2 ∆x

(

v
n+1/4,L
i,j+1/2 − v

n+1/4,L
i,j−1/2

)

;

(20)

from the knowledge of the partial mass of each fluid mn
gi,j , mn

ℓi,j
and the updated volume

V
n+1/2,L
i,j , the pressure equilibrium assumption requires the solution on an algebraic problem

set up in variable α:

p
n+1/2,L
i,j = pg

( mn
gi,j

α
n+1/2,L
i,j V

n+1/2,L
i,j

)

if mn
ℓi,j

= 0 ⇒ α
n+1/2,L
i,j = 1,

p
n+1/2,L
i,j = pℓ

( mn
ℓi,j

(1−α
n+1/2,L
i,j )V

n+1/2,L
i,j

)

if mn
gi,j = 0 ⇒ α

n+1/2,L
i,j = 0,

p
n+1/2,L
i,j = pg

( mn
gi,j

α
n+1/2,L
i,j V

n+1/2,L
i,j

)

= pℓ

( mn
ℓi,j

(1−α
n+1/2,L
i,j )V

n+1/2,L
i,j

)

otherwise.

(21)

Here, we remind that ρg =
mg

αV and ρℓ = mℓ
(1−α)V and the conservation of the partial masses

of each phase comes from (17) as cg =
mg

mg+mℓ
. This algebraic problem is numerically solved

by a Picard fixed-point algorithm. In AppendixA we give details on the numerical solution
which is key for the overall performance of the method.

To summarize, thanks to the pressure equilibrium assumption, we get the values of α
n+1/2,L
i,j ,

p
n+1/2,L
i,j , ρ

n+1/2,L
gi,j and ρ

n+1/2,L
ℓi,j

at the new time step (n + 1/2). This Lagrangian step keeps

both gas and liquid masses constant. Thanks to the new pressure p
n+1/2,L
i,j , the velocities at

time step tn+1/2 are then updated:

u
n+1/2,L
i+1/2,j = uni+1/2,j −

∆t
2

∆y
mn

i+1/2,j

[

(p+ q)
n+1/2,L
i+1,j − (p+ q)

n+1/2,L
i,j

]

, (22)

v
n+1/2,L
i,j+1/2 = vni,j+1/2 −

∆t
2

∆x
mn

i,j+1/2

[

(p+ q)
n+1/2,L
i,j+1 − (p+ q)

n+1/2,L
i,j

]

+ ∆t
2 g.

(23)
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• A third step that enables us to get the variables on the distorted cells (of volumes V n+1,L
i,j

(24)), using the predicted quantities at tn+1/2:

V n+1,L
i,j = V n

i,j +∆t∆y
(

u
n+1/2,L
i+1/2,j − u

n+1/2,L
i−1/2,j

)

+∆t∆x
(

v
n+1/2,L
i,j+1/2 − v

n+1/2,L
i,j−1/2

)

. (24)

The new values of αn+1,L
i,j , pn+1,L

i,j , ρn+1,L
gi,j and ρn+1,L

ℓi,j
are then obtained thanks to the solution

of the pressure equilibrium assumption (Eq. (21)) in which we replace the volume V
n+1/2,L
i,j

and α
n+1/2,L
i,j by their updated values V n+1,L

i,j and αn+1,L
i,j , the masses remaining constant.

Finally, the velocities at time tn+1,L are given by the extrapolations procedure:

un+1,L
i+1/2,j = 2u

n+1/2,L
i+1/2,j − uni+1/2,j , (25)

vn+1,L
i,j+1/2 = 2v

n+1/2,L
i,j+1/2 − vni,j+1/2. (26)

Expressions (25)-(26) are condensed form of conservative momentum evolution.

3.2. Projection step

At the end of the Lagrangian step, we get updated values on a moved mesh. The so-called remap
step is required to get the quantities on the initial cartesian grid. The conservative projection step is
performed at a given order accuracy (current work only deals with a first order accuracy), however
we take a particular attention to the projection related to the volume fractions in order not produce
too much artificially mixture by a numerical diffusion.

The remap step is performed in two sub-steps following an alternating direction fractional step
procedure:

1. Projection along the x direction. The vertical left and right edges are turned back on their
initial positions, giving a cell of volume:

V n+1,∗
i,j = V n+1,L

i,j −∆t∆y(u
n+1/2,L
i+1/2,j − u

n+1/2,L
i−1/2,j ), (27)

2. Projection along the y direction. We thus recover the initial cartesian grid:

V n+1
i,j = V n+1,∗

i,j −∆t∆x
(

v
n+1/2,L
i,j+1/2 − v

n+1/2,L
i,j−1/2

)

(28)

= ∆x∆y. (29)

In each subset, the projection of the partial masses and the velocities are performed without equilib-
rium in pressure requirement. Consistance and stability properties are asked to the remap numerical
scheme by imposing conditions to find a suitable value for α at the interface, appearing in the fol-
lowing formulas (30)-(31) for the first step (resp. (33)-(34) for the second) in order not to create
extremum. After the remap, a step of equilibrium in pressure is performed varying the partial
volume fraction of each phase in order to get the volume fraction α at equilibrium.

The conservative projection of masses are given by:

• Projection step along x: (the quantities are obtained on the intermediate volume V n+1,∗
ij de-

fined by (27)):

mn+1,∗
gi,j = mn

gi,j −∆t∆y
[

u
n+1/2,L
i+1/2,j

(

αρg

)n+1,L

i+1/2,j
− u

n+1/2,L
i−1/2,j

(

αρg

)n+1,L

i−1/2,j

]

, (30)

mn+1,∗
ℓi,j

= mn
ℓi,j

−∆t∆y
[

u
n+1/2,L
i+1/2,j

(

(1− α)ρℓ

)n+1,L

i+1/2,j
− u

n+1/2,L
i−1/2,j

(

(1− α)ρℓ

)n+1,L

i−1/2,j

]

,

(31)
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with the quantities
(

αρg

)n+1,L

i±1/2,j
for the gas (resp.

(

(1 − α)ρℓ

)n+1,L

i±1/2,j
for the liquid) corre-

sponding to an interpolation of the quantity αρg (resp. (1 − α)ρℓ) at the interface (left or
right) i ± 1/2, j of the cell i, j. As the volume and the partial masses of each phase have

changed during the projection step, the solution of the pressure equilibrium relation is needed
to get (among others) the value of αn+1,∗

i,j that we need for the next step:

pn+1,∗
i,j = pg

( mn+1,∗
gi,j

αn+1,∗
i,j V n+1,∗

i,j

)

if mn+1,∗
ℓi,j

= 0 ⇒ αn+1,∗
i,j = 1,

pn+1,∗
i,j = pℓ

( mn+1,∗
ℓi,j

(1− αn+1,∗
i,j )V n+1,∗

i,j

)

if mn+1,∗
gi,j = 0 ⇒ αn+1,∗

i,j = 0,

pn+1,∗
i,j = pg

( mn+1,∗
gi,j

αn+1,∗
i,j V n+1,∗

i,j

)

= pℓ

( mn+1,∗
ℓi,j

(1− αn+1,∗
i,j )V n+1,∗

i,j

)

otherwise,

(32)

where mn+1,∗
gi,j , αn+1,∗

i,j , mn+1,∗
ℓ/gi,j

and V n+1,∗
i,j are the intermediate projected values. We still refer

to the AppendixA for details on the algebraic solution.

• Projection step along y: at the end of this step, the quantities are known on the volume

V n+1
ij = ∆x∆y, and thus on the cartesian grid:

mn+1
gi,j = mn+1,∗

gi,j −∆t∆x
[

v
n+1/2,L
i,j+1/2

(

αρg

)n+1,∗

i,j+1/2
− v

n+1/2,L
i,j−1/2

(

αρg

)n+1,∗

i,j−1/2

]

, (33)

mn+1
ℓi,j

= mn+1,∗
ℓi,j

−∆t∆x
[

v
n+1/2,L
i,j+1/2

(

(1− α)ρℓ

)n+1,∗

i,j+1/2
− v

n+1/2,L
i,j−1/2

(

(1− α)ρℓ

)n+1,∗

i,j−1/2

]

,

(34)

with the quantities
(

αρg

)n+1,∗

i,j±1/2
for the gas (resp.

(

(1 − α)ρℓ

)n+1,∗

i,j±1/2
for the liquid) which

approximate the quantities αρg (resp. (1−α)ρℓ) at the interface (top or bottom) i, j± 1/2 of
the cell i, j.

Once again, after the projection step, we need to solve the pressure equilibrium assumption:

pn+1
i,j = pg

( mn+1
gi,j

αn+1
i,j V n+1

i,j

)

if mn+1
ℓi,j

= 0 ⇒ αn+1
i,j = 1,

pn+1
i,j = pℓ

( mn+1
ℓi,j

(1− αn+1
i,j )V n+1

i,j

)

if mn+1
gi,j = 0 ⇒ αn+1

i,j = 0,

pn+1
i,j = pg

( mn+1
gi,j

αn+1
i,j V n+1

i,j

)

= pℓ

( mn+1
ℓi,j

(1− αn+1
i,j )V n+1

i,j

)

otherwise, (35)

and we get the final values at time tn+1 on the Eulerian cartesian grid: αn+1
i,j , pn+1

i,j , ρn+1
gi,j and

ρn+1
ℓi,j

.

In the formulas of projection of the masses (30)-(31) and (33)-(34), for first order accuracy, the most
obvious stable choice to define the interpolated values of α, ρg and ρl at the edges is an upwind
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strategy:
(

αρg

)n+1,L/∗

i+1/2,j,up
= α

n+1,L/∗
i,j ρ

n+1,L/∗
gi,j if u

n+1/2,L
i+1/2,j > 0 (36)

= α
n+1,L/∗
i+1,j ρ

n+1,L/∗
gi+1,j if u

n+1/2,L
i+1/2,j ≤ 0 (37)

and
(

αρg

)n+1,L/∗

i,j+1/2,up
= α

n+1,L/∗
i,j ρ

n+1,L/∗
gi,j if v

n+1/2,L
i,j+1/2 > 0 (38)

= α
n+1,L/∗
i,j+1 ρ

n+1,L/∗
gi,j+1 if v

n+1/2,L
i,j+1/2 ≤ 0, (39)

and the same for the quantities related to the liquid phase. Such a choice is actually irrelevant to
simulate immiscible fluids since the projection on volume fraction is too much diffusive and does
not enable to follow a thin interface (cf. Fig. 2a). Let us emphasize that second order projection is
still not sufficient to keep a numerical thin interface (cf. Fig. 2b).

(a) First order upwind projection (b) Second order upwind projection

Figure 2: Effect of upwind projection without any specific treatment of the volume fraction, due to
numerical diffusion. Example of collapse of a column of water with an obstacle in the middle of the
box. We represent the numerical volume fraction α at a certain time obtained with two different
upwind projections. With the first order upwind projection (Fig. 2a), the interface between the
liquid (in blue) and the air (in red) is too much diffusive to be followed with accuracy (e.g. droplets
and air pockets are hidden because of the diffusion). With the second order upwind projection (Fig.
2b), the interface is less diffuse and we begin to see an air pocket which were previously concealed
by the diffusion. But the diffusion is still present and we do not observe formation of droplets.
For details on the initialization, please refer to the Test case II of the section 5 dedicated to the
numerical experiments.

We did not detail the projection formulas for the momentum. This can be found in [De Vuyst
et al. (2013)].

In the next section, we explain how we improved this remap step in order to keep a numerical
thin interface between gas and liquid.

4. A low-diffusive procedure to choose the fluxes at the edges in the remap numerical

scheme

As initially discussed into the introduction, our strategy here is to design a computational ap-
proach which is quite simple to implement but can also be implemented in parallel in a rather

12



straightforward way. Our construction follows ideas initially proposed by [Lagoutière (2000); De-
sprés and Lagoutière (2002)] to build low-diffusive advection schemes.

The principle is to take advantage of both upwind scheme (known to be strongly stable but
artificially diffusive) and downwind scheme (low-diffusive but unstable) in order to obtain a stable
scheme with minimal numerical diffusion. This family of anti-diffusive schemes has been extended
to the case of multiphase flows [Billaud Friess et al. (2011); Kokh and Lagoutière (2010)]. We
here adapt the methodology to the present “three-equation” two-phase system. First, we recall the
conservation form of the mass conservation (Eq. 2) in terms of cg

∂t(ρcg) +∇ · (ρcgu) = 0. (40)

It is equivalent to the mass conservation of the gas phase (3):

∂t(αρg) +∇ · (αρgu) = 0.

We immediately deduce the nonconservative transport equation for the gas mass fraction (thanks
to equations (1) and (40):

Dtcg = ∂tcg + u · ∇cg = 0. (41)

This linear transport equation implies a local maximum principle on the variable cg. It is easy to
check that α and cg (4) are linked according to the dual relations:

α(cg; ρg, ρℓ) =
cgρℓ

cgρℓ + (1− cg)ρg
, cg(α; ρg, ρℓ) =

αρg
αρg + (1− α)ρℓ

. (42)

From the numerical point of view, the maximum principle checked by cg into (41) should also be
verified. The idea is to get the “best” interface value of cg in order to ensure the local maximum
principle while being as compressive as possible. But, because of the dependency of cg on α, ρg and
ρℓ (second formula in (41)), we need to express the maximum principle of cg in terms of interface
values of α, ρg and ρℓ:

cgi+1/2,j
=

αn+1,L
i+1/2,j(ρg)

n+1,L
i+1/2,j

αn+1,L
i+1/2,j(ρg)

n+1,L
i+1/2,j + (1− αn+1,L

i+1/2,j)(ρℓ)
n+1,L
i+1/2,j

. (43)

Following once again ideas from [Kokh and Lagoutière (2010)], we decide to simply set the upwind
values for ρg and ρℓ. The remaining degree of freedom is the value of αn+1,L

i+1/2,j which has to be

optimized, subject to consistency and stability requirements (on cg). For simplicity, we only describe
the first step of the x-projection, considering variables at stage (n+1, L) in order to get intermediate
projected variables at (n+1, ∗). From now on, the sought value of α is denoted αLD

i±1/2,j (LD stands

for low diffusive). The process is:

1. first, to define a trust interval I as the intersection of intervals in which αLD
i+1/2,j must be

in order to check consistency and stability properties for the projection. The intersection is
ensured not to be empty since the diffusive value αn+1,L

i+1/2,j,up is known to belong to all of these
intervals;

2. then to take for αLD
i+1/2,j the nearest value from the downwind one αn+1,L

i+1/2,j,down (most com-

pressive choice) while remaining in the trust interval3.

3We recall that for a generic variable z, the upwind and downwind values correspond to:

z
n+1,L
i+1/2,j,up = z

n+1,L
i,j if u

n+1/2,L

i+1/2,j > 0

= z
n+1,L
i+1,j if u

n+1/2,L

i+1/2,j ≤ 0,
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The definition of the trust interval I, in which we will choose the value αLD
i+1/2,j at the edges

(i+ 1/2, j), is subject to some consistency and stability requirements.

Consistency requirement. The value at the edge cgi+1/2,j
must be between the values at the left

and right cells of the edges, which means

cn+1,L
gi+1/2,j

∈ [an+1,L
i+1/2,j , A

n+1,L
i+1/2,j ], (44)

where
an+1,L
i+1/2,j = min(cn+1,L

gi,j , cn+1,L
gi+1,j

), An+1,L
i+1/2,j = max(cn+1,L

gi,j , cn+1,L
gi+1,j

), (45)

with at the edges, cgi+1/2,j
expressed thanks to its definition (43). In order to define the first

condition for the trust interval, we have to find a sufficient condition αLD
i+1/2 ∈ [dn+1,L

i+1/2,j , D
n+1,L
i+1/2,j ]

to check the condition (44)4. We refer to Kokh and Lagoutière (2010) for details, we get the same
value for [dn+1,L

i+1/2,j , D
n+1,L
i+1/2,j ] using the definition of cg (43) and of ρ (1):

αn+1,L
i+1/2,j ∈ I1 := [dn+1,L

i+1/2,j , D
n+1,L
i+1/2,j ] ⇒ (44), (46)

with the lower bound dn+1,L
i+1/2,j :

dn+1,L
i+1/2,j =

ρn+1,L
ℓi+1/2,j,up

an+1,L
i+1/2,j

ρn+1,L
gi+1/2,j,up

(1− an+1,L
i+1/2,j) + ρn+1,L

ℓi+1/2,j,up
an+1,L
i+1/2,j

(47)

and the upper bound Dn+1,L
i+1/2,j :

Dn+1,L
i+1/2,j =

ρn+1,L
ℓi+1/2,j,up

An+1,L
i+1/2,j

ρn+1,L
gi+1/2,j,up

(1−An+1,L
i+1/2,j) + ρn+1,L

ℓi+1/2,j,up
An+1,L

i+1/2,j

. (48)

Note that the interval [dn+1,L
i+1/2,j , D

n+1,L
i+1/2,j ] ⊂ [0, 1] is well defined since ρg > 0 and ρl > 0 in all the

cells if the pressure p > 0 thanks to the definition of the EOSs (6)-(7) and thus the denominator
is strictly positive (recording that an+1,L

i+1/2 and An+1,L
i+1/2 all belong to [0, 1], see footnote 4). Thus we

have defined the first interval I1 (46) to define the final trust interval I. It can be easily proved
that the upwind value αn+1,L

i+1/2,j,up belongs to I1. Note that this interval I1 does not differ from the

original referred article (since only the definition of the mass fraction cg (43) is used).

Stability requirement. We now define the second interval I2 used for the definition of the

final trust interval. This interval depends on the sign of the velocity at the edges u
n+1/2,L
i+1/2,j which

determines in which cell the stability condition is calculated. We detail the calculus of the interval
in the positive case (that we denote I+2 ), the other case can be found in AppendixC and is denoted
I−2 .

and

z
n+1,L
i+1/2,j,down = z

n+1,L
i+1,j if u

n+1/2,L

i+1/2,j > 0

= z
n+1,L
i,j if u

n+1/2,L

i+1/2,j ≤ 0.

4Note that an+1,L
i+1/2,j and A

n+1,L
i+1/2,j belong to the interval [0, 1].
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The projected value cn+1,∗
gi,j must respect the following stability condition (in the Leroux-Harten

meaning): if the velocity at the edge i+1/2 is positive (u
n+1/2,L
i+1/2,j > 0) and if u

n+1/2,L
i−1/2,j > 0, to ensure

the stability of cg in cell i, j 5, cn+1,∗
gi,j must check:

an+1,L
i−1/2,j ≤ cn+1,∗

gi,j ≤ An+1,L
i−1/2,j , (49)

with an+1,L
i−1/2,j and An+1,L

i−1/2,j defined by (45). This new condition (49) allows us to have the positivity

of the partial masses during the projection step since an+1,L
i−1/2,j ∈ [0, 1] and An+1,L

i−1/2,j ∈ [0, 1]. The

projection of the masses per phase can be equivalently rewritten in terms of ρcg and ρ thanks to
the definition of cg (4): (30)-(31) are equivalent to:

(cgρ)
n+1,∗
ij =

V n+1,L
ij

V n+1,∗
ij

(cgρ)
n+1,L
ij − ∆t∆y

V n+1,∗
ij

[

u
n+1/2,L
i+1/2,j (cg)

n+1,L
i+1/2,jρ

n+1,L
i+1/2,j − u

n+1/2,L
i−1/2,j (cg)

n+1,L
i−1/2,jρ

n+1,L
i−1/2,j

]

, (50)

(ρ)n+1,∗
ij =

V n+1,L
ij

V n+1,∗
ij

(ρ)n+1,L
ij − ∆t∆y

V n+1,∗
ij

[

u
n+1/2,L
i+1/2,j ρn+1,L

i+1/2,j − u
n+1/2,L
i−1/2,j ρn+1,L

i−1/2,j

]

, (51)

with the intermediate V n+1,∗
i,j defined by (27):

V n+1,∗
i,j = ∆x∆y +∆t∆x

(

v
n+1/2,L
i,j+1/2 − v

n+1/2,L
i,j−1/2

)

. (52)

We now characterize the interval I2 (I+2 in the case of positive velocities) by the following successive
results:

Proposition 1. If u
n+1/2,L
i+1/2,j > 0 and if u

n+1/2,L
i−1/2,j > 0, the stability condition is calculated on the cell

(i, j) and if we take αn+1,L
i+1/2,j ∈ I+2 := [bi+1/2,j , Bi+1/2,j ], with

bn+1,L
i+1/2,j = αn+1,L

i,j +

ρn+1,L
i,j

ρn+1,L
gi+1/2,j,up

(1−An+1,L
i−1/2,j) +An+1,L

i−1/2,jρ
n+1,L
ℓi+1/2,j,up

︸ ︷︷ ︸

>0

(
An+1,L

i−1/2,j − cn+1,L
gi,j

)[u
n+1/2,L
i−1/2,j

u
n+1/2,L
i+1/2,j

−
V n+1,∗
i,j

∆t∆y u
n+1/2,L
i+1/2,j

]

︸ ︷︷ ︸

≤0 under the condition (55)

,

(53)

and

Bn+1,L
i+1/2,j = αn+1,L

i,j +

ρn+1,L
i,j

ρn+1,L
gi+1/2,j,up

(1− an+1,L
i−1/2,j) + an+1,L

i−1/2,jρ
n+1,L
ℓi+1/2,j,up

︸ ︷︷ ︸

>0

(
an+1,L
i−1/2,j − cn+1,L

gi,j

)[u
n+1/2,L
i−1/2,j

u
n+1/2,L
i+1/2,j

−
V n+1,∗
i,j

∆t∆y u
n+1/2,L
i+1/2,j

]

︸ ︷︷ ︸

≥0 under the condition (55)

,

(54)

we ensure cn+1,∗
gi,j to stay in the interval defined by (49) and thus we guarantee the stability of the

remap scheme. Moreover, under the CFL-like cell strain limitation condition

V n+1,∗
i,j −∆t∆y u

n+1/2,L
i−1/2,j ≥ 0 (55)

the upwind value αn+1,L
i,j belongs to both I+2 and I1.

5When u
n+1/2,L

i+1/2,j < 0, and if u
n+1/2,L

i+3/2,j < 0, the stability condition must be calculated in the cell i + 1 since the
information comes from the right cell.
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Proof. We first consider the inequality:

an+1,L
i−1/2,j ≤ cn+1,∗

gi,j (56)

by multiplying it by ρn+1,∗
i,j and by using (50)-(51), we get the condition:

cn+1,L
gi+1/2,j

ρn+1,L
i+1/2,j ≤

V n+1,L
i,j

∆t∆y

ρn+1,L
i,j

u
n+1/2,L
i+1/2,j

(
cn+1,L
gi,j − an+1,L

i−1/2,j

)
+ an+1,L

i−1/2,jρ
n+1,L
i+1/2,j . (57)

This condition is a sufficient one: indeed the definition of an+1,L
i−1/2 (45) involves that the quantity

ρn+1,L
i−1/2,j

u
n+1/2,L
i−1/2,j

u
n+1/2,L
i+1/2,j

(cn+1,L
gi−1/2,j

− tn+1,L
i−1/2,j) ≥ 0, which should appear in the right side of (57), can be erased

to give a sufficient condition (57) independent of the edge i − 1/2 to check the stability condition
(56). Thus, replacing cgρ by αρg and using the definition of ρ (1) we rewrite the sufficient condition
(57) to check (56) in terms of conditions on the value of α at the edges:

αn+1,L
i+1/2,j

(

ρn+1,L
gi+1/2,j,up

(1− an+1,L
i−1/2,j) + an+1,L

i−1/2,jρ
n+1,L
ℓi+1/2,j,up

)

︸ ︷︷ ︸

:=Q2

≤

V n+1,L
i,j

∆t∆y

ρn+1,L
i,j

u
n+1/2,L
i+1/2,j

(
cn+1,L
gi,j − an+1,L

i−1/2,j

)
+ ρn+1,L

ℓi+1/2,j,up
an+1,L
i−1/2,j

︸ ︷︷ ︸

:=Q1

. (58)

We thus prove that the upwind value αn+1,L
i+1/2,j,up = αn+1,L

i,j (since u
n+1/2,L
i+1/2,j > 0 in that case) is

lower than the quantity Q1/Q2, by displaying αn+1,L
i+1/2,j,up in the term Q1, in order to construct an

nonempty trust interval by intersection of the two intervals I1 and I2. This should be done by
rewriting term Q1 as follows:

Lemma 4.1. The term Q1 defined in (58) can be rewritten equivalently as:

Q1 = αn+1,L
i,j

(

ρn+1,L
gi+1/2,j,up

(1− an+1,L
i−1/2,j) + an+1,L

i−1/2,jρ
n+1,L
ℓi+1/2,j,up

)

+ρn+1,L
i,j

(
cn+1,L
gi,j − an+1,L

i−1/2,j
︸ ︷︷ ︸

≥0

)[V n+1,∗
i,j −∆t∆y u

n+1/2,L
i−1/2,j

∆t∆y u
n+1/2,L
i+1/2,j

]

. (59)

Proof. First, we can rewrite the term Q1 of (58) as:

Q1 = ρn+1,L
i,j

(

cn+1,L
gi,j − an+1,L

i−1/2,j

)

+ an+1,L
i−1/2,jρ

n+1,L
ℓi,j

+ρn+1,L
i,j

(
cn+1,L
gi,j − an+1,L

i−1/2,j

)[ V n+1,L
i,j

∆t∆y u
n+1/2,L
i+1/2,j

− 1
]

. (60)

Thanks to the definition of cg (4) and ρ (1), and since the upwind values on the edges i + 1/2

correspond to the values of the variables in the cell i, j (u
n+1/2,L
i+1/2,j > 0), the following relation is

checked:

ρn+1,L
i,j

(

cn+1,L
gi,j − an+1,L

i−1/2,j

)

+ an+1,L
i−1/2,jρ

n+1,L
ℓi,j

= αn+1,L
i,j

(

ρn+1,L
gi+1/2,j,up

(1− an+1,L
i−1/2,j) + an+1,L

i−1/2,jρ
n+1,L
ℓi+1/2,j,up

)

. (61)

Then, using (61) in (60) and the definition of the intermediate volume V n+1,∗
i,j (27), we can rewrite Q1

in the form (59) of Lemma 4.1.
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Let’s go back to the proof of Proposition 1. Besides, as ρn+1,L
g/ℓi+1/2,j,up

> 0 if p > 0, then Q2 =

ρn+1,L
gi+1/2,j,up

(1− an+1,L
i−1/2,j) + an+1,L

i−1/2,jρ
n+1,L
ℓi+1/2,j,up

> 0 and a sufficient condition to respect the condition of

stability (56) is to consider

αn+1,L
i+1/2,j ≤ Bn+1,L

i+1/2,j , (62)

withBn+1,L
i+1/2,j defined by (54). Finally, if the CFL condition (55) is respected, we see immediately that

αn+1,L,upw
i+1/2,j ≤ Bn+1,L

i+1/2,j . The treatment of the other inequality is similar (we still have ρn+1,L
gi+1/2,j,up

(1−

An+1,L
i−1/2,j) + An+1,L

i−1/2,jρ
n+1,L
ℓi+1/2,j,up

> 0 since ρn+1,L
g/ℓi+1/2,j,up

> 0 if the pressure p > 0) and we get the

definition (53) for the lower boundary bn+1,L
i+1/2,j of the interval I+2 . Thus, if the condition (55) is

checked, then

αn+1,L
i+1/2,j,up = αn+1,L

i,j ∈ [bn+1,L
i+1/2,j , B

n+1,L
i+1/2,j ] := I+2 (63)

and a new interval I+2 is defined and is added to the trust interval for the choice of the low diffusive
value αLD

i+1/2,j .

Finally, we summarize the results obtained in that section, that is the construction of a nonempty
trust interval depending on the sign of the edges velocities to find a low-diffusive value for the flux
αLD
i+1/2,j used in the formula of projections (30)-(31).

Theorem 4.2. Under the condition to be respected by the time step (in which s = sign(u
n+1/2,L
i+1/2,j ))

V n+1,∗
i+1/2,j,upw − s∆t∆y ui+1/2−s,j ≥ 0, (64)

when un+1,L
i+1/2,ju

n+1,L
i+s/2,j > 0 (i.e. when the velocities at the edges of the cell where the stability condition

is calculated are of the same sign), the value of αLD
i+1/2,j can be taken in the following trust interval I:

I = I1
︸︷︷︸

consistency for cg

∩ Is2
︸︷︷︸

stability for cg

:= [ωn+1,L
i+1/2,j ,Ω

n+1,L
i+1/2,j ] ∈ [0, 1], (65)

which is nonempty since the upwind value αn+1,L
i+1/2,j,up ∈ I, where the interval I1 are defined by (46)

and Is2 by (C.1)-(C.2). Moreover, taking αLD
i+1/2,j ∈ I ensures to respect maximum principle on cg

and especially to keep the positivity of the masses of each phases during the projection6.

Remark. Note that the trust interval is only defined in two cases: if u
n+1/2,L
i+1/2,j > 0 and u

n+1/2,L
i−1/2,j > 0

or if u
n+1/2,L
i+1/2,j < 0 and u

n+1/2,L
i+3/2,j < 0. In the other cases, the procedure described above takes the

upwind choice without the need of a trust interval.

Remark. Contrary to Kokh and Lagoutière (2010), in our case the value of α after each step of
projection naturally respects the maximum principle (α stays in [0, 1] during the solution of the
pressure equilibrium algebraic problem, cf. AppendixA.2) without having to add extra conditions.
Besides, the volume fraction α (obtained in terms of a balance of partial volumes) depends on the
other quantities of the system ρ, cg and u, whereas the color function of Kokh and Lagoutière (2010)
(which is advected) only depends on the velocities.

6Note that the arbitrary choice to calculate maximum principle conditions on the quantities related to the gas
induces the same properties for the liquid due to the relations cg + cℓ = 1, and thus min(cgi,j , cgi−1,j ) = 1 −

max(cℓi,j , cℓi−1,j ) and max(cgi,j , cgi−1,j ) = 1−min(cℓi,j , cℓi−1,j ).

17



Remark. For the second step of projection, the procedure to define the trust interval is exactly
the same by replacing the quantities at time n + 1, L used in the previous formulas or the low-

diffusive value by their updated values at time n+1, ∗; by substituting the quantity ∆yu
n+1/2,L
i±1/2,j by

∆xv
n+1/2,L
i,j±1/2 and the intermediate volume V n+1,∗

i,j by V n+1
i,j = ∆x∆y.

For the choice of the low-diffusive value at the edges αLD
i+1/2,j thanks to the knowledge of the

trust interval I, we refer to Kokh and Lagoutière (2010) using the trust interval defined above (or
see the remainder in the AppendixD).

4.1. Time step restriction and CFL condition

The implemented low-diffusive procedure does not restrict the time step although it needs to
respect the condition (64). Indeed, this will be checked if we impose that the vertical edges of the
cells cannot move of more than ∆x

4 and the horizontal edges of the cells of more than ∆y
4 . This is

in particular valid if we impose the following restriction on the time step:

∆t max(|u|, |v|) ≤
min(∆x,∆y)

4
. (66)

Note that this condition also ensures that all the intermediate volumes constructed during either
the Lagrangian phase V n+1,L

i,j (24) or during the projection phase V n+1,∗
i,j (27) are positives. We

remind the classical CFL condition for the Euler equation:

∆t max(|u|, |v|, |c|) <
min(∆x,∆y)

2
, (67)

where c is the speed of sound of the flow that we choose constant (taken at the celerity of sound
of the water c0ℓ in all our simulations). In our case, due to the quasi-incompressible nature of the
fluid, the Mach number has to be always less than 0.1 (in time and space):

M =
|u|

c
< 0.1

(cf. Monaghan (1994) for instance). In particular, thanks to the last relation, the numerical speed
of sound checks:

c > 2 max(|u|, |v|), (68)

and thus the classical CFL condition (67) completed with the condition (68) deduced from the low
Mach hypothesis is efficient to ensure the condition (66). Thus the condition (64) (or (55) in the
case of positive edge velocities) which is necessary to define a nonempty trust interval for the low-
diffusive choice of αLD

i+1/2,j is checked: the low diffusive procedure does not conduct to a reduction
of the time step.

5. Numerical experiments

The resulting two-dimensional numerical code (ODYSSEY) has been tested on various dam
break test cases, selected since they allow us for comparisons with other numerical codes and, when
available, with real water experiments realized in tank. Only wall slip boundary conditions are
currently implemented in the ODYSSEY code. Extension to more complex boundary conditions
will soon be realized.
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Test case I. We use the parameters from Cruchaga et al. (2007) enabling a comparison with
both real experiments and numerical results (obtained with a Finite Element method coupled with
an interface capturing method for the Navier-Stokes incompressible equations). We consider a
numerical box (0.44 m× 0.42 m) filled up with gas except for a column of water at the left bottom
corner of width 0.144 m and twice higher. We assume that the gate which retains the water
instantaneously disappears at the initial time. The parameters for the EOS are: γg = 1.4, γℓ = 7,
c0 = 350 m.s−1, p0 = 105 Pa, ρ0g = 1 kg.m−3, ρ0ℓ = 1000 kg.m−3; the number of cells in each
direction is Nx = Ny = 300. The results are presented in Fig. 3 and Fig. 4 for different times. Note
that the experiments are realized on three-dimensional tanks which can lead to transverse effects
that cannot be rendered by a two-dimensional numerical code. On Fig. 3, we observe that except
at the initial time where we see that the rise of the gate has a little impact on the experiment (not
taken into account by the codes), the collapse of the column with our code gives results in very good
agreements with those of Cruchaga et al.. Up to the time t = 0.6 s, the numerical results are indeed
very similar. In the next snapshots, discrepancies are mainly due to the droplets which fall from
the upper wall (in particular at the left bottom of the box), which is not the case in the simulation
of Cruchaga et al. since they have taken open boundary conditions for the upper wall. On Fig. 4:
at these longer times (especially the three last shots), our code reproduces better the experiment
than the numerical code of Cruchaga et al. (we just point out that we use a more refined mesh
(300x300) than the one used in Cruchaga et al. (2007) (100x75)). The evolution of the water in
time is well reproduced by our code, the agitation we still observe is due to the fact that our model
does not take into account viscosity.

Test case II. In this numerical experiment, we add an obstacle in the middle of the box. This
conducts to the formation of a long wave which impacts the right wall. Using sizes from Greaves
(2006) (Fig. 5) we can compare with both experiments [Koshizuka et al. (1995)] and numerical
simulations [Greaves (2006)] at different times. The EOS parameters are identical to the previous
test case. The number of points of discretization are Nx = 600 and Ny = 600. Comparative
results of the volume fraction at different times are shown at Fig. 6 and Fig. 77. On Fig. 6, small
deviations are observed at the beginning between numerical and physical experiments originate from
the finite time necessary for the removal of the gate. Otherwise, it is essentially in good agreement
with referred results. On Fig. 7, the results are in agreement with the experiments and the other
simulation. In particular, in the last snapshots (t = 0.645 s), our code developed the same patterns
near the obstacle and a gas pocket on the top right corner, similarly to the experiment. Then, in
Fig. 8, we compare results obtained with our 2D code with the first order projection with (case
B) and without (case A) the low-diffusive procedure. We plot the volume fraction of gas at three
different times. The first order low-diffusive projection allows us to keep a thin interface between
water and air. We get a detailed interface and physical phenomenons including pockets of gas,
ejection of droplets, etc.

Besides, due to the high density ratio (1/1000) between both liquid and gas phases, gas mass
fraction cg is a better indicator of numerical diffusion. Indeed, if the volume fraction of gas α is
α = 1 − 10−8, the mass fraction cg is cg ∼ 1 − 10−5 (taken ρg ∼ 1 and ρl ∼ 1000). In Fig. 9, we
present this quantity at different time steps in the whole box of simulation (without the cutoff at
h = 0.6 m). After the formation of a wrapped motion, we observe some numerical diffusion due to
the ejection of droplets initiated from the edge of the wave. Outside of this zone, the diffusion of the
interface of the free surface flow is restricted to one cell. At the final time (t = 0.645 s), these small
amounts of liquid begin to slightly disturb the free surface on the bottom right due to the fall of

7The tank used by Koshizuka et al. (1995) is opened at a height of 0.6 m whereas the numerical simulations are
performed on a box of height of 4a = 1 m.
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Exp. Cruchaga et al. Simu. Cruchaga et al.

t=0.1s

t=0.2s

t=0.3s

t=0.4s

t=0.5s

Exp. Cruchaga et al. Simu. Cruchaga et al.

t=0.6s

t=0.7s

t=0.8s

t=0.9s

t=1.0s

Figure 3: Test case I. Collapse of a column of water, evolution of the volume fraction α at different
times. The experimental (resp. numerical) results of Cruchaga et al. (2007) are at left (resp. in the
middle) and the results with our code ODYSSEY at right are compared at different time step.

droplets due to gravity. But this diffusion appears only in terms of mass and not in term of volume
of water which remains negligible. In short, droplets (which are initially ejected from the wave edge)
generate a small volume fraction of water in mixed cells. Since our code considers an unique mean
velocity u, we then keep all created mixed cells within the numerical simulation. Snapshots of the
conservative quantities (αgρg) et (αℓρℓ) [kg.m

−3] in log10 scale are displayed on Figures 10 and 11.
In particular, one can observe a “numerical spray” developing through the domain, mostly due to
the appearance and fragmentation of fine structures (filaments, high-frequency instabilities). This
is a shortcoming of the method but that doesn’t avoid us to track the free boundary with sufficient
accuracy since the fluid interface is kept sharp. In Fig. 12 we superimpose both gas volume fraction
and velocity field, thanks to the representation of this vector field, we better understand the motion
of the free surface flow. Finally in Fig. 13 the pressure field is plotted, in particular at t = 0.258 s
and t = 0.387 s, we see a pressure peak due to the obstacle at the middle of the box.

Test case III. We here consider the sloshing of a liquid under a horizontal excitation, i.e. the tank
translates horizontally (surge acceleration). The tank position moves according to the periodic
motion x(t) = A cos(2πt/T ) where A = 0.032 m is the maximum amplitude of the excitation and T
the period (cf. Fig. 14). In Akyildiz and Ünal (2006), it is analyzed that the quantity of energy

20



Exp. Cruchaga et al. Simu. Cruchaga et al.

t=1.1s

t=1.2s

t=1.3s

t=1.4s

t=1.5s

Figure 4: Test case I. Same as Fig. 3 at longer time.

transmitted to the fluid by the motion of the tank depends on the closeness of the tank frequency
(forced frequency) to the first natural frequency of the fluid inside the tank. The closer the
forced frequency is from the natural frequency of the liquid, the larger the amplitude of the sloshing
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End of the 

experimental
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0
.6

 m

Figure 5: Test case II. Collapse of a water column with an obstacle. The initial gate which retains
the column of water disappears at the initial time and the column of water collapses. The parameters
are a = 0.25 m and d = 0.04 m.

t=0s

t=0.129s

t=0.258s

Figure 6: Test case II. Collapse of a water column with an obstacle. At left, the results obtained
with the code of Greaves, in the middle, the results of Koshizuka et al. and at right the results with
our code ODYSSEY (we observe the volume fraction α).

is expected. The first natural frequency of the liquid contained in a tank could be obtained thanks
to the formula (cf. e.g. Akyildiz and Ünal (2006)):

ωfluid =

√

g
π

L
tanh(

π

L
hw), (69)

where L is the length of the tank, hw the initial height of the water in the tank. In the following,
we take a forced period of T = 1.3 s (i.e. ωforced = 4.83 rad/s) and a height of water of 0.6 m. The
relation (69) gives a natural frequency for the fluid of ωfluid = 3.77 rad/s. For this test case, both
experimental results performed by Faltinsen et al. Faltinsen et al. (2000) and numerical one are
available Shao et al. (2012).
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t=0.387s

t=0.516s

t=0.645s

Figure 7: Test case II. Collapse of a water column with an obstacle at longer time.

In Fig. 15 we present the gas volume fraction at different times: due to the horizontal excitation
of the tank, a wave initiates and displaces from left to right and right to left with an amplitude
which increase up to t ≃ 3.5 s before decreasing and having a situation more stable at t = 6.54 s.
After, the amplitude of the oscillation increases again (cf. Fig. 16).

In the next figure 16, we follow the time evolution of the free surface elevation of the water at a
distance of 0.05 m of the left of the box and we superpose to our results the scanned experimental
results of Faltinsen et al. (2000). We obtained both the correct period for the oscillation and the
correct wrapping of the signal. The slight overestimation of the amplitude of the height of the water
can be explained by the fact that we have neglected the viscosity in our model. Without viscosity,
the amplitude of the wave is not slowed down and the results are quite overestimated compared to
the ones obtained in Fig. 5 a) of Shao et al. (2012) with their SPH code with viscosity. Anyway,
we recover the expected nonlinear characteristics: the upwind sloshing amplitude is larger than the
downwind sloshing amplitude. By performing a fit of the curve given by our code (in plain blue line
in the Fig. 16), we recover the curve as a superposition of the forced and natural frequencies (Fig.
17).

Test case IV. Here, we study the free fall of a disk of water (surrounded by air) and its impact
with some water at rest (Fig. 18). We show the evolution of the volume gas fraction at different
time steps (cf. Figs. 19 and 20). On Fig.19, the smashing of the sphere conducts to the formation
of two jets on either side of the initial disk. Then, on Fig. 20, we see that the gap generated by
the fall of the disk is progressively filled up due to the falling of the jet of water at right and left
of the box due to the gravity. This motion conducts at the end of the presented snapshots to the
formation of a new bouncing jet at the middle of the box due to the meeting of the two lateral
ones. The expected symmetry is well-conserved during quite a long time. What can be observed
is that the computational quality and accuracy are almost as good as pure Lagrangian methods
(SPH, particle-based), at least for the characteristic time of strong dynamics.
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A B

t=0.258 s

t=0.516 s

t=0.645 s

Figure 8: Test case II. Accuracy of interface capturing: we present the gas volume fraction α. A
first order projection (case A) is compared to the (also first order but) low-diffusive procedure (case
B). It is observed that numerical diffusion is mainly suppressed and complex interface details can
be tracked.

Test case V. As a complementary test case, we show the long-time development of air-water
Rayleigh-Taylor instabilities generated by gravity. At initial time, the liquid is put over the gas
with a sine-shaped boundary between the two fluids (the boundary is given by Γ(x) = Ly/2 +
Ly/20 cos(2πx/Lx), cf. Fig. 21). Wall boundary conditions are enforce in all the box’s sides. In
Figs. 22 and 23, we observe the gas volume fraction α. Because the surface tension is not taken into
account, instabilities at all wavelengths should emerge and grow. From the numerical point of view,
only wavelengths greater than the mesh size can be captured by the code. We are aware that this
computation is mesh-dependent but its goal is to show that we are able to capture free-boundary
air-water flows with strong topological changes with a small amount of numerical diffusion.
At the first times of the simulation (t = 0.07 s and t = 0.09 s), we observe a lot of secondary
instabilities. This is due to the discretization of the initial cosine shape of the perturbation of the
interface (they are clearly mesh-dependent). These instabilities should be reguralized by taking
into account viscous or surface tension effects. Moreover, we emphasize that we do not observe the
classical mushroom shape during our simulations. Indeed, due to the instabilities develppment’s
characteristic time τ ∼ 0.1 s in our simulation (τ = 1

Agk , where A =
ρl−ρg
ρl+ρg

∼ 1 is the Atwood

number, g = 9.81m.s−2 the gravity and k = 2π
λ , where λ = Lx = 0.5 m is the wavelength), we only

are at 3τ when the pike of water reaches the bottom of the box. We are thus closer to a linear
regime than to a non linear one during the simulation. On the contrary, on the right and left sides,
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t=0.129 s t=0.258 s

t=0.387 s t=0.516 s t=0.645 s
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Figure 9: Test case II. Collapse of a water column with an obstacle. Snapshots of the gas mass
fraction cg (4). We represent the whole numerical box (without the cut at h = 0.6 m).

t=0.129 s t=0.258 s t=0.387 s

t=0.516 s t=0.645 s

Figure 10: Test case II. Collapse of a water column with an obstacle. Snapshots of the quantity
(αgρg) (conservative variable) [kg.m−3] in log10 scale.
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t=0.129 s t=0.258 s t=0.387 s

t=0.516 s t=0.645 s

Figure 11: Test case II. Collapse of a water column with an obstacle. Snapshots of the quantity
(αℓρℓ) (conservative variable) [kg.m−3] in log10 scale. We can see the “numerical spray” developing
into the domain.

we reach faster the non linear regime since the wavelengths of the secondary instabilities are smaller
and thus the characteristic time too (see for instance at t = 0.30 s). We point out that we are also
able to reproduce Kelvin-Helmholtz instabilities due to the friction between the two fluids arising
when the heavy fluid sink towards the bottom. This is at the source of the vortex that we observe
for instance at t = 0.30 s or t = 0.53 s on the boundary of the main pike.

6. Discussion and conclusions

In this paper we have presented a numerical solver for immiscible fluid two-phase flow problems
with numerical solution and experiments for air-water flows. The hydrocode solver is based on a
remapped Lagrange discretization which appears to have several advantages in this context. After a
pure conservative finite volume reinterpretation, the strategy for free boundary capturing is to design
anti-diffusive phasic mass fluxes. We adapt the antidiffusive approach by Després-Lagoutière and
Lagoutière-Kokh to our system of equations. We derive accuracy-stability trust regions to select the
best interface gas fractions (“best” means most compressive but stable). Roughly speaking, what can
be observed is that the computational quality and accuracy are almost as good as pure Lagrangian
methods (SPH, particle-based) as soon as details of the moving interface are not of the order of
the mesh step. In case of fine structures like filamentation, sprays, high-frequency instabilities, the
numerical method inherently creates artificial phase mixing and numerical diffusion of the interface.
A way to improve accuracy would be to use adaptive mesh refinement AMR strategies in regions
of strong gas fraction gradients, but this has not be done yet. This works is a milestone toward a
more physical air-water simulation code including fluid viscosity and free boundary surface tension
and more “multiphase effects”. The use of two phasic velocities for example would allow for fluid
sliding at interfaces, but also for phase reseparation (by buoyancy). Viscosity and surface tension
should be helpful and good for interface capturing accuracy because they have interface regularizing
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effects. Another milestone is the GPU code parallelization. The antidiffusive interface capturing
scheme has been held up because we are confident on its natural and straightforward parallelization
without particular specific interface treatment.
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t=0.129 s

t=0.258 s

t=0.387 s

Figure 12: Test case II. Dam Break test case with an obstacle with the ODYSSEY code. We
superimpose both gas volume fraction and velocity field.
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t=0.387 s t=0.516 s
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Figure 13: Dam Break test case with an obstacle with the ODYSSEY code. We show the pressure
field.
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h
w
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Figure 14: Test case III. Tank partially filled up with water submitted to a horizontal excitation.
Here, the dimension of the box is: L = 1.73 m, H = 1.15 m, and the tank is filled up with a height
hw of water. Nx = 173 and Ny = 115. We measure the evolution in time of the height of the water
at d = 0.05 m of the left border of the tank.

t=0.52s t=0.92s t=1.32s t=1.72s t=2.52s

t=2.92s t=3.92s t=4.92s t=6.52s t=7.12s

Figure 15: Test case III. Tank partially filled up with water submitted to a horizontal excitation,
with hw = 0.6 m and a period for the tank of T = 1.3 s. We present the volume fraction of the
gas α (always gas in red and water in blue) at different times. A wave generated by the horizontal
motion of the tank moves on both sides of the tank with a varying amplitude.

30



0 2 4 6 8 10
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

t (s)

H
-h

w
 (

m
)

Figure 16: Test case III. Tank partially filled up with water submitted to a horizontal excitation,
with hw = 0.6 m and a period for the tank of T = 1.3 s. We show the free surface elevation,
i.e. the height of the water relatively to the initial height hw. We superimpose our results (plain
blue line) over the scanned experimental curve of Faltinsen et al. (2000) (dotted black line). Our
code reproduces with good accuracy the frequency of the oscillations of the height of the water and
the envelop of these oscillations is well conserved. We notice small defects in the amplitude of the
relative height of the water compared to the experiment.
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Figure 17: Test case III. Fit of the curve representing the time evolution of the free surface elevation
of the water given by our code with a function f(t): f(t) = A sin(ω1t+ φ1) +B sin(ω2t+ φ2) + off
(curve given by our code in dotted red line and fitted curve in plain blue line). We get for the
two frequencies: ω1 = 3.74 rad/s and ω2 = 4.83 rad/s (and φ1 = 1.55 rad/s, φ2 = 1.59 rad/s,
A = −0.08, B = 0.07, off = 0.01). The first one is very closed to the natural frequency of the fluid
(ωfluid = 3.77 rad/s) and the second to the induced frequency of the box (ωforced = 2π

T = 4.83 rad/s).
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Figure 18: Test case IV. Free fall of water and impact with water at rest. The box size is: Lx =
Ly = 0.584 m (Nx = Ny = 350). The height of the water layer is H = Ly/4 = 0.146 m and the
radius of the water disk is H/2 = 0.073 m, put at the middle of the box and at 2.5H from the
bottom of the box.

t=0.094 s t=0.177 s t=0.184 s t=0.194 s

t=0.203 s t=0.229 s t=0.258 s t=0.290 s

Figure 19: Test case IV. Free fall of a disk of water and impact with water at rest. Evolution of the
volume fraction of gas α at different time steps.

t=0.349 s t=0.450 s t=0.545 s t=0.564 s

t=0.618 s t=0.694 s t=0.859 s t=1.055 s

Figure 20: Test case IV. Free fall of a disk of water and impact with water at rest. Evolution of the
volume fraction of gas α at longer time step.
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Lx

Ly
a=Ly/20

Figure 21: Test case V. Configuration: Lx = 0.5 m, Ly = 1. m, Nx = 300, Ny = 600. The
border between air and liquid is disturbed at a height of Ly/2 by a sine-shaped signal: Ly/2 +
Ly/20 cos(2πx/Lx).

t=0 s t=0.07 s t=0.09 s

t=0.14 s t=0.22 s t=0.30 s

Figure 22: Test case V. Rayleigh-Taylor instabilities. Heavy (water) fluid above the light one (gas)
with a sine-shaped perturbation of the initial interface, evolution of the gas volume fraction α.
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t=0.33 s t=0.34 s t=0.37 s

t=0.41 s t=0.45 s t=0.53 s

Figure 23: Test case V. Rayleigh-Taylor instabilities. Development of a main needle followed by
secondary fine needles and topology changes. The overall symmetry of the computational is globally
fulfilled.
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AppendixA. Numerical solution of the pressure equilibrium equation

AppendixA.1. Solution of pressure equilibrium equations and equations of states

Local pressure equilibrium conditions usually lead to a local algebraic system to solve, and
one has to take care of the existence and uniqueness of a solution of the system, but also on the
numerical solution using a fixed point Newton-type method (see the interesting work from Flatten
et al. (2011) on the case of a mixture of stiffened gases). In this Appendix, we discuss the case of
pressure equilibrium using an isentropic perfect gas law for gas and a modified Tait equation for
water.

From the conservative variables Wg = αρg and Wℓ = (1 − α)ρℓ, we have to compute both
pressure p and gas volume fraction α. The pressure equilibrium assumption (barotropic closure)
leads to a scalar algebraic equation to solve p = pg(ρg) = pℓ(ρℓ), i.e.

pg

(
Wg

α

)

= pℓ

(
Wℓ

1− α

)

(A.1)

for α ∈ (0, 1). As an example, let us consider an isentropic perfect gas law for the gas

pg(ρg) = p0

(
ρg
ρ0g

)γg

(A.2)

and the modified Tait equation for the liquid

pℓ(ρℓ) = p0 + p0K

[(
ρℓ
ρ0ℓ

)γℓ

− 1

]

, (A.3)

where K =
ρ0ℓc

2
ℓ

p0γℓ
, cℓ being the speed of sound in the liquid. The modified Tait equation is a rather

good, local approximation of the compressibility of the water near references conditions (ρ0ℓ , p0). It
is assumed that flow conditions will not exceed the validity domain of this EOS, i.e. pℓ(ρℓ) > 0 or
equivalently

ρℓ
ρ0ℓ

> (1−K−1)
1
γℓ . (A.4)

Under “atmospheric” conditions, one can use the following numerical parameters: p0 = 105 Pa,
ρ0g = 1.28 kg m−3, ρ0ℓ = 1000 kg m−3, cℓ = 1500m s−1, γg = 1.4, and γℓ = 7. For these values,
K = 3214.3 and the validity domain of the Tait equation (A.4) is

ρℓ
ρ0ℓ

> 0.999955

(showing the low compressibility of the water). With these EOS, the pressure equilibrium equa-
tion (A.1) writes

(
ρg
ρ0g

)γg

= 1 +K

[(
ρℓ
ρ0ℓ

)γℓ

− 1

]

. (A.5)

Introducing the dimensionless variables µg =
Wg

ρ0g
and µℓ = Wℓ

ρ0ℓ
, we get the algebraic equation to

solve
(µg

α

)γg
= 1 +K

[(
µℓ

1− α

)γℓ

− 1

]

, α ∈ (0, 1).
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AppendixA.2. Uniqueness of the root

For a mixed cell, i.e. µg, µl > 0 fixed, we search the zero of the following function Φ:

Φ(α, µg, µℓ) =
(µg

α

)γg
− 1−K

(
( µℓ

1− α

)γℓ
− 1

)

. (A.6)

By derivating, we get:

∂Φ(α, µg, µℓ)

∂α
= −

γgµ
γg
g

αγg+1
−

Kγℓµ
γℓ
ℓ

(1− α)γℓ+1
< 0 for α ∈]0, 1[ and µg ≥ 0, µℓ ≥ 0, (A.7)

(we are looking for values of α ∈]0, 1] since we consider mixed cells). As φ(α, µg, µℓ) −→
α→0+

+∞ and

φ(α, µg, µℓ) −→
α→1−

−∞, we can find an unique α∗ ∈ [0, 1] such that φ = 0 so that pg(ρg) = pℓ(ρℓ) > 0.

Moreover this solution ensures to get positive pressures in the mixed cells. Practically we use volume
fraction thresholds by defining two critical values αg

c = 10−8 and αℓ
c = 10−11: when α∗ < αg

c , then α∗

is forced to 0 and when 1−α∗ < αℓ
c, then α∗ is forced to 1 to avoid to deal with too small numbers (α∗

such that φ(α∗, µg, µℓ) = 0). Note that these cuts conduct to neglect mass fraction of gas less than

cg =
αρg
ρ < ccutoffg ≈ 10−11 and mass fraction of the liquid less than cℓ =

(1−α)ρℓ
ρ < ccutoffℓ ≈ 10−8

(for ρg ≈ 1 and ρℓ ≈ 1000). Notice that the cutoff is chosen not symmetrically due to the high
density ratio between the two phases (ρℓ/ρg ∼ 1000). In such a way, this cutoff leads to the same
minimal mass of each material in the cell.

AppendixA.3. Efficient Picard fixed point method strategy

We can rewrite (A.6) in a more appropriate form

f(α) = (1− α)
[
αγg +K−1

(
µ
γg
g − αγg

)] 1
γℓ − µℓ α

γg/γℓ = 0, α ∈ [0, 1]. (A.8)

Remark that f(0) = (K−1µ
γg
g )1/γℓ ≥ 0 (> 0 if µg > 0) and f(1) = −µℓ ≤ 0 (< 0 if µℓ > 0). In

order to solve f(α) = 0 numerically, we need a convergent fixed point algorithm. Usually, a Newton
method is used because of its quadratic convergence rate. Unfortunately, we experienced a poor
convergence rate on the equation (A.8). The reason is that α 7→ f(α) has a derivative at the root
which is (numerically) close to zero and thus the convergence rate is quasi-linear. On figure A.24,
we show a typical profile of the function α 7→ f(α). One can observe a “flat” region near the root,
making the Newton method slowly convergent. Our strategy is to correctly initialize the Newton
method with some “good” initial guess by means of a predictor step.

Figure A.24: Profile of the function α 7→ f(α), log10 scale, for p = p0 and α⋆ = arg
α∈[0,1]

(f(α) = 0) =

10−3.
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AppendixA.4. Initial guess strategy for the Newton algorithm

Because of the stiffness of the pressure equilibrium equation, a convenient initial guess for
Newton’s algorithm is needed to ensure both fast convergence and for the iterates to stay into
the admissible interval [0, 1]. Below, we describe two different ways (depending on the step of the
numerical scheme considered, i.e. Lagrange or remap) in order to find a systematic initial guess for
Newton’s algorithm.

AppendixA.4.1. Lagrangian step

During the Lagrangian step, we look for an equation checked by the volume gas fraction α which
includes the pressure equilibrium assumption. This has been already discussed in papers dealing
with relaxation strategies (cf. Colella et al. (1996); Robinson (2008) for instance). In the following,
we will denote αg the volume fraction of gas and αℓ the one of the liquid, with αg + αℓ = 1. From
the EOSs of the two phases (6)-(7), we obtain:

Dtρg =
ρg
γg

1
pg
Dtpg =

ρg
γg

1
P Dtp, (A.9)

Dtρℓ =
ρℓ
γℓ

1
pℓ+p0(K−1)Dtpℓ =

ρℓ
γℓ

1
p+p0(K−1)Dtp, (A.10)

where p is the pressure of the mixture of gas and liquid at the equilibrium: p = pg(ρg) = pℓ(ρℓ).
Moreover, from the equations of conservation of masses of each phase (9)-(10), we have:

Dtαk + αk
∂u

∂x
+

αk

ρk
Dtρk = 0, k = g, ℓ. (A.11)

Using (A.9)-(A.10) in (A.11), we get:

Dtαg + αg∇ · u+
αg

γgP
Dtp = 0, (A.12)

Dtαℓ + αℓ∇ · u+ αℓ
γℓ

1
p+p0(K−1)Dtp = 0. (A.13)

Since αg +αℓ = 1, we find the non-conservative equation check by the pressure p in the mixed cells:

Dtp+ p
γgγℓ

(
1 + p0/p(K − 1)

)

αgγℓ
(
(K − 1)p0/p+ 1

)
+ αℓγg

∇ · u = 0, (A.14)

depending on the coefficients of each EOS and on the volume gas fraction α. And thus using (A.12),
we obtain the equation followed by the volume gas fraction α including the pressure equibirum
assumption:

Dtαg + αg

(

1−
γℓ
(
1 + (K − 1)p0p

)

αgγℓ
(
1 + p0

p (K − 1)
)
+ (1− αg)γg

)

∇ · u = 0. (A.15)

Thanks to (A.15), we get (using that the total volume checked DtV = V ∇ · u thanks to Eq. 15):

Dt(αgV ) =
(

1−
(1− αg)γg

αgγℓ
(
1 + p0

p (K − 1)
)
+ (1− αg)γg

︸ ︷︷ ︸

:=fg(αg ,p)

)

DtV, (A.16)

and we finally take for the initial value in the Newton algorithm during the Lagrangian phase:

αguess,L
i,j = min

(

max
(

0, αn
i,j

V n
i,j

V n+1,L
i,j

+
(
1− fg(α

n
i,j , p

n
i,j)
)V

n+1,L
i,j − V n

i,j

V n+1,L
i,j

)

, 1
)

. (A.17)
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AppendixA.4.2. Remap step

During the remap step, to initiate the Newton algorithm, we use an interpolation of α on the
intermediate volume V n+1,∗

i,j for the first step of projection:

I(α)n+1,∗
i,j =

V n+1,L
i,j

V n+1,∗
i,j

αn+1,L
i,j −

∆t∆y

V n+1,∗
i,j

(

u
n+1/2,L
i+1/2,j αn+1,L

i+1/2,j − u
n+1/2,L
i−1/2,j αn+1,L

i−1/2,j

)

. (A.18)

In particular, in the previous formula (A.18), αn+1,L
i±1/2,j = I(α)|Vi±1/2,j

represents the interpolation of α

on the volume Vi±1/2,j defined by the displacement of the edge (i±1/2, j) during the time step ∆t at

the velocity u
n+1/2,L
i±1/2,j . In Eq. ( A.18), αn+1,L

i±1/2,j is given by the low-diffusive value αLD
i±1/2,j calcultated

in Sec. 4. Then, starting from this initial point, the Newton algorithm modifies the partial volume
of each phase up to reach the equilibrium in pressure. We ensure the guess to be in the interval [0, 1]
by defining αguess,remap = min(max(0, I(α)n+1,∗

i,j )). For the second step of projection, the formula

to initiate the Newton algorithm is similar: the interpolation of α on the Eulerian volume V n+1
i,j is

given by:

I(α)n+1
i,j =

V n+1,∗
i,j

V n+1
i,j

αn+1,∗
i,j −

∆t

∆x

(

v
n+1/2,L
i,j+1/2 αn+1,∗

i,j+1/2 − v
n+1/2,L
i,j−1/2 αn+1,∗

i,j−1/2

)

. (A.19)

In the formula (A.19), the interface values αn+1,∗
i,j±1/2 = I(α)|Vi,j±1/2

represent the interpolations of the

quantity αn+1,∗
i,j on the volumes Vi,j±1/2 defined by the displacement of the vertical edges i, j ± 1/2

at the velocities v
n+1/2,L
i,j±1/2 during the time step ∆t. It corresponds to the low-diffusive value αLD

i±1/2,j

calculated during the second step of remap to get the projected masses thanks to Eqs. (33)-(34).

AppendixB. Comments on the artificial viscosity

During the Lagrange phase (cf. Sec. 3.1), we use an artificial viscosity q (the so-called pseudo-
viscosity) in order to stabilize the staggered scheme which is centered in space. The pseudo-
viscosity q is a viscous pressure. It is designed to only act into compression zones (div(u) < 0)
and shock waves. On the contrary, for smooth expansion zones the pseudo-viscosity is set to zero
to keep second order accuracy. This conducts to change the momentum balance by means of the
pressure gradient but also the mean density by means of the divergence of the velocity. The pseudo-
viscosity is a combination of a linear term (qlin ≈ div(u)) which acts on the linear stability and a
quadratic one qquad ≈ |div(u)|div(u) provides nonlinear (large-amplitude shock) stability. We refer
to [Von Neumann and Richtmyer (1950); Wilkins (1980); Caramana et al. (1998a); Heuzé et al.
(2009); Robinson (2008); Sprague (1955)] for more details on this subject.

As we deal with the two-dimensional problems, we have to take into account a 2D approach of
the velocity divergence and in order to check the previous requirements, we choose the following
form of the pseudo-viscosity in the code: the linear term is expressed as

qlin = − a1ρcs√
∆y∆x

(∆u∆y +∆v∆x), if div(u) < 0 (B.1)

= 0 elsewhere,

where ∆u represents the jump in velocity along the x direction: ∆ui,j = uni+1/2,j −uni−1/2,j , and ∆v
is the jump along the y direction: ∆vi,j = vni,j+1/2 − vni,j−1/2, naturally defined in the center of a

cell (i, j) thanks to the staggered grid (as the real pressure term p). And then, we get: (divu)ij =
∆ui,j

∆x +
∆vi,j
∆y . The pseudo-viscosity coefficient a1 > 0, a1 = O(1) is a constant to be defined

38



and depends on hydrodynamics quantities. For the quadratic term, it has to be on the form of
qquad ≈ −a2

ρ
V DtV |DtV | (cf. Sprague (1955)) and as the total volume V = m

ρ follows the equation
DtV = V∇ · u in the Lagrangian phase cf. Eq. (15), we choose the following form:

qquad = − a2ρ
∆x∆y

(

|∆u∆y +∆v∆x|(∆u∆y +∆v∆x)
)

if div(u) < 0 (B.2)

= 0 elsewhere,

which has the dimension of a pressure (a2 = O(1)). The values of the two constants a1 and a2 are
put to 0.15 and 0.1 respectively in all the simulations.

AppendixC. Definition of the interval I2 to ensure stability conditions for cg

In the section 4, we have treated the case when the velocities u
n+1/2,L
i±1/2,j > are positive and the

stability condition for the remap scheme on cg is calculated on the cell i, j. Without detailing the

other case when u
n+1/2,L
i+1/2,j < 0, (and if the velocity of the other vertical edge is negative u

n+1/2,L
i+3/2,j < 0),

by defining s = sign(u
n+1/2,L
i+1/2,j ) we can write the interval Is2 = [bn+1,L

i+1/2,j , B
n+1,L
i+1/2,j ] in a generic form .

The lower bound is expressed as:

bn+1,L
i+1/2,j

= αn+1,L
i+1/2,j,up

+

ρ
n+1,L
i+1/2,j,up

ρ
n+1,L
gi+1/2,j,upw

(1−A
n+1,L
i+1/2−s,j

)+A
n+1,L
i+1/2−s,j

ρ
n+1,L
ℓi+1/2,j,upw

(

An+1,L
i+1/2−s,j

− cn+1,L
gi+1/2,j,up

)

[u
n+1/2,L
i+1/2−s,j

u
n+1/2,L
i+1/2,j

− s
V

n+1,∗
i+1/2,j,upw

∆t∆y u
n+1/2,L
i+1/2,j

]

,

(C.1)

and the upper bound as:

Bn+1,L
i+1/2,j

= αn+1,L
i+1/2,j,up

+

ρ
n+1,L
i+1/2,j,up

ρ
n+1,L
gi+1/2,j,up

(1−a
n+1,L
i+1/2−s,j

)+a
n+1,L
i+1/2−s,j

ρ
n+1,L
ℓi+1/2,j,up

(

an+1,L
i+1/2−s,j

− cn+1,L
gi+1/2,j,up

)

[u
n+1/2,L
i+1/2−s,j

u
n+1/2,L
i+1/2,j

− s
V

n+1,∗
i+1/2,j,up

∆t∆y u
n+1/2,L
i+1/2,j

]

,

(C.2)

Thus, under the generic restriction condition on the time step:

V n+1,∗
i+1/2,j,upw − s∆t∆y ui+1/2−s,j ≥ 0, (C.3)

we prove that αn+1,L
i+1/2,j,up ∈ [bn+1,L

i+1/2,j , B
n+1,L
i+1/2,j ] := Is2

8 if u
n+1/2,L
i+1/2,j > 0 and u

n+1/2,L
i−1/2,j > 0 or if u

n+1/2,L
i+1/2,j <

0 and u
n+1/2,L
i+3/2,j < 0. We remind here that in the case of two velocities of different sign in the cell

where the stability is calculated, an upwind choice is performed for α at the edges, which always
ensure the stability requirement (see the Remark after Theorem 4.2).

AppendixD. Reminder of the choice of the low-diffusive value at the edges αLD
i+1/2,j

In the section 4, we have define the trust interval in which αLD
i+1/2,j has to be taken. We just

recall here the procedure of low-diffusion that can be found in Kokh and Lagoutière (2010) using
our trust interval I (65) to choose αLD

i+1/2,j as close to the downwind value as possible in order to
limit the diffusion:

8We recall that for a generic variable z, zi+1/2,j,up corresponds to the value zi,j if u
n+1/2,L

i+1/2,j > 0 and otherwise to
the value zi+1,j .

39



• If u
n+1/2,L
i+1/2,j > 0, the objective is to take a value for α at the edges as close as possible to the

downwind one. Stability of α and thus positivity of the masses of each cell must be ensured
in the cell i+ 1, j in that case:

1.

if u
n+1/2,L
i−1/2,j > 0,







if αn+1,L
i+1,j ≤ (ω)n+1,L

i+1/2,j , αLD
i+1/2,j = ωn+1,L

i+1/2,j

if ωn+1,L
i+1/2,j < αn+1,L

i+1,j < Ωn+1,L
i+1/2,j , αLD

i+1/2,j = αn+1,L
i+1

if αn+1,L
i+1 ≥ Ωn+1,L

i+1/2,j , αLD
i+1/2,j = Ωn+1,L

i+1/2,j

(D.1)

2. if u
n+1/2,L
i−1/2,j ≤ 0, we take the upwind value αLD

i+1/2,j = αn+1,L
i,j .

• if u
n+1/2,L
i+1/2,j < 0, the objective is to take a value for α at the edges as close as possible to the

downwind one. Stability of α and thus positivity of the masses of each cell must be ensured
in the cell i, j:

1.

if u
n+1/2,L
i+3/2,j < 0,







if αn+1,L
i,j ≤ ωn+1,L

i+1/2,j , αLD
i+1/2,j = ωn+1,L

i+1/2,j

if ωn+1,L
i+1/2,j < αn+1,L

i,j < Ωn+1,L
i+1/2,j , αLD

i+1/2,j = αn+1,L
i,j

if αn+1,L
i,j ≥ Ωn+1,L

i+1/2,j , αLD
i+1/2,j = Ωn+1,L

i+1/2,j

(D.2)

2. if u
n+1/2,L
i+3/2,j ≥ 0, we take the upwind value: αLD

i+1/2,j = αn+1,L
i+1,j .
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versité du Havre.

Noh, W., Woodward, P., 1976. SLIC (Simple Line Interface Calculation). Proceedings of the Fifth
International Conference on Numerical Methods in Fluid Dynamics June 28-July 2, 1976 Twente
University, Enschede 59, 330–340.

Robinson, A.C., W.R.e.a., 2008. ALEGRA: An Arbitrary Lagrangian-Eulerian multimaterial, mul-
tiphysics code. Proceedings of the 46th AIAA Aerospace Sciences Meeting AIAA-2008.

Sethian, J.A., 1999. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Com-
putational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. volume 11.
Dynamical Systems.

Shao, J., Li, H., Liu, G., Liu, M., 2012. An improved SPH method for modeling liquid sloshing
dynamics. Computers and Structures 100-101, 18 – 26.

So, K.K., Hu, X.Y., Adams, N.A., 2011. Anti-diffusion method for interface steepening in two-phase
incompressible flow. J. Comput. Phys. 230, 5155–5177.

Sprague, C.F., 1955. The numerical treatment of simple hydrodynamic shocks using the von
Neumann-Richtmyer method. Technical Report. Los Alamos Scientific Laboratory.

van Leer, B., 1979. Towards the ultimate conservative difference scheme. V. A second-order sequel
to godunov’s method. Journal of Computational Physics 32, 101 – 136.

Von Neumann, J., Richtmyer, R., 1950. A method for the numerical calculation of hydrodynamic
shocks. J. Appl. Phys. 21, 232–237.

Wilkins, M., 1980. Use of artificial viscosity in multidimensional fluid dynamic calculations,. Journal
of Computational Physics 36, 281 – 303.

42



Woodward, P., Colella, P., 1984. The numerical simulation of two-dimensional fluid flow with strong
shocks. Journal of Computational Physics 54, 115 – 173.

Youngs, D.L., 1985. Time-depend multi-material flow with large fluid distortion. Numerical Methods
for Fluid Dynamics , 273–285.

43


