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ON THE INVARIANT MEASURES FOR THE OSTROVSKY

EQUATION.

DARWICH MOHAMAD.

Abstract. In this paper, we construct invariant measures for the Os-
trovsky equation associated with conservation laws. On the other hand,
we prove the local well- posedness of the initial value problem for the
periodic Ostrovsky equation with initial data in H

s(T) for s > −

1

2
.

1. Introduction

In this paper, we construct an invariant measure for a dynamical system
defined by the Ostrovsky equation (Ost)

{

∂tu− uxxx + ∂−1
x u+ uux = 0,

u(0, x) = u0(x).
(1.1)

associated to the conservation of the energie. The operator ∂−1
x in the equa-

tion denotes a certain antiderivative with respect to the variable x defined

for 0-mean value periodic function the Fourier transform by ̂(∂−1
x f) = f̂(ξ)

iξ .

Invariant measure play an important role in the theory of dynamical sys-
tems (DS). It is well known that the whole ergodic theory is based on this
concept. On the other hand, they are necessary in various physical consid-
erations.
Note that, one the well-known applications of invariant measures in the
theory of dynamical is the Poincaré recurrence theorem : every flow which
preserves a finite measure has the returning property modulo a set of mea-
sure zero.
Recently several papers( [1], [10], [11]) have been published on invariant
measures for dynamical system generated by nonlinear partial differentiel
equations.
In [12] an infinite series of invariant measure associated with a higher con-
servation laws are constructed for the one-dimensional Korteweg de Vries
(KdV) equation:

ut + uux + uxxx = 0,

by Zhidkov. In particular, invariant measure associated to the conservation
of the energie are constructed for this equation.
Equation 1.1 is a perturbation of the Korteweg de Vries (KdV) equation
with a nonlocal term and was deducted by Ostrovskii [9] as a model for
weakly nonlinear long waves, in a rotating frame of reference, to describe
the propagation of surface waves in the ocean.
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2 DARWICH MOHAMAD.

We will construct invariant measures associated to the conservation of the
Hamiltonian:

H(u(t)) =
1

2

∫

(ux)
2 +

1

2

∫

(∂−1
x u)2 −

1

6

∫

u3.

The paper is organized as follows. In Section 2 the basic notation is in-
troduced and the basic results are formulated. In Section 3 the invariant
measure which corresponds to the conservation of the Hamiltonian is con-
structed.
In Section 4 we will prove the local well-posedness for our equation in Hs,
s > −1

2 .

2. Notations and main results

We will use C to denote various time independent constants, usually
depending only upon s. In case a constant depends upon other quantities,
we will try to make it explicit. We use A . B to denote an estimate of the
form A ≤ CB. similarly, we will write A ∼ B to mean A . B and B . A.
We writre 〈·〉 := (1 + | · |2)1/2 ∼ 1 + | · |. The notation a+ denotes a+ ǫ for
an arbitrarily small ǫ. Similarly a− denotes a− ǫ. Let

L2
0 = {u ∈ L2;

∫

T

udx = 0}.

On the circle, the Fourier transform is defined as

f̂(n) =
1

2π

∫

T

f(x) exp(−inx)dx.

We introduce the zero mean-value Sobolev spaces Hs defined by :

Hs
0 =: {u ∈ S

′

(T); ||u||Hs < +∞ and

∫

T

udx = 0}, (2.1)

where,

||u||Hs
0
= (2π)

1

2 ||〈.〉sû||l2n , (2.2)

and Xs, 1
2 by

{u ∈ S
′

(T); ||u||
Xs, 1

2
:= ||〈n〉s〈τ + n3 −

1

n
〉û||l2nL2

τ
<∞}.

Let

Y s =: {u ∈ S
′

(T); ||u||Y s < +∞},

where

||u||Y s = ||u||
Xs, 1

2
+ ||〈n〉sû(n, τ ||l2nL1

τ
.

We will briefly remind the general construction of a Gaussian measure on
a Hilbert space. Let X be a Hilbert space, and {ek} be the orthonormal
basis in X which consists of eigenvectors of some operator S = S∗ > 0 with
corresponding eigenvalues 0 < λ1 ≤ λ2 ≤ λ3.... ≤ λk ≤ ... We call a set
M ⊂ X a cylindrical set iff:

M = {x ∈ X; [(x, e1), (x, e2), ...(x, er)] ∈ F}
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for some Borel F ⊂ Rr, and some integer r. We define the measure w as
follows:

w(M) = (2π)−
r
2

r
∏

j=1

λ
1

2

j

∫

F
e−

1

2

∑r
j=1 λjy

2
j dy. (2.3)

One can easily verify that the class A of all cylindrical sets is an algebra
on which the function w is additive. The function w is called the centered
Gaussian measure on X with the correlation operator S−1.

Definition 2.1. The measure w is called a countably additive measure on
an algebra A if limn→+∞(An) = 0 for any An ∈ A(n = 1, 2, 3...) for which
A1 ⊃ A2 ⊃ A3 ⊃ ..... ⊃ An ⊃ ... and

⋂∞
n=1An = φ

Now we give the following Lemma:

Lemma 2.1. The measure w is countably additive on the algebra A iff S−1

is an operator of trace class, i.e iff
∑+∞

k=1 λ
−1
k < +∞.

Now we present some definitions related to invariant measure :

Definition 2.2. Let M be a complete separable metric space and let a func-
tion h : R ×M 7−→M for any fixed t be a homeomorphism of the space M
into itself satisfying the properties:

(1) h(0, x) = x for any x ∈M .
(2) h(t, h(τ, x)) = h(t+ τ, x) for any t, τ ∈ R and x ∈M .

Then, we call the function h a dynamical system with the space M . If µ is
a Borel measure defined on the phase space M and µ(Ω) = µ(h(Ω, t))for an
arbitrary Borel set Ω ⊂ M and for all t ∈ R, then it is called an invariant
measure for the dynamical system h.

Let us now state our results:

Theorem 2.1. Let s > −1/2, and φ ∈ Hs
0 . Then there exists a time

T = T (||φ||Hs
0
) > 0 and a unique solution u of (1.1) in C([0, T ],Hs

0) ∩ Y
s

and the map φ 7−→ u is C∞ from Hs
0 to C([0, T ],Hs

0). 2

Theorem 2.2. Let φ ∈ L2
0, then the Problem 1.1 is global well-posedness in

L2 and the Borel measure µ on L2 defined for any Borel set Ω ⊂ L2 by the
rule

µ(Ω) =

∫

Ω
e−g(u)dw(u)

where w is the centered Gaussian measure corresponding to the correlation
operator S−1 = (−∆+∆−1)−1, and g(u) = 1

3

∫

u3dx the nonlinear term of
the Hamiltonian is an invariant measure for (1.1).

3. Invariance of Gibbs measure

In this section, we construct an invariant measure to Equation 1.1 with
respect to the conservation of the Hamiltonian. Let us first present result
on invariant measures for systems of autonomous ordinary differential equa-
tions. Consider the following system of ordinary differential equations:

ẋ = b(x), (3.1)
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where x(t) : R 7−→ Rn is an unknown vector-function and b(x) : Rn 7−→ Rn is
a continuously differentiable map. Let h(t, x) be the corresponding function
(“ dynamical system”) from R × Rn into Rn transforming any t ∈ R and
x0 ∈ Rn into the solution x(t), taken at the moment of time t, of the above
system supplied with the initial data x(0) = x0.

Theorem 3.1. Let P (x) be a continuously differentiable function from Rn

into R. For the Borel measure

ν(Ω) =

∫

Ω
P (x)dx

to be invariant for the function h(t, x) in the sense that ν(h(t,Ω)) = ν(Ω)
for any bounded domain Ω and for any t, it is sufficient and necessary that

n
∑

i=1

∂

∂xi
(P (x)bi(x)) = 0,

for all x ∈ Rn.

We shall construct an invariant measure for (1.1). Let A > 0, the space
L2(0, A) be real equipped with the scalar product:

(u, v)L2(0,A) =

∫ A

0
uvdx.

and J = ∂
∂xQ where the operator Q maps v∗ ∈ L2 into v ∈ L2 such that

v∗(g) = (v, g)L2(0,A). Finally, let S = −∆+∆−1. We set H(u) = 1
2(
∫

(ux)
2−

∫

(∂−1
x u)2)+ 1

3

∫

u3 = 1
2(Su, u)+ g(u). Note that System 1.1 takes the form:
{

∂u
∂t (t) = J δ

δuH(u(t)), t ∈ R

u(t0) = φ ∈ Hs,
(3.2)

Let e2k−1(x) =
√
2√
A
sin(2πnxA ), e2k =

√
2√
A
cos(2πnxA ) where k = 1, 2, 3... Then

(ek)k=1,2,.. is an orthonormal basis of the space L2
0(0, A) consisting of eigen-

functions of the operator ∆ with the corresponding eigenvalues 0 < λ1 =
λ2 < ... < λ2k−1 = λ2k < ... Let Pm be the orthogonal projector in L2

0 onto
the subspace Lm = span{e1, ..., e2m} and P⊥

m be the orthogonal projector in
L2
0(0, A) onto the orthogonal complement L⊥

m to the subspace Lm. Let also
vi = −λi + λ−1

i , then vi are eigenvalues of S.
Consider the following problem:

{

∂tu
m − umxxx + ∂−1

x um + Pm(umumx ) = 0,
um(0, x) = Pmu0(x).

(3.3)

The existence of u is global in L2 in time ( see later) and the solution of
(3.3) converges to u in C([0, T ], L2) for any fixed T , more precisely we have
the following lemma:

Lemma 3.1. (1) The solution um of (3.3) converges in C([0, T ], L2) to
the solution u of (1.1).

(2) For any ǫ > 0, and T > 0 there exists δ > 0 such that

Maxt∈[t0−T,t0+T ]‖um(., t) − vm(., t)‖L2 < ǫ,
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for any two solutions um and vm of the problem (3.3), satisfying
the condition

‖um(., t0)− vm(., t0)‖L2< δ.

Proof. : By the Duhamel formula, u− um satisfies

u(t)−um(t) = e−itS(u0−Pmu0)−
1

2

∫ t

0
e−i(t−t′)S(∂x(u

2(t′))−Pm(∂x((u
m)2(t′))))dt′.

We can whrite that R(t) := ∂x(u
2(t′)) − Pm(∂x((u

m)2(t′))) = ∂x(u
2 −

(Pm
2
u)2)+Pm∂x

(

(Pm
2
u)2 − u2

)

+Pm∂x(u
2 − (um)2). Now, using the linear

and bilinear estimates proved in section 4, we obtain that

‖u− um‖Y s . ‖u0 −Pmu0‖Hs + T γ‖u− um‖Y s‖u+ um‖Y s + ‖u−Pm
2
u‖Y s ,

(3.4)
then um −→ u in Y s, but Y s →֒ L∞

t L
2
x, this gives the uniform conver-

gence in L2.
The proof of part (2) is similar to part (1).

By hm(u0, t) we denote the function mapping any u0 ∈ L2 and t ∈
R into um(., t + t0) where um(., t) is the solution of the problem (3.3).
It is clear that the function hm is a dynamical system with the phase
space Xm = span{e1, ...em}. In addition, the direct verification shows that
d
dt ||um(., t)||2L2 = 0 and

∫

umdx = 0. . For each m = 1, 2... let us consider
in the space Xm the centered Gaussian measure wm with the correlation
operator S−1. Since S = S∗ in Xm, the measure wm is well-defined in Xm.
Also, since g(u) = 1

3

∫

u3 is a continuous functional in Xm, the following
Borel measures

µm(Ω) =

∫

Ω
e−g(u)dwm(u).

(where Ω is an arbitrary Borel set in L2) are well defined.

Definition 3.1. A set Π of measures defined on the Borel sets of a topol-
ogogical space is called tight if, for each ǫ > 0, there exist a compact set K
such that

µ(K) > 1− ǫ

For all µ ∈ Π.

We will use the following theorem:

Theorem 3.2. (Prokhorov) A tight set, Π, of measures on the Borel sets
of a metric topological space, X, is relatively compact in the sense that for
each sequence,P1, P2, ...in Π there exists a subsequence that converges to a
probability measure P , not necessarily in Π, in the sense that

∫

gdPnj −→

∫

gdP

for all bounded continuous integrands. Conversely, if the metric space is
separable and complete, then each relatively compact set is tight.

To prove Theorem 2.2, we will prove the following Lemma:
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Lemma 3.2. µm is an invariant measure for the dynamical system hm with
the phase space Xm.

Proof : Let us rewrite the system (3.3) for the coefficients ak, where

um(t) =

k=2m
∑

k=1

ak(t)ek. Let h(a) = H(

k=2m
∑

k=1

akek) and J is a skew-symmetric

matrix, (Jm)2k−1,2k = −2πk
A = −(Jm)2k,2k−1(k=1,2,.. m) then the problem

take the form
{

a′(t) = Jm∇ah(a(t)),
ak(t0) = (u0, ek), k = 1, 2, ...2m

(3.5)

Using Theorem 3.1, we can easily verify that the Borel measure:

µ′m(A) = (2π)−
2m+1

2

2m
∏

j=1

v
1

2

j

∫

A
e−

1

2

∑
2m
j=1

vja2j−g(
∑

2m
j=1

ajej(x))da,

(with vj = −λj+λ
−1
j the eigenvalues of S) is invariant for the problem (3.5).

Also, we introduce the measures

wm(A) = (2π)−
2m+1

2

2m
∏

j=1

v
1

2

j

∫

A
e−

1

2

∑
2m
j=1

vja2jda.

Let Ωm ⊂ Xm and Ωm = {u ∈ L2, u =

2m
∑

j=1

ajej , a ∈ A} where A ⊂ R2m is a

Borel set. We set µm(Ωm) = µ′m(A). Since the measure µ′m is invariant for
(3.5), the measure µm is invariant for the problem (3.3).
Although the measure is defined on Xm, we can define it on the Borel sigma-
algebra of L2 by the rule: µm(Ω) = µm(Ω ∩Xm). Since the set Ω ∩Xm is
open as a set in Xm for any open set Ω ⊂ L2, this procedure is correct.

Lemma 3.3. (wm)m weakly converges to w in L2.

Proof : S−1 is an operator of trace since the trace Tr(S−1) =
∑

k

v−1
k =

∑

k

1
1

4π2k2

A2

+ 4π2k2

A2

< +∞. Thus we can find a continuous positive func-

tion d(x) defined on (0,∞) with the property lim
x→+∞

d(x) = +∞ such that
∑

k

v−1
k d(λk) < +∞. We define the operator T = d(S), the operator defined

by T (ek) = d(vk)ek and let B = S−1T . According to the definition of d(x),

Tr(B) < +∞. Let R > 0 and BR = {u ∈ L2, T
1

2u ∈ L2and||T
1

2u|| ≤ R},
it is clear that the closure of BR is compact for any R > 0. Combined the
following inequality ( see [4] for the proof)

wn(BR
C
) = wn({u; (Tu, u)L2 > R}) ≤

Tr(B)

R2
.

with the Prokhorov theorem, this ensure that (wn) is weakly compact on
L2.
In view of the definition wn(M) → w(M) for any cylindrical set M ⊂
L2.(because wn(M) = w(M) for all sufficiently large n). Hence, since the
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extension of a measure from an algebra to a minimal sigma-algebra is unique,
we have proved that the sequence wn converges to w weakly in L2 and
Lemma 3.3 is proved.

Lemma 3.4. lim infm µm(Ω) ≥ µ(Ω) for any open set Ω ⊂ L2.
lim supm µm(K) ≤ µ(K) for any closed bounded set K ⊂ L2.

Proof : Let Ω ⊂ L2 be open and let BR = {u ∈ L2, ||u||2L < R} for some
R > 0.
Consider φ(u) : 0 < φ(u) < 1 with the support belonging to ΩR = Ω ∩ BR

such that
∫

X
φ(u)e−g(u)dw(u) > µ(ΩR)− ǫ.

Then,

lim inf
m

µm(ΩR) = lim inf
m

∫

ΩR

e−g(u)dwm(u) ≥ lim inf
m

∫

φ(u)e−g(u)dwm(u)

=

∫

φ(u)e−g(u)dw(u) ≥ µ(ΩR)− ǫ.

Therefore, due to the arbitrariness of ǫ > 0 one has:

lim inf
m

µm(Ω) ≥ lim sup
m

µm(ΩR) ≥ µ(ΩR).

Taking R −→ +∞ in this inequality, we obtain the first statement the
lemma.

Let K be a closed bounded set. Fix ǫ > 0. We take a continuous function
φ ∈ [0, 1] such that φ(u) = 1 for any u ∈ K, φ(u) = 0 if dist(u,K) > ǫ and
∫

φ(u)e−g(u)w(du) < µ(K) + ǫ. Then

lim sup
m

µm(K) ≤ lim sup
m

∫

φ(u)e−g(u)dwm(u)

=

∫

φ(u)e−g(u)dw(u) ≤ µ(K) + ǫ,

and due to the arbitrariness of ǫ > 0, Lemma 3.4 is proved.

Lemma 3.5. Let Ω ⊂ L2 an open set and t ∈ R. Then µ(Ω) = µ(h(Ω, t)).

Proof : Let Ω1 = h(Ω, t). Fix an arbitrary t ∈ R, then Ω1 is open too.
First, let us suppose that µ(Ω) <∞.
Fix an arbitrary ǫ > 0, by Prokhorov Theorem there exists a compact set
K ⊂ Ω such that µ(Ω\K) < ǫ, note that K1 = h(K, t) is a compact set, too,
and K1 ⊂ Ω1.
For any A ⊂ L2, let ∂A be the boundary of the set A and let

β = min{dist(K,∂Ω); dist(K1, ∂Ω1)}

(where dist(A,B) = infx∈A,y∈B ‖x − y‖L2). Then, β > 0. According to
Lemma 3.1, for any z ∈ K, there exists δ > 0 such that for any x, y ∈ Bδ(z)

one has ‖hn(x, t) − hn(y, t)‖L2 < β
3 . Lets Ωα = {q ∈ Ω1; dist(q, ∂Ω1) ≥ α}

and Bδ1(z1), ...Bδl(zl) be a finite covering of the compact set K by these

balls and let B =
⋃l

i=1Bδi(zi).
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Since hn(zi, t) −→ h(zi, t)(n −→ +∞) for any i we obtain that dist(hn(z, t),K1) <
β
3 , ∀z ∈ B and large n. Thus, hn(B, t) belongs to a closed bounded subset

of Ω
β
2 for all sufficiently large n.

Further, we get by the invariance of µn and Lemma 3.4

µ(Ω) ≤ µ(B) + ǫ ≤ lim inf µn(B) + ǫ ≤ lim inf µn(hn(B, t)) + ǫ ≤ µ(Ω1) + ǫ
(

because µn(B) = µn(B ∩ Xn) = µn(hn(B ∩ Xn, t)), and hn(B ∩ Xn, t) ⊂

hn(B, t)

)

. Hence, due to the arbitariness of ǫ > 0, we have µ(Ω) ≤ µ(Ω1).

By analogy µ(Ω) > µ(Ω1). Thus µ(Ω) = µ(Ω1).
Now if Ω is open and µ(Ω) = +∞, then we take the sequence

Ωk = Ω ∩ {u ∈ L2; ‖u‖L2 + ‖h(u, t)‖ < k}

and set Ωk
1 = h(Ωk, t). Then Ω = ∪Ωk and µ(Ωk) = µ(Ωk

1) < ∞. Taking
k −→ +∞, we obtain the statement of the lemma.

4. Well-posedness in Xs, 1
2

In this section, we prove a global wellposedness result for the Ostrovsky
equation by following the idea of Kenig, Ponce, and Vega in [8].

Our work space is Y s, the completion of functions that are Schwarz in
time and C∞ in space with norm:

||u||Y s = ||u||
Xs, 1

2
+ ||〈n〉sû(n, τ)||l2nL1

τ

Y s is a slight modification of Xs, 1
2 such that ||u||L∞

t Hs
x
. ||u||Y s .

We see that the nonlinear part of the Ostrovsky equation is u∂xu, and by
Fourier transform we write it in frequency as

n
∑

n1∈Ż

∫

τ1∈R
û(n1, τ1)û(n− n1, τ − τ1)dτ1.

The resonance function is given by:

R(n, n1) = τ+m(n)−(τ1+m(n1)−(τ−τ1+m(n−n1) = 3nn1(n−n1)−
1

n

(

1−
n3

nn1(n− n1)

)

where m(n) = n3 − 1
n .

Now we have the following lower bound on the resonance function:

Lemma 4.1. If |n||n1||n− n1| 6= 0, and 1
|n| < 1, then:

|R(n, n1)| & |n||n1||n− n1|, (4.1)

and

|n|2 ≤ 2|nn1(n− n1)|. (4.2)
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Proof : (4.2) is obvious.
Now

R2(n, n1) = 9n2n21(n− n1)
2 − 6n1(n− n1) + 6n2 +

1

n2
(

1−
n3

n(n1(n − n1))

)2

= n2n21(n− n1)
2 + 8n2n21(n− n1)

2 − 6n1(n− n1) + 6n2 +
1

n2
(

1−
n3

n(n1(n − n1))

)2

≥ n2n21(n− n1)
2 + 8n2n21(n− n1)

2 − 6n1(n− n1)

= n2n21(n− n1)
2+ | n1(n− n1) | (8n

2 | n1(n− n1) | −6)

Using (4.2) we obtain that:

R2(n, n1) & n2n21(n − n1)
2

By the same argument employed in [8], we state the following elemental
estimates without proof.

Lemma 4.2. For any ǫ > 0, α ∈ R and 0 < ρ < 1, we have:

∫

R

dβ

(1 + |β|)(1 + |α− β|)
.

log(2 + |α|)

(1 + |α|)
.

∫

R

dβ

(1 + |β|)ρ(1 + |α− β|)
.

1 + log(1 + |α|)

(1 + |α|)ρ
.

∫

R

dβ

(1 + |β|)1+ǫ(1 + |α− β|)1+ǫ
.

1

(1 + |α|)1+ǫ
.

Lemma 4.3. There exists c > 0 such that for any ρ > 2
3 and any τ , τ1 ∈ R,

the following is true :

∑

n1 6=0

log(2 + |τ +m(n1) +m(n− n1)|)

(1 + |τ +m(n1) +m(n− n1)|)
≤ C.

∑

n 6=0

log(2 + |τ1 +m(n1)−m(n− n1)|)

(1 + |τ1 +m(n1)−m(n− n1)|)
≤ C.

∑

n 6=0

log(1 + |τ1 +m(n1)−m(n− n1)|)

(1 + |τ1 +m(n1)−m(n− n1)|)ρ
≤ C.

Proposition 4.1. Let s ≥ −1
2 , then for all f , g with compact support in

time included in the subset {(t, x), t ∈ [−T, T ]}, there exists θ > 0 such that:

‖∂x(fg)‖
Xs,− 1

2
. T θ‖f‖

Xs, 1
2
‖g‖

Xs, 1
2
.

Remark 4.1. This proposition is false for s < −1
2 . We can exhibit a

counterexample to the bilinear estimate in the Prop (4.1) inspired by the
similar argument in [8].

We now use the lower bound of the resonance function to recover the
derivative on the non-linear term u∂xu.
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Lemma 4.4. Let

Fs =
| n |2s+2| n1(n− n1) |

−2s

σ(τ, τ1, n, n1)

and

Fs,r =
| n |2s+2| n1(n − n1) |

−2s

σ2(1−r)(τ, τ1, n, n1)

where σ(τ, τ1, n, n1) = max{| τ+m(n) |, | τ1+m(n1) |, | τ−τ1+m(n−n1) |}.
Then, for s ≥ −1

2 , 0 < r < 1
4 , we have

Fs . 1.

and

Fs,r .
1

| n |2−4r
.

Proof : This follows from Lemma 4.1.

According to [6] we have the following Lemma:

Lemma 4.5. For any u ∈ Xs, 1
2 supported in [−T, T ] and for any 0 < b < 1

2 ,
it holds:

||u||Xs,b . T ( 1
2
−b)−||u||Xs,1/2− . T ( 1

2
−b)−||u||Xs,1/2 . (4.3)

Proof of Proposition 4.1 : Let

P b
f (n, τ) = |n|s < τ +m(n) >b |f̂(n, τ)|,

then we have

‖f‖Xb,s = (
∑

n

∫

R

(P b
f (n, τ))

2dτ)
1

2 = ‖P b
f (n, τ)‖l2nL2

τ
,

and

B(f, g)(n, τ) = ns+1 < τ+m(n) >− 1

2

∑

n1 6=0,n1 6=n

∫

R

(n1(n− n1))
−sP

1

2
−γ

f (n1, τ1)P
1

2
g (n− n1, τ − τ1)dτ1

< τ1 +m(n1) >
1

2
−γ< τ − τ1 +m(n− n1) >

1

2

(4.4)
Denote

F (n, τ, n1, τ1) =
| n |s+1| n1(n− n1) |

−s

< τ +m(n) >
1

2< τ1 +m(n1) >
1

2
−γ< τ − τ1 +m(n− n1) >

1

2

.

Letting E = {(n, τ, n1, τ1) :| τ − τ1 +m(n − n1) |≤| τ1 +m(n1) |}, then by
symmetry, (4.4) is reduced to estimate

(
∑

n 6=0

∫

R

(
∑

n1 6=n,n1 6=0

∫

R

(1EF )(n, τ, n1, τ1)P
1

2
−γ

f (n−n1, τ−τ1)P
1

2
g (n1, τ1)dτ1)

2dτ)
1

2 .

(4.5)
We separate the two cases.
Case I:| τ1 +m(n1) |≤| τ +m(n) |
In this case, the set E is replaced by

EI = {(n, τ, n1, τ1) :| τ − τ1 +m(n− n1) |≤| τ1 +m(n1) |≤| τ +m(n) |},
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then by Cauchy-Schwarz inequality (4.5) is controled by
∥

∥

∥

∥

(

∑

n1 6=n,n1 6=0

∫

R

(1EI
F )2(n, τ, n1, τ1)dτ1

)
1

2

×

(

∑

n1 6=n,n1 6=0

∫

R

(P
1

2
−γ

f )2(n− n1, τ − τ1)(P
1

2
g )2(n1, τ1)dτ1

)
1

2

∥

∥

∥

∥

l2nL
2
τ

.

(4.6)

Remark that

F 2 ≈ Fs
1

< τ1 +m(n1) >1−2γ< τ − τ1 +m(n− n1) >
,

with Fs =
|n|2s+2|n1(n−n1)|−2s

σ(τ,τ1,n,n1)
, then by Lemma 4.4, for s ≥ −1

2 , (n, τ, n1, τ1) ∈

EI , we have

sup
n,τ

∑

n1

∫

R

(1EI
F )2(n, τ, n1, τ1)dτ1 . sup

n,τ

∑

n1

∫

R

dτ1
< τ1 +m(n1) >1−2γ< τ − τ1 +m(n− n1) >

we can easily see that

(4.6) ≤ sup
n,τ

∑

n1

∫

R

dτ1
< τ1 +m(n1) >1−2γ< τ − τ1 +m(n− n1) >

‖P
1

2
−γ

f (n, τ)‖l2nL2
τ
‖P

1

2
g (n, τ)‖l2nL2

τ

then by Lemma 4.2, 4.3( take α = τ+m(n1)+m(n−n1) and β = τ1+m(n1))
and 4.5 we obtain that there exist θ > 0 such that:

(4.5) . ‖f‖
Xs, 1

2
−γ‖g‖Xs, 1

2
. T θ‖f‖

Xs, 1
2
‖g‖

Xs, 1
2
.

Case II:| τ +m(n) |≤| τ1 +m(n1) | Here the set E becomes:

EII = {(n, τ, n1, τ1) :| τ−τ1+m(n−n1) |≤| τ1+m(n1) |, | τ+m(n) |<| τ1+m(n1) |}.

Then we will estimate

‖
∑

n1

∫

R

(1EII
F )(n, τ, n1, τ1)P

1

2
−γ

f (n− n1, τ − τ1)P
1

2
g (n1, τ1)dτ1 ‖l2nL2

τ
(4.7)

By duality, (4.7) equals to

sup
‖w‖

l2nL2
τ
=1

∑

n,n1

∫

R2

w(n, τ)(1EII
F )(n, τ, n1, τ1)P

1

2
−γ

f (n − n1, τ − τ1)P
1

2
g (n1, τ1)dτ1dτ.

(4.8)
By Fubini’s Theorem and Cauchy-Schwarz inequality, we could control (4.8)
by

sup
‖w‖

l2nL2
τ
=1

(

∑

n1

∫

R

[

∑

n

∫

R

(1EII
F )2(n, τ, n1, τ1)dτ

]

× (4.9)

[

∑

n

∫

R

w2(P
1

2
−γ

f )2(n− n1, τ − τ1)dτ
]

dτ1

)
1

2

‖g‖
Xs, 1

2
.

Similary to the previous case, we can show that:

sup
n1,τ1

∑

n

∫

R

(1EII
F )2(n, τ, n1, τ1)dτ . 1.
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Finaly we obtain that

(4.9) . ‖f‖
Xs, 1

2
−γ‖g‖Xs, 1

2
. T θ‖f‖

Xs, 1
2
‖g‖

Xs, 1
2
.

Now we have the following proposition:

Proposition 4.2. Let s ≥ −1
2 then for all f , g with compact support in

time included in the subset {(t, x), t ∈ [−T, T ]}, there exists θ > 0 such that:
(

∑

n∈Ż

| n |2s
[
∫

R

| nf̂ ∗ ĝ(n, τ) |

< τ +m(n) >
dτ

]2)1

2

. T θ‖f‖
Xs, 1

2
‖g‖

Xs, 1
2
. (4.10)

Proof: As in the proof of Prop 4.1, we consider (4.10) in the same two
cases. It could be written as:

∥

∥

∥

∥

∫

R

∑

n1

∫

R

(1EF )(., τ, n1, τ1)P
1

2
−γ

f (.−n1, τ−τ1)P
1

2
g (n1, τ1)dτ1dτ

∥

∥

∥

∥

l2n

. T θ‖f‖
Xs, 1

2
‖g‖

Xs, 1
2
,

(4.11)
where

F (n, τ, n1, τ1) =
| n |s+1| n1(n− n1) |

−s

< τ +m(n) >
1

2< τ1 +m(n1) >
1

2
−γ< τ − τ1 +m(n− n1) >

1

2

.

1)Case I: | τ1 +m(n1) |≤| τ +m(n) |. As before, the set E is replaced by

EI = {| τ − τ1 +m(n− n1) |≤| τ1 +m(n1) |≤| τ +m(n) |}.

By duality , we suffer to estimate

sup
‖w‖

l2n
=1

∑

n,n1

∫

R2

w(n)(1EI
F )(n, τ, n1, τ1)P

1

2
−γ

f (n− n1, τ − τ1)P
1

2
g (n1, τ1)dτ1dτ .

Now by Cauchy-Schwarz, we could control it by

sup
‖w‖

l2n
=1

(

∑

n1

∫

R

[

∑

n

∫

R

(1EI
F )2(n, τ, n1, τ1)dτ

]

×

[

∑

n

∫

R

w2(P
1

2
−γ

f )2(n− n1, τ − τ1)dτ
]

dτ1
)

1

2‖g‖
Xs, 1

2
,

then it is sufficient to show that, for s > −1
2

D = sup
n1

∑

n

∫

R

∫

R

(1EI
F )2(n, τ, n1, τ1)dτdτ1 . 1.

For some 0 < r < 1
4 , D can be rewriten as:

D = sup
n1

∑

n

∫

R

∫

R

1

< τ +m(n) >2r
, (1EI

Fr)
2(n, τ, n1, τ1)dτdτ1

where

F 2
r =

| n |2s+2| n1(n− n1) |
−2s

< τ +m(n) >2(1−r)

1

< τ1 +m(n1) >1−2γ< τ − τ1 +m(n− n1) >
.

Remark that

F 2
r = Fs,r

1

< τ1 +m(n1) >1−2γ< τ − τ1 +m(n− n1) >
,
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then by Lemma 4.4, D could be controlled by

D . sup
n1

∑

n

∫

R

∫

R

1

| n |2−4r

dτ1dτ

< τ1 +m(n1) >1−2γ+r< τ − τ1 +m(n− n1) >1+r

by Lemma 4.2 we have:
∫

R

dτ1
< τ1 +m(n1) >1−2γ+r< τ − τ1 +m(n− n1) >1+r

.
1

(1+ | τ +m(n1) +m(n− n1) |)1−2γ+r
.

Hence

D . sup
n1

∑

n

1

| n |2−4r

∫

R

dτ

(1+ | τ +m(n1) +m(n− n1) |)1−2γ+r
.

Therefore, if r < 1
4 , we have D .

∑

n
1

|n|2−4r < +∞.

2)Case II, | τ +m(n) |≤| τ1 +m(n1) |. Now we replace E with

EII = {(n, τ, n1, τ1) :| τ−τ1+m(n−n1) |≤| τ1+m(n1) |, | τ+m(n) |<| τ1+m(n1) |}.

We write

1+ | τ +m(n) |= (1+ | τ +m(n) |)r(1+ | τ +m(n) |)1−r,

where 1
2 < r < 1. As in case I, Fr denotes

| n |s+1| n1(n− n1) |
−s

< τ +m(n) >(1−r)

1

< τ1 +m(n1) >
1

2
−γ< τ − τ1 +m(n− n1) >

1

2

.

It suffices to estimate
(

∑

n

(
∫

R

∑

n1

∫

R

1

< τ +m(n) >r
(1EII

Fr)(n, τ, n1, τ1)P
1

2
−γ

f (n−n1, τ−τ1)P
1

2
g (n1, τ1)dτ1dτ

)2) 1

2

.

(4.12)
Applying the Cauchy-Schwarz inequality in τ we see that (4.12) is bounded
by
[

∑

n

(
∫

R

dτ

< τ +m(n) >2r

)

×

(
∫

R

(

∑

n1

∫

R

(1EII
Fr)(n, τ, n1, τ1)P

1

2
−γ

f (n− n1, τ − τ1)P
1

2
g (n1, τ1)dτ1

)2

dτ

)

]
1

2

.

Since 2r > 1, then (4.12) is dominated by

[

∑

n

∫

R

(

∑

n1

∫

R

(1EII
Fr)(n, τ, n1, τ1)P

1

2
−γ

f (n− n1, τ − τ1)P
1

2
g (n1, τ1)dτ1

)2

dτ

)

]
1

2

,

then as the case II in the proof of Prop 4.1, we obtain the estimate, and this
end the proof.

Now we return to the proof of Theorem 2.1: Let L defined by

L(u) = ψ(t)[S(t)φ −

∫ t

0
S(t− t′)∂x(ψ

2
Tu

2(t′))dt′], (4.13)

where t ∈ R, ψ indicates a time cutoff function :

ψ ∈ C∞
0 (R), sup ψ ⊂ [−2, 2], ψ = 1 on [−1, 1], (4.14)
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ψT (.) = ψ(./T ),
we will apply a fixed point argument to (4.13), using the following estimates:

Proposition 4.3. There exists a constant C = C(φ) such that:

||L(u)||Y s ≤ C||φ||Hs + CT γ||u||2Y s

and
||L(u) − L(v)||Y s ≤ CT γ ||u− v||Y s ||u+ v||Y s .

Proof: It follows from Propositions 4.1, 4.2 and classical linear estimates
(see [3]).

Note that if we take T = (4C2||φ||Hs)−1/γ we deduce from Prop 4.3 that L
is strictly contractive in the ball B(0, 1

8C2 ) in Y
s. This proves the existence

of a unique solution u to (4.13) in Y s.

4.1. Global existence in L2. Its easy to see that the L2-norm is conserved
( ‖u(t)‖L2 = ‖u0‖L2). Hence, if we take an initial data u0 in L

2
0, the solution

u such that u(0) = u0 can be extended for all positive times and the existence
is global in L2

0(T).
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